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We establish existence and uniqueness of the solution to the cavity equation for the random assignment problem in pseudo-dimension d > 1, as conjectured by Aldous and Bandyopadhyay (Annals of Applied Probability, 2005) and Wästlund (Annals of Mathematics, 2012). This fills the last remaining gap in the proof of the original Mézard-Parisi prediction for this problem (Journal de Physique Lettres, 1985).

Introduction

The random assignment problem is a now classical problem in probabilistic combinatorial optimization. Given an n × n array {X i,j } 1≤i,j≤n of iid nonnegative random variables, it asks about the statistics of

M n := min σ n i=1 X i,σ(i) ,
where the minimum runs over all permutations σ of {1, . . . , n}. This corresponds to finding a minimum-length perfect matching on the complete bipartite graph K n,n with edge-lengths {X i,j } 1≤i,j≤n . Using the celebrated replica symmetry ansatz from statistical physics, Mézard and Parisi [START_REF] Mézard | Replicas and optimization[END_REF][START_REF] Mézard | Mean-field equations for the matching and the travelling salesman problems[END_REF][START_REF] Mézard | On the solution of the random link matching problems[END_REF] made a remarkably precise prediction concerning the regime where n tends to infinity while the distribution of X i,j is kept fixed and satisfies P (X i,j ≤ x) ∼ x d as x → 0 + , 1 for some exponent 0 < d < ∞. Specifically, they conjectured that

M n n 1-1/d P ---→ n→∞ -d R f (x) ln f (x)dx, (1) 
where the function f : R → [0, 1] solves the so-called cavity equation:

f (x) = exp - +∞ -x d(x + y) d-1 f (y)dy . (2) 
Aldous [START_REF] Aldous | Asymptotics in the random assignment problem[END_REF][START_REF] Aldous | The ζ(2) limit in the random assignment problem[END_REF] proved this conjecture in the special case d = 1, where the term (x + y) d-1 simplifies and makes the cavity equation exactly solvable, yielding

f (x) = 1 1 + e x and -d R f (x) ln f (x)dx = π 2 6 .
Since then, several alternative proofs have been found [START_REF] Linusson | A proof of Parisi's conjecture on the random assignment problem[END_REF][START_REF] Nair | Proofs of the Parisi and Coppersmith-Sorkin random assignment conjectures[END_REF][START_REF] Wästlund | An easy proof of the ζ(2) limit in the random assignment problem[END_REF]. This stands in sharp contrast with the case d = 1, where showing that the Mézard-Parisi equation ( 2) admits a unique solution has until now remained an open problem [START_REF] Aldous | A survey of max-type recursive distributional equations[END_REF]Open Problem 63]. Wästlund [START_REF] Wästlund | Replica symmetry of the minimum matching[END_REF] circumvented this issue by considering instead the truncated equation

f λ (x) = exp - λ -x d(x + y) d-1 f λ (y)dy , 0 < λ < ∞. (3) 
Using an ingenious game-theoretical interpretation of this equation, he showed the existence of a unique, global attractive solution f λ : [-λ, λ] → [0, 1] for every 0 < λ < ∞, provided d ≥ 1. He then used this fact to establish that

M n n 1-1/d P ---→ n→∞ lim λ→+∞ ↑ -d λ -λ f λ (x) ln f λ (x)dx. (4) 
Wästlund [START_REF] Wästlund | Replica symmetry of the minimum matching[END_REF] explicitly left open the problem of completing the proof of the original Mézard-Parisi prediction by showing (i) that the untruncated cavity equation admits a unique solution f and (ii) that f λ → f as λ → ∞. The purpose of this short paper is to establish this conjecture. 

f λ (x) ln f λ (x)dx ----→ λ→+∞ R f (x) ln f (x)dx.
Consequently, the two limits in (1) and (4) coincide.

In addition, we provide a short alternative proof of the crucial result of [START_REF] Wästlund | Replica symmetry of the minimum matching[END_REF] that the truncated equation (3) admits a unique, attractive solution.

Remark 1. Very recently, a proof of uniqueness for the truncated equation (3) has been announced [START_REF] Larsson | The Minimum Perfect Matching in Pseudo-dimension 0[END_REF] for the case 0 < d < 1. It would be interesting to see if the result of the present paper can be extended to this regime.

