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1. Introduction 24 

 Invertebrates resist pathogens despite their lack of adaptive immunity [1]. The 25 

tremendous variety of invertebrate life histories and ecological niches suggests a great 26 

diversity of immune strategies [2]. Among Mollusca – one of the most diverse groups of 27 

animals [3], studies of immunity have mostly focused on bivalves (e.g. [4–14]) and 28 

gastropods (e.g. [15–20]), while few studies have focused on cephalopods [21,22]. 29 

Cephalopods are an interesting model because of their (1) vertebrate-like high-pressure closed 30 

circulatory system, (2) high sensitivity to environmental parameters, (3) short-life span and 31 

(4) elevated metabolic rate [23,24]. Moreover, their economical importance has recently 32 

grown in terms of fisheries and aquaculture (e.g. [25–29]). 33 

As in other invertebrates, the cephalopod immune system relies on humoral factors 34 

and cell-mediated mechanisms acting together to eliminate invading micro-organisms [30,31]. 35 

Humoral factors mainly include lectins (e.g. agglutinins, opsonins), antimicrobial factors (e.g. 36 

peptides, acid phosphatases, lysozymes), and several signaling pathways including 37 

prophenoloxidase (proPO) and proteolytic cascades [2,32]. In contrast, cell-mediated defense 38 

mechanisms are primarly performed by hemocytes (Hcs) – cells synthetized in white bodies 39 

and freely circulating in plasma and infiltrating in tissues [33,34]. Hcs are of central 40 

importance to invertebrates because of their involvement in numerous physiological functions 41 

[35–39], including their ability to phagocytose, encapsulate and destroy foreign particles 42 

[18,30,40]. In cephalopods, Hcs have mainly been described as a one cell-type population
1
 43 

                                                 
1
 Abbreviations: FCM: flow cytometry; Hc: hemocyte; Hcy: hemocyanin; MPS: molluscan 

physiological saline; NR: neutral red; PI: protease inhibitor; PO: phenoloxidase; proPO: 

prophenoloxidase; SEM: scanning electron microscopy; SD: standard deviation; TEM: 

transmission electron microscopy. 



with large lobate nucleus and abundant granules, able to phagocytose [31,34,40–42]. 44 

However, these Hc descriptions were mainly performed in Octopodidae as well as in the 45 

sepiolidae Euprymna scolopes and little is known about the immune cellular factors of other 46 

cephalopod species such as the sepiidae (cuttlefish) Sepia officinalis. Because of the distinct 47 

ecology of Sepiidae within Cephalopodia [27,43,44], they may also have distinct immune 48 

requirements. 49 

 In this study, we performed cytological stainings, electron microscopy and flow 50 

cytometry (FCM) analysis to morphologically characterize S. officinalis Hcs. In addition, we 51 

investigated humoral factor localization between plasma and cells, and phagocytic reactions at 52 

several incubation times, temperatures and plasma concentrations. Our results highlighted one 53 

granulocyte population with various densities of acidophilic granules and unstained vesicles. 54 

The Hcs, which contained acid phosphatase, lysozyme and proPO system enzymes, had high 55 

phagocytic ability, modulated by plasma in our assay conditions.  56 



2. Material and methods 57 

2.1. Animals 58 

 Thirty-one adult cuttlefish S. officinalis (21.5 ± 3.1 cm mantle length) were obtained 59 

from traps deployed during spring 2011 and 2012 along the Calvados coast (Normandy, 60 

France). Cuttlefish were then conditioned at the Centre de Recherches en Environnement 61 

Côtier (Luc-sur-Mer, Normandy, France) in 4500-L tanks in an open seawater circuit for at 62 

least 2 days, fed with crustaceans Crangon crangon and Carcinus maenas, and starved for 1 63 

day before experimentation. The sex of each individual was determined. 64 

 65 

2.2. Hemolymph collection 66 

 Before hemolymph sampling and following ethical procedures (Directive 67 

2010/63/EU), cuttlefish were anesthetized as described by Andrews et al. [45] through 68 

placement for 10 min in seawater containing 2% ethanol. Between 9 and 13 ml of hemolymph 69 

was then withdrawn from the anterior mantle vein [46] using a syringe with 18-gauge needle. 70 

The sample was transferred into a sterile tube, diluted or not with one volume of cooled sterile 71 

antiaggregative modified Alsever solution (115 mM glucose; 27 mM sodium citrate; 11.5 mM 72 