Remark 2. For a random variable Z with P (Z > x) = f (x), the cavity equation ( 2) simply expresses the fact that Z solves the distributional identity

Z d = min i≥1 {ξ i -Z i } , (5) 
where {ξ i } i≥1 is a Poisson point process with intensity dx d-1 ∂x on [0, ∞), and {Z i } i≥1 are iid with the same distribution as Z, independent of {ξ i } i≥1 . Such recursive distributional equations arise naturally in a variety of models from statistical physics, and the question of existence and uniqueness of solutions plays a crucial role for the rigorous understanding of those models.

We refer the interested reader to the comprehensive surveys [START_REF] Aldous | The objective method: probabilistic combinatorial optimization and local weak convergence[END_REF][START_REF] Aldous | A survey of max-type recursive distributional equations[END_REF] for more details. In particular, [4, Section 7.4] contains a detailed discussion on equation ( 5), and [4, Open Problem 63] raises explicitly the uniqueness issue. We note that the refined question of endogeny remains a challenging open problem. Recursive distributional equations for other mean-field combinatorial optimization problems have been analysed in e.g. [START_REF] Gamarnik | Maximum weight independent sets and matchings in sparse random graphs. Exact results using the local weak convergence method[END_REF][START_REF] Parisi | Mean field matching and traveling salesman problems in pseudo-dimension 1[END_REF][START_REF] Khandwawala | Solutions to recursive distributional equations for the mean-field TSP and related problems[END_REF].

The remainder of the paper is organized as follows. Section 2 deals with the truncated equation (3) for fixed 0 < λ < ∞ and is devoted to the alternative analytical proof that there is a unique, globally attractive solution f λ . Section 3 prepares the λ → ∞ limit by providing uniform controls on the family {f λ : 0 < λ < ∞} and by characterizing the possible limit points. This reduces the proof of Theorem 1 to establishing uniqueness in the untruncated Mézard-Parisi equation (λ = ∞), which is done in Section 4.

The truncated cavity equation

(λ < ∞) Fix a parameter 0 < λ < ∞. On the set F of non-increasing functions f : [-λ, λ] → [0, 1], define an operator T by (T f )(x) = exp -d λ -x (x + y) d-1 f (y)dy . ( 6 
)
The purpose of this section is to give a short and purely analytical proof of the following result, which was the main technical ingredient in [START_REF] Wästlund | Replica symmetry of the minimum matching[END_REF] and was therein established using an ingenious game-theoretical framework.

Proposition 1. T admits a unique fixed point f λ and it is attractive in the sense that

|T n f (x) -f λ (x)| ---→ n→∞ 0, uniformly in both x ∈ [-λ, λ] and f ∈ F. Proof. Write f ≤ g to mean f (x) ≤ g(x) for all x ∈ [-λ, λ]. In particular, 0 ≤ f ≤ T 0
for every f ∈ F, where 0 denotes the constant-zero function. Note also that the operator T is non-increasing, in the sense that

f ≤ g =⇒ T f ≥ T g.
Those two observations imply that the sequences {T 2n 0} n≥0 and {T 2n+1 0} n≥0 are respectively non-decreasing and non-increasing, and that their respective pointwise limits f -and f + satisfy

f -≤ lim inf n→∞ T n f ≤ lim sup n→∞ T n f ≤ f + ,
for any f ∈ F. Moreover, the dominated convergence Theorem ensures that T is continuous with respect to pointwise convergence, allowing to pass to the limit in the identity T n+1 0 = T (T n 0) to deduce that

T f -= f + and T f + = f -. (7) 
Therefore, the proof boils down to the identity f -= f + , which we now establish. By definition, we have for any f ∈ F,

(T f )(x) = exp -d λ -λ (x + y) d-1 1 (x+y≥0) f (y)dy .
Since d > 1, we may differentiate under the integral sign to obtain

(T f ) ′ (x) = -d(d -1)(T f )(x) λ -λ (x + y) d-2 1 (x+y≥0) f (y)dy.
Integrating over [-λ, λ] and noting that (T f ) (-λ) = 1, we conclude that

1 -(T f ) (λ) = d(d -1) [-λ,λ] 2 (x + y) d-2 1 (x+y≥0) (T f )(x)f (y)dxdy.
Let us now specialize to f = f ± . In both cases, the right-hand side is

d(d -1) [-λ,λ] 2 (x + y) d-2 1 (x+y≥0) f + (x)f -(y)dxdy,
by [START_REF] Kolmogorov | Introductory real analysis[END_REF]. Therefore, we have

(T f + ) (λ) = (T f -)(λ), i.e. λ -λ d(λ + y) d-1 f + (y)dy = λ -λ d(λ + y) d-1 f -(y)dy.
Since we already know that f -≤ f + , this forces f -= f + almost-everwhere on [-λ, λ], and hence everywhere by continuity. Finally, the convergence

T n 0 → f λ = f ± is automatically uniform on [-λ, λ]
, by Dini's Theorem.

3 Relative compactness of solutions (λ → ∞)

In order to study properties of the family {f λ : 0 < λ < ∞}, we extend the domain of f λ to R by setting f λ (x) = 1 for x ≤ -λ and f λ (x) = 0 for x > λ.

Proposition 2 (Uniform bounds). For all 0 < λ < ∞ and x ≥ 0,

f λ (x) ≤ exp - x d e 1 -f λ (-x) ≤ exp - x d e f λ (-x) ln 1 f λ (-x) ≤ exp - x d e f λ (x) ln 1 f λ (x) ≤ 1 + x d e exp - x d e .
Proof. Let 0 < λ < ∞. We may assume that x ∈ [0, λ], otherwise the above bounds are trivial. By definition, we have

f λ (x) = exp - λ -x d(x + y) d-1 f λ (y)dy . (8) 
Now, since x ≥ 0 and f λ is non-increasing, we have

λ -x (x + y) d-1 f λ (y)dy = 0 -x (x + y) d-1 f λ (y)dy + λ 0 (x + y) d-1 f λ (y)dy ≥ f λ (0) x d d + λ 0 y d-1 f λ (y)dy.
Applying u → exp(-du) to both sides and using (8), we obtain

f λ (x) ≤ f λ (0) exp(-f λ (0)x d ). (9) 
In turn, this inequality implies that for all x ≥ 0,

λ x d(y -x) d-1 f λ (y)dy ≤ f λ (0) +∞ x dy d-1 e -f λ (0)y d dy = exp(-f λ (0)x d ).
Applying u → exp(-u) to both sides, we conclude that

f λ (-x) ≥ exp -e -f λ (0)x d . ( 10 
)
In particular, taking x = 0 yields f λ (0) ≥ e -1 , and reinjecting this into ( 9) and ( 10) easily yields the first three claims. For the last one, observe that u → u ln 1 u increases on [0, e -1 ] and decreases on [e -1 , 1], with the value at u = e -1 being precisely e -1 . Therefore, if exp(-x d /e) ≤ e -1 , we may use the bound f λ (x) ≤ exp(-x d /e) to deduce that

f λ (x) ln 1 f λ (x) ≤ x d e exp - x d e .
On the other hand, if exp(-x d /e) ≥ e -1 , then

f λ (x) ln 1 f λ (x) ≤ e -1 ≤ exp - x d e .
In both cases, the last inequality holds, and the proof is complete.

Proposition 3. The family {f λ : 0 < λ < ∞} is relatively compact with respect to the topology of uniform convergence on R, and any sub-sequential limit as λ → ∞ must solve the cavity equation (2).

Proof. Let {λ n } n≥0 be any sequence of positive numbers such that λ n → ∞ as n → ∞. By Helly's compactness principle for uniformly bounded monotone functions (see e.g. [START_REF] Kolmogorov | Introductory real analysis[END_REF]Theorem 36.5]), there exists an increasing sequence {n k } k≥0 in N and a non-increasing function f : R → [0, 1] such that

f λn k (x) ---→ k→∞ f (x), (11) 
for all x ∈ R. Thanks to the first inequality in Proposition 2, we may invoke dominated convergence to deduce that for each x ∈ R,

λn k -x f λn k (y)(x + y) d-1 dy ---→ k→∞ +∞ -x f (y)(x + y) d-1 dy.
Applying u → exp(-du) and recalling (8), we see that

f (x) = exp -d +∞ -x f (y)(x + y) d-1 dy ,
which shows that f must solve the cavity equation ( 2). This identity easily implies that f is continuous. Consequently, the convergence (11) is uniform in x ∈ R, by Dini's Theorem.

The un-truncated cavity equation (λ = ∞)

To conclude the proof of Theorem 1, it now remains to show that the untruncated equation

f (x) = exp -d +∞ -x (x + y) d-1 f (y)dy . (12) 
admits at most one fixed point f : R → [0, 1]. Proposition 3 will then guarantee the convergence f λ ---→ λ→∞ f , which will in turn imply

λ -λ f λ (x) ln f λ (x)dx ----→ λ→+∞ R f (x) ln f (x)dx,
by dominated convergence, thanks to the last inequalities in Proposition 2.