EDTA; 382 mM NaCl pH 7.5) [47], depending on the procedure (see below), and kept on ice 73 

to minimize cell clumping. Hc viability was checked by mixing one volume of Alsever-74 

diluted hemolymph with one volume of trypan blue solution (0.4%) and Hc concentration was 75 

determined with non diluted hemolymph using a Thoma cell. Once sampling was completed, 76 

animals were euthanized by increasing ethanol concentration to 10% [48]. 77 

 78 

2.3. Chemicals 79 

Sodium chloride (NaCl), anhydrous and hexahydrate magnesium chloride (MgCl2 and 80 

MgCl2∙6H2O), calcium chloride (CaCl2), bovin serum albumin (BSA), Bradford reagent, 81 



trypsin TPCK (N-Tosyl-L-phenylalanine chloromethyl ketone), N-benzoyl-L-arginine 4-82 

nitroanilide hydrochloride (BAPNA), p-nitrophenyl-phosphate, dimethyl sulfoxide (DMSO), 83 

trizma hydrochloride (Tris-HCl), trizma base, 3,4-dihydroxy-L-phenylalanine (L-DOPA), 84 

tropolone, hen egg white (HEW) lysozyme, freeze-dried Micrococcus lysodeikticus, sodium 85 

phosphate dibasic dihydrate (Na2HPO4∙2H2O), citric acid (C6H8O7), Wright stain, neutral red, 86 

L-15 medium (Leibovitz), potassium chloride (KCl), magnesium sulphate heptahydrate 87 

(MgSO4∙7H2O), formaldehyde solution, L-glutamine, streptomycin, sodium hydroxide 88 

(NaOH), ethylenediaminetetraacetic acid (EDTA), trypan blue solution, methanol and HEPES 89 

were obtained from Sigma-Aldrich (France). Halt Protease Inhibitor Cocktail, EDTA-Free 90 

(100X) was obtained from Thermo Fisher Scientific (Waltham, USA). Ethanol was obtained 91 

from Carlo erba (Milan, Italy). Hemacolor® staining kit was obtained from Merck Millipore 92 

(Darmstadt, Germany). Low melting point agar was obtained from Carl Roth (Lauterbourg, 93 

France). All chemicals used for electron microscopy i.e. glucose, sodium citrate, 94 

glutaraldehyde, sodium cacodylate, sucrose, osmium tetroxide (OsO4), propylene oxide, 95 

araldite resin, uranyl acetate and lead citrate were obtained from Electron Microscopy 96 

Sciences (Hatfield, PA, USA). 97 

 98 

2.4. Morphological characterization of S. officinalis Hcs 99 

2.4.1. Hemolymph cell monolayer stainings 100 

 For Hc staining, one drop of hemolymph was placed on a Thermanox
TM

 coverslip 101 

(Thermo Fisher Scientific, Waltham, USA) and allowed to adhere for 30 min at 15°C. Before 102 

staining, coverslips were rinsed in Molluscan Physiological Saline (MPS; 0.4 M NaCl, 0.1 M 103 

MgSO4, 20 mM HEPES, 10 mM CaCl2 and 10 mM KCl modified after [49]) to remove 104 

plasma. Hemacolor® staining was performed according  to  the  manufacturer’s 105 

recommendations. Wright staining was performed after 1 min air-drying by 1 min 106 

https://www.google.fr/search?client=safari&rls=en&biw=1677&bih=914&q=massachusetts+waltham&stick=H4sIAAAAAAAAAGOovnz8BQMDAw8HsxKHfq6-QUaVsWlc_qQkxkMv9f8s-sDh-DXjVOa2Tw4AkPDBtikAAAA&sa=X&ei=Z-kcUvHLLYektAbm4IHgDw&sqi=2&ved=0CJ0BEJsTKAIwDA


dehydration in absolute methanol, following by 1 min in Wright solution (0.66% in 107 

methanol), then diluted (1:4) in distilled water during 4 min and rinsed. To highlight the cell 108 

lysosomal system, neutral red (NR) uptake was performed by incubating cells for 30 min in 109 

NR solution (1:500; NR stock solution (20 mg NR/ml DMSO):MPS) in a moist chamber at 110 

15°C, before observation. 111 

 Freshly spread Hcs were observed using an inverted binocular microscope (Leica® 112 

DM IRB, Leica Microsystems, Wetzlar, Germany). Stained Hc observations were carried out 113 

with a Nikon Eclipse 80i light microscope with computer-assisted microscopic image analysis 114 

system, NIS-elements D 2.30 software (Nikon®, Champigny-sur-Marne, France). 115 

 116 

2.4.2. Electron microscopy 117 

 After 10 min 300 × g centrifugation, Hc pellets (N = 5) were rinsed with MPS and 118 

fixed in 3.2% glutaraldehyde in 0.31 M sodium cacodylate buffer, with 0.25 M sucrose (pH 119 

7.4) during for 90 min at 4°C. The cells were washed 3 times in rinsing solution (0.4 M 120 

sodium cacodylate, 0.3 M sucrose, pH 7.4). Then, cells were post-fixed 1 h with 1% OsO4 in 121 

cacodylate buffer 0.2 M, with 0.36 M sucrose (pH 7.4) at 4°C (protected from light), and 122 

washed in rinsing solution. 123 

 For scanning electron microscopy (SEM), cells were sedimented for 7 days on 124 

Thermanox
TM

 coverslip coated with poly-l-lysine (Thermo Fisher Scientific, Waltham, USA). 125 

They were then dehydrated in progressive bath of ethanol (70-100%) and critical point dried 126 

(Leica® EM CPD030). Finally, cells were sputtered with platinum and observed with 127 

scanning electron microscope JEOL 6400F. Freshly sampled cell diameters were determined 128 

by measuring 100 cells per cuttlefish (N = 5). 129 

 For transmission electron microscopy (TEM), cells were pellet in 2% low melting 130 

point agar at 40°C, and then dehydrated through increasing concentrations of ethanol (70-131 



100%) and propylene oxide 100%, embedded in araldite resine and allowed to polymerise for 132 

48 h at 60°C. Ultrathin sections were done and contrasted with 2.5% uranyl acetate diluted in 133 

50% ethanol for 30 min and contrasted for 5 min in Reynold’s lead citrate [50]. Finally, cells 134 

were observed by transmission electron microscope JEOL 1011 and images were obtained 135 

with Camera Megaview 3 and Analysis Five software. 136 

 137 

2.5. Biochemical analysis 138 

2.5.1. Enzyme extraction 139 

 Hcs and plasma were separated in non diluted hemolymph by 500 × g centrifugation 140 

for 10 min at 4°C. Plasma was then removed, checked for absence of Hc microscopically, and 141 

stored in aliquots at -80°C until analysis. Upon complete plasma removal, Hc pellets were 142 

gently rinsed in either Tris buffer pH 7 (0.1 M Tris-HCl, 0.45 M NaCl, 26 mM MgCl2 and 10 143 

mM CaCl2) for phenoloxidase (PO) assays [51] or Tris buffer pH 8 (10 mM Tris-HCl and 150 144 

mM NaCl) for phosphatase, lysozyme and protease inhibitor (PI) assays [52]. Cells were 145 

resuspended at 10 × 10
6
 cells ml

-1
 in same extraction buffer and sonicated at 60 W for 20 s. 146 

Cell extracts were then centrifuged at 10,000 × g and their supernatant aliquoted and stored at 147 

-80°C until analysis. 148 

 149 

2.5.2. Enzymatic assays 150 

 All activities were expressed in relation to protein concentration measured by the 151 

Bradford method [53] using BSA as standard. 152 

Total acid phosphatase activity was determined according to Moyano et al. [54] using 153 

p-nitrophenyl-phosphate 2% as substrate in a 1 M Tris buffer at pH 3. Then, 10 µl of 154 

supernatant was added to 10 µl of substrate in 96-well flat bottom plates (BD, USA). After 30 155 

min incubation at 25°C, 100 µl of NaOH 1 M were added to stop the reaction. The 156 



absorbance was measured at 405 nm using a Mithras LB 940 luminometer (Berthold, Thoiry, 157 

France). Total acid phosphatase activity was expressed as specific activity (U mg
-1

 protein) 158 

where one enzymatic unit corresponded to the absorbance recorded after incubation. 159 

 Lysozyme activity was quantified according to Malham et al. [55]. Fifty µl of HEW 160 

lysozyme (85 µg ml
-1

 in Tris buffer pH 8 described in section 2.5.1.) standard was serially 161 

diluted in triplicate in 96-well flat bottom plates (BD, USA). Fifty µl of each sample was 162 

added in triplicate to the 96-well plates as well as 50 µl of Tris buffer pH 8, as blanks. One 163 

hundred and fifty µl of the substrate, freeze-dried M. lysodeikticus (75 mg/100 ml of 164 

phosphate/citrate buffer pH 5.8 (Na2HPO4∙2H2O, 4.45 g/250 ml distilled H2O; citric acid 165 

(C6H8O7), 2.1 g/100 ml distilled H2O; NaCl, 0.09 g/100 ml buffer)), was added to each well. 166 

The reductions in turbidity in the wells were read on Mithras LB 940 luminometer (Berthold, 167 

Thoiry, France) at 25°C for 5 minutes at 10 second intervals at 450 nm using negative 168 

kinetics. Lysozyme concentrations were calculated from the standard curve (µg HEW 169 

lysozyme equivalent ml
-1

). Final lysozyme-like activity was thus expressed as µg HEW 170 

lysozyme eq. mg protein
-1

. 171 

 As described by Malham et al. [55] and Thompson et al. [56], PI activity was measured 172 

by transferring 20 µl of sample and 10 µl of trypsin TPCK (100 µg ml
-1

 of 0.05 M Tris buffer 173 

pH 8) in 96-well flat bottom plates (BD, USA), and mixed at room temperature for 5 minutes. 174 

In parallel, intrinsic trypsin activity was measured by replacing 10 µl of trypsin by Tris buffer 175 

pH 8 described above (section 2.5.1.). A positive control was used by replacing the sample 176 

with Tris buffer pH 8. Two hundred µl of BAPNA substrate solution (5.2 mg BAPNA ml
-1

 177 

DMSO) in 10 ml of 0.01 M trizma base buffer pH 7.4) was added to each well and incubated 178 

for 15 minutes at room temperature. Absorbance was read at 405 nm using Mithras LB 940 179 

luminometer (Berthold, Thoiry, France), and PI activity was expressed as the percentage of 180 

trypsin sample inhibition (TI) compared to the positive control. 181 



 In order to partly discriminate PO synthesis and activation site, special care was taken to 182 

avoid unwanted activation of proPO during each step of the experiment. PO-like activity was 183 

measured spectrophotometrically by recording the formation of o-quinones, as described by 184 

Luna-Acosta [51] with slight modifications to distinguish artificially activated PO (APO) 185 

(corresponding to PO-like activity resulting from zymogenic PO (proPO) activation plus 186 

already  ‘active’  form) and  in vivo ‘active’ PO  form [57]. PO assays were conducted in 96-187 

well flat bottom plates (BD, USA). L-DOPA was used as substrate, at a final concentration of 188 

10 mM [51] and prepared extemporaneously in Tris buffer pH 7 described above (section 189 

2.5.1.). Tropolone (10 mM) and trypsin TPCK (1 g l
-1

) were used respectively as PO inhibitor 190 

and elicitor as previously described in S. officinalis [57,58]. To avoid uncontrolled proPO 191 

activation by intrinsic proteases, Halt Protease Inhibitor Cocktail, EDTA-Free (1X) wide 192 

spectrum PI was used. For each sample, autoxidation  of  sample,  ‘basal’,  ‘inhibited’  and 193 

‘activated’ PO-like activities were measured. For non-enzymatic sample autoxidation, 10 µl 194 

of sample was mixed with Tris buffer pH 7. For ‘basal’ PO-like activity, 10 µl of sample was 195 

firstly mixed during 10 min with 1.4 µl Halt Protease Inhibitor Cocktail (100X), followed by 196 

adapted volume of Tris buffer pH 7 and 80 µl L-DOPA. Similarly, for inhibited or APO-like 197 

activity, 10 µl of sample was mixed with 10 µl of tropolone (140 mM) or trypsin TPCK (14 g 198 

l
-1

), Tris buffer pH 7 and 80 µl L-DOPA. Each measurement was systematically controlled by 199 

replacing sample by buffer, always in a final volume reaction of 140 µl. Immediately after L-200 

DOPA addition, PO-like activities were monitored at 25°C for 5 h using Mithras LB 940 201 

luminometer (Berthold, Thoiry, France) at 490 nm [51]. When an inhibited PO-like activity 202 

was measured, this value was subtracted from APO and PO-like activities. Tropolone, with its 203 

copper chelator and peroxidase substrate properties, ensured that PO-like activity alone was 204 

detected (and not peroxidase). Results were also systematically corrected for non-enzymatic 205 



autoxidation of the substrate and were expressed in enzyme unit (1 U) per mg of total protein. 206 

One U corresponded to an increase of 0.001 in the absorbance per min at 25°C [57]. 207 

 208 

2.6. Flow cytometry (FCM) analysis 209 

 FCM analyses were performed using a Gallios flow cytometer (Beckman Coulter). In 210 

our study, excitation light was provided by a 22 mW blue diode (488 nm), and fluorescence 211 

was collected in the FL1 channel with a 525 nm bandpass filter. For each sample, about 212 

20,000 events were acquired. Data were analysed using Kaluza software (Beckman Coulter). 213 

 214 

2.6.1. Freshly sampled Hc cytomorphology 215 

 Hc morphology was based upon relative flow-cytometric parameters, Forward Scatter 216 

(FSC) and Side Scatter (SSC). FSC and SSC commonly measure particle size and internal 217 

complexity, respectively. Internal complexity, also reported as granularity, depends upon 218 

various inner components of the cells including shape of the nucleus, amount and types of 219 

cytoplasmic granules, cytoplasmic inclusions and membrane roughness [59]. Freshly 220 

withdrawn Hc was pelleted by 300 × g centrifugation for 5 min at 4°C, rinsed in MPS, before 221 

to be fixed in 3.7% formaldehyde in MPS and kept in dark at 4°C until FCM analysis. 222 

 223 

2.6.2. Phagocytosis assays 224 

 Evaluation of phagocytosis was based on the ingestion of carboxylate-modified 225 

FluoSpheres® beads (1.0 µm, yellow-green carboxylate-modified FluoSpheres®, Molecular 226 

Probes) by Hcs. Phagocytosis was expressed as (i) the percentage of cells that had ingested 227 

three or more microbeads [60,61], and (ii) the average number of microbeads per phagocytic 228 

Hcs [18]. 229 



 Hemolymph-diluted Alsever solution was used to plate Hcs at 1.0 × 10
6
 cells per well 230 

in 6-well plates, into which three volumes of sterile artificial seawater (25.5 g l
-1

 NaCl, 6.4 g l
-

231 

1
 MgSO4, 5.2 g l

-1 
Hepes, 1.1 g l

-1 
CaCl2, 0.75 g l

-1
 KCl pH 7.4) were added to allow cell 232 

adhesion. After 60 min of incubation in dark at 15°C, supernatant was removed and cells were 233 

covered with 1 ml modified sterile Leibovitz L-15 medium pH 7.6 (20.2 g l
-1

 NaCl, 0.54 g l
-1

 234 

KCl, 0.6 g l
-1

 CaCl2, 1 g l
-1

 MgSO4∙7H2O and 3.9 g l
-1

 MgCl2∙6H2O) [62], supplemented with 235 

2 mM L-glutamine, 100 µg ml
-1

 streptomycin and 60 µg ml
-1

 penicillin G into which 236 

FluoSpheres® were added at a ratio of 1:100 (Hc:beads). Hcs from same individual cuttlefish 237 

were analyzed at each time. 238 

 239 

2.6.2.1. In vitro impact of time and temperature 240 

 Hcs were collected from 5 cuttlefish as described in section 2.2. To determine 241 

temperature-dependence of S. officinalis phagocytosis, three different temperatures were 242 

investigated; one physiological temperature (15°C) and two temperatures (4 and 25°C) out of 243 

the thermal window determined by Melzner et al. [23] with 15°C-acclimated cuttlefish. In this 244 

context, media with FluoSpheres® were acclimated to different working temperatures before 245 

addition to Hcs. Then, 6-well plates were placed in dark at 4, 15 and 25°C CO2-free 246 

incubators, during 30, 60, 120 and 180 min incubation. Afterwards wells were rinsed with 247 

MPS to remove bead excess, following by gentle scrapping and centrifugation at 300 × g for 5 248 

min at 4°C. Resulting supernatants were removed, pellets resuspended in 3.7% formaldehyde 249 

solution in MPS and stored in the dark at 4°C until FCM analysis. 250 

 251 

2.6.2.2. In vitro impact of plasma concentrations 252 

 To study the plasma opsonization process, FluoSpheres® were added to modified L-253 

15 medium mixed with cell-free plasma at 0 (as control), 1, 10 and 50%. These mixtures were 254 



incubated at 15°C during 1 h before homogenization and addition to cells. After 2 h 255 

incubation at 15°C, cells were treated as previously described (cf 2.6.2.1.) for FCM analysis. 256 

 In parallel, bead phagocytosis was performed in modified L-15 medium or 100% 257 

plasma, and Hcs analysed by TEM as described in section 2.4.2. 258 

 259 

2.7. Data analysis 260 

 Residual distributions were tested for normality (Shapiro test) as well as homogeneity of 261 

variances (Levene test). Student’s t-test was used to compare Hc concentrations between male 262 

and female individuals, specific activities between Hc and plasma compartments, PO- and 263 

APO-like activities in each compartment, and phagocytic parameters between control and 264 

several plasma treatments. One-way analysis of variance (ANOVA) followed by non-265 

parametric pairwise permutational t-tests (N<30) was used to determine the impact of 266 

temperature on phagocytic parameters at each time. Analysis of covariance (ANCOVA) was 267 

used to compare phagocytic parameter time-evolution as function of the temperature. All 268 

results are expressed and displayed as mean ± standard deviation (SD). The statistical 269 

significance was designed as being at the level of p<0.05. R software was used for statistics 270 

and graphics. 271 

  272 



3. Results and Discussion 273 

 Little is known about cephalopod Hcs, while Hc populations have been extensively 274 

studied in other mollusks (bivalves and gastropods). Our study provides the most 275 

comprehensive description of the circulating Hc population in the cuttlefish S. officinalis by 276 

using FCM, light and electron microscopy. We also report biochemical- and phagocytosis 277 

analysis of Hc interaction with plasma. 278 

 279 

3.1. Hc viability and concentration  280 

 Hc viability in all cuttlefish used in this study was higher than 99% (data not shown), 281 

and no Hc concentration difference was observed between males (7.20 ± 5.70 × 10
6
 cells ml

-1
; 282 

N=18) and females (7.27 ± 5.75 × 10
6
 cells ml

-1
; N=13). Consequently, we obtained a mean 283 

Hc concentration in hemolymph of S. officinalis of 7.23 ± 5.62 × 10
6
 cells ml

-1
 ranging from 284 

0.92 to 20.31 × 10
6
 cells ml

-1
. This mean concentration and concentration variability are 285 

consistent with reports on cephalopod Hcs (Table 1). Although highly variable, the Hc 286 

concentration of S. officinalis appeared slightly higher than that of the loliginidae Sepioteuthis 287 

lessoniana, similar to that of the sepiolidae Euprymna scolopes, and lower than that of 288 

Octopodidae, where the highest Hc concentrations within cephalopods are found (10 × 10
6
 289 

cells ml
-1

) [40,42,63–67]. Generally, Hcs of gastropod and bivalve mollusks appear less 290 

concentrated with most values ranging between 1 and 5 × 10
6
 cells ml

-1 
(Table 1) 291 

[6,7,9,11,12,18–20,59,68–75], albeit with population-dependent variation [7,12,76]. 292 

 293 

3.2. Hc identification and characterization 294 

3.2.1. Light microscopy 295 

 After adhesion, fresh cuttlefish Hcs rapidly displayed many thin pseudopodia, and 296 

most cells contained refringent and non-refringent granules of various densities in their 297 



cytoplasm  (Fig.  1).  Among  different  stains  used,  Wright’s  differential staining allowed the 298 

best observation of spontaneously adhering Hcs. A single cell type with large, lobate nucleus, 299 

slightly basophilic cytoplasm and acidophilic granules was identified (Fig. 2A). Lucent 300 

vesicles were also observed in the cytoplasm of some cells. NR uptake revealed dense 301 

lysosomal system in most cells (Fig. 2B). According to the classification of bivalve Hcs, 2 302 

main classes are usually accepted: granulocytes with cytoplasmic granules and hyalinocytes 303 

with few or no granules [77]. Based on the high granule density found in most Hcs, we 304 

classify S. officinalis Hcs as granulocytes. These observations are consistent with the majority 305 

of studies performed in Octopodidae [31,34,41,78,79], Sepiidae [33] and Sepiolidae [42,80], 306 

which reported one granular cell population circulating in the hemolymph and also called 307 

macrophage-like Hc [34,81]. 308 

 309 

3.2.2. Electron microscopy 310 

SEM observations of circulating cuttlefish Hcs showed a single cell type of 10.3 ± 0.8 311 

µm in diameter and able to form numerous pseudopodia (Fig. 3A-B), consistent with the 312 

above described light microscopy observations. This cell size is consistent with the 8-10 µm 313 

cell diameter measured on non-circulating mature Hcs in the cuttlefish white bodies 314 

(leukopoietic tissues) [33] and appeared slightly lower than octopod O. vulgaris and E. 315 

cirrhosa Hcs: 11.6 ± 1.2 and 12-15 µm, respectively [63,82]. 316 

 TEM observations of circulating Hcs highlighted a large lobate nucleus without nucleoli 317 

but highly condensed chromatin mainly localized along the inner surface of the nuclear 318 

membrane (Fig. 3C). The cytoplasm of most cells contained various sizes and densities of two 319 

distinct inclusion types (Fig. 3D): electron-dense granules corresponding to lysosomes [33], 320 

and electron-lucent membrane-surrounded vesicles, containing various densities of molecules 321 

with similar size and circular shape as Hcy molecules (Fig. 3E-F; [83–87]). These molecules 322 



are referred to as Hcy-like hereafter. In contrast to E. cirrhosa and O. vulgaris Hcs, neither 323 

different electron-dense granules nor lipid droplets were observed [31,34,63], suggesting 324 

different granule contents between these cephalopods. Mitochondria, Golgi apparatus and 325 

rough endoplasmic reticulum that often surrounded the nucleus were also observed in these 326 

cells (Fig. 3C inset). 327 

 328 

3.3. Enzymatic assays 329 

 Hydrolytic enzyme lysozymes and acid phosphatases were detected in Hc extract alone 330 

(Table 2), consistent with their known lysosomal distribution [88,89]. These data are in 331 

agreement with carbohydrates and acid phosphatases detected by stainings in E. cirrhosa Hcs 332 

[66] and suggest their synthesis in S. officinalis Hcs or earlier during their maturation [66,90]. 333 

PI activities were exclusively found in plasma (Table 2), corresponding at least in part to the 334 

already described α2-macroglobulin activity – the second most abundant protein in S. 335 

officinalis plasma [91–93]. Interestingly, PIs were recently reported in E. cirrhosa and E. 336 

scolopes Hcs [31,42], underlying the need for future investigations. 337 

 PO-like activities were measured in both hemolymph compartments (Table 2). Siddiqui 338 

et al. [94] showed in S. officinalis that plasma-associated PO-activity resulted from Hcy, 339 

which molecule shares a structurally and functionally equivalent active site with POs [95]. 340 

Therefore, PO-like activities found in Hc extracts probably result, at least in part, from Hcy 341 

presence in electron-lucent vesicles (TEM analysis). We note that PO activity was not 342 

previously detected in cephalopod Hcs. In contrast, proPO activation – the difference between 343 

PO- and APO-like activity, occurred in Hc extract alone (p=0.01). 344 

 345 

3.4. FCM analysis 346 

3.4.1. Fresh Hc cytogram 347 



 According to the criteria of cell size (FSC) and cell complexity (SSC), FCM supported 348 

the presence of a single Hc population in cuttlefish (Fig. 4A), albeit with variable internal 349 

complexity in some individuals (Fig. 4B), consistent with the above described TEM 350 

observations. Notably, recent O. vulgaris Hc characterization using TEM and FCM reported 2 351 

circulating granulocyte morphs based on size, which were interpreted as different maturating 352 

stages of the same cell type [63]. Consistently, a study of S. officinalis Hc synthesis suggested 353 

a Hc maturation model with a single cell precursor [33]. This cephalopod organization is 354 

distinct from that of bivalves and gastropods, where most Hc studies reported several 355 

circulating Hc types derived from one or more cell precursors (e.g. 356 

[5,8,9,11,15,17,18,20,32,96,97]). Our results further support the presence of a single mature 357 

circulating cell type in the Hc population of cephalopods. 358 

 359 

3.4.2. Phagocytosis experiments 360 

3.4.2.1. Time and temperature 361 

 Both phagocytosis parameters (i.e. percentage of phagocytic Hcs and quantity of 362 

ingested beads) appeared time-dependent at all temperatures tested (Fig. 5). 363 

 After 30 min, 35.5, 40.1, and 41.7% of cells were phagocytic at 4, 15 and 25°C, 364 

respectively, subsequently reaching 63.3, 70.6 and 69.8% after 180 min (Fig. 5A). These 365 

phagocytic percentages are consistent with previous observations of Hcs in O. vulgaris and E. 366 

cirrhosa where 50 and 70% of phagocytic cells were reported, respectively [40,98]. In 367 

contrast, a lower phagocytic percentage  (≤ 13%) was  recently  reported  for O. vulgaris Hcs 368 

after 120 min incubation at 15°C [63]. The filtered seawater used as media during this in vitro 369 

experiment may account for this lower rate. Overall, our results are among the highest 370 

phagocytic percentages reported among mollusks, regardless of experimental conditions (e.g. 371 

[5–7,11,12,15,18,72,75,96,99–104]. 372 



 The time-dependent evolution of phagocytosis measured in our study is consistent with 373 

previous findings on Hcs of mollusk bivalves [5,12,99,102,105] and gastropods [15,18,106], 374 

but also crustacean [107] and fish blood cells [108]. Within cephalopods, Malham et al. [98] 375 

showed similar evolution on E. cirrhosa Hcs, whereas Rodriguez-Dominguez et al. [40] 376 

reported constant O. vulgaris Hc phagocytic percentages from 45 to 120 min incubation at 377 

22°C. 378 

 Notably, temperature sensitivity appears species-specific in cephalopods, as no effects 379 

were observed in our study, whereas negative effects of low temperatures (4-10°C) were 380 

reported on Hc phagocytosis rate in O. vulgaris [40], and E. cirrhosa [98]. Although 381 

temperatures used were extremes and out of the thermal window of 15°C-acclimated 382 

cuttlefish [23] (25°C - inducing anaerobic metabolism, and 4°C - a lethal temperature [109]), 383 

no significant effects on phagocytosis parameters were found in our study. This low effect of 384 

temperature on Hc phagocytosis ability is consistent with the eurythermy of S. officinalis. 385 

 The quantity of ingested beads measured by FCM evolved in similar ways as the 386 

percentage of phagocytic Hcs. Mean quantity of beads in Hcs increased during the entire 387 

experiment from 5.9, 7.0 and 6.8 beads cell
-1

 after 30 min to 16.4, 18.7 and 16.9 beads cell
-1

 388 

after 180 min at 4, 15 and 25°C, respectively (Fig. 5B). Concurrent TEM observations 389 

confirmed the number of ingested beads registered by FCM (Fig. 6A) and visually 390 

demonstrated the engulfment process with (1) Hc-bead adhesion, (2) bead internalization by 391 

almost continuous close contact between membrane and particle, and (3) closing phagosome 392 

(Fig. 6B-C). Occasionally, we also observed lysosomal fusion with phagosome (Fig. 6D). 393 

 Our phagocytosis assay revealed similar rates of bead engulfment as those found in O. 394 

vulgaris [40], but higher rates than in the mollusk bivalve Perna viridis and gastropods 395 

Lymnaea stagnalis, Haliotis discus discus and Turbo cornutus [12,18,106], highlighting 396 

higher engulfment capacity of cephalopod Hcs. Nevertheless, such differences could be 397 



explained by the high number of beads per cell used in our study (1:100) compared to those of 398 

previous ones (≤ 1:10). 399 

 400 

3.4.2.2. Opsonization assay 401 

 As observed under FCM, opsonization experiments differently affected Hc phagocytosis 402 

percentage and engulfed bead number. While phagocytosis occurred without incubation of 403 

Hcs or beads in plasma, an increase in ingested bead number occurred after incubation in 1 or 404 

10% plasma (p=0.008 and 0.045, respectively) (Fig. 7). In contrast, incubation of beads and 405 

Hcs in 50% plasma led to a decrease of phagocytosis percentage (p=0.04). TEM observations 406 

of phagocytosis conducted with plasma revealed a bead-coating by Hcy-like molecules (Fig. 407 

8A-B) as previously suggested in cephalopods [82,98,110]. This observation could explain 408 

Hcy presence in Hc electron-lucent vesicles. Moreover, Hcy-like molecule presence in 409 

bridges between beads (Fig. 8C) suggested an agglutinating function, consistent with the 410 

increasing engulfed bead number observed at 1 and 10% plasma (Fig. 7). Such findings are 411 

consistent with a recent Octopus maya plasma agglutinin (OmA) characterization, showing 412 

homology between OmA subunits and one functional unit of Hcy from Octopus dolfeini [111]. 413 

Moreover, bead engulfment increased after as low as 1% plasma addition, underlying the high 414 

concentration of the molecule in charge of this process, and Hcy is known to represent more 415 

than 90% of cephalopod plasma proteins [98,112–114]. Such agglutinating function could 416 

also explain the phagocytic percentage decrease occurring with 50% plasma. Indeed, 417 

important bead agglutination might limit the availability of these particles for phagocytic 418 

process by increasing the size of particles to engulf. Ballarin et al. [115] described a similar 419 

phagocytic decrease resulting from agglutinins in the ascidian Botryllus schlosseri after yeast 420 

pre-incubation  in  high  plasma  concentrations  (≥  50%).  In  cephalopods,  this  Hcy  property 421 

could explain the decrease of phagocytosis by O. vulgaris Hcs measured after pre