A quick inspection of the proof of Proposition 2 reveals that it remains valid when λ = ∞. In particular, any solution f to [START_REF] Mézard | On the solution of the random link matching problems[END_REF] 

must satisfy max(f (x), 1 -f (-x)) ≤ exp - x d e , (13) 
for all x ≥ 0. It also clear from [START_REF] Mézard | On the solution of the random link matching problems[END_REF] that f must be (0, 1)-valued and continuous. We will use those properties in the proofs below.

Lemma 1. If f, g solve ( 12), then there exists t ≥ 0 such that for all x ∈ R,

f (x + t) ≤ g(x) ≤ f (x -t).
Proof. [START_REF] Nair | Proofs of the Parisi and Coppersmith-Sorkin random assignment conjectures[END_REF] ensures that for any t ∈ R, y → (1 + |y|)(f (y -t) -g(y)) is integrable on R, so that by dominated convergence,

1 x d-1 +∞ -x (y + x) d-1 (f (y -t) -g(y)) dy ----→ x→+∞ ∆(t), (14) 
where

∆(t) := R (f (y -t) -g(y)) dy. ( 15 
)
Observe that t → ∆(t) increases continuously from -∞ to +∞, as can be seen from the decomposition

∆(t) = +∞ 0 (1 -g(-y) -g(y))dy + +∞ -t f (y)dy - +∞ t (1 -f (-y))dy.
In particular, we can find t 0 ≥ 0 such that ∆(-t 0 ) < 0 < ∆(t 0 ). In view of ( 14), we deduce the existence of a ≥ 0 such that for all x ≥ a,

+∞ -x (y + x) d-1 g(y)dy ≥ +∞ -x (y + x) d-1 f (y + t 0 )dy (16) +∞ -x (y + x) d-1 g(y)dy ≤ +∞ -x (y + x) d-1 f (y -t 0 )dy. ( 17 
)
Applying u → exp(-du), we conclude that for all x ≥ a,

f (x + t 0 ) ≤ g(x) ≤ f (x -t 0 ). (18) 
In turn, this implies that ( 16)-( 17) also hold when x ≤ -a, so that (18) actually holds for all x outside (-a, a). On the other hand, since g is (0, 1)-valued and f has limits 0, 1 at ±∞, we can choose t 1 ≥ 0 large enough so that

f (-a + t 1 ) ≤ g(a) ≤ g(-a) ≤ f (a -t 1 ).
Since f, g are non-increasing, this inequality implies that for all x ∈ [-a, a],

f (x + t 1 ) ≤ g(x) ≤ f (x -t 1 ). (19) 
In view of ( 18)-( 19), taking t := max(t 0 , t 1 ) concludes the proof.

Proof of Proposition 3. Let f, g solve equation ( 12) and let t be the smallest non-negative number satisfying for all x ∈ R,

f (x + t) ≤ g(x) ≤ f (x -t). (20) 
Note that t exists by Lemma 1 and the continuity of f . Now assume for a contradiction that t > 0. Clearly, each of the two inequalities in (20) must be strict at some point x ∈ R (and hence on some open interval by continuity), otherwise we would have g ≥ f or g ≤ f and (12) would then force g = f , contradicting the assumption that t > 0. Consequently, the function ∆ defined in [START_REF] Wästlund | An easy proof of the ζ(2) limit in the random assignment problem[END_REF] must satisfy ∆(-t) < 0 < ∆(t). By continuity of ∆, there must exists t 0 < t such that ∆(-t 0 ) < 0 < ∆(t 0 ). As we have already seen, this inequality implies

f (x + t 0 ) ≤ g(x) ≤ f (x -t 0 ), (21) 
for all x outside some compact [-a, a]. In particular, we now see that the inequalities in (20) must be strict for all large enough x. Thus, for all x ∈ R, Applying u → exp(-du) now shows that the inequalities in (20) must actually be strict everywhere on R, hence in particular on the compact [-a, a]. By uniform continuity, there must exists t 1 < t such that f (x + t 1 ) ≤ g(x) ≤ f (x -t 1 ),

for all x ∈ [-a, a]. In view of ( 21)-( 22), the number t ′ := max(t 0 , t 1 ) now contradicts the minimality of t.

Theorem 1 .

 1 For d > 1, the Mézard-Parisi equation (2) admits a unique solution f : R → [0, 1]. Moreover, f λ → f pointwise as λ → +∞, and λ -λ

  x) d-1 f (y + t)dy +∞ -x (y + x) d-1 g(y)dy < +∞ -x (y + x) d-1 f (y -t)dy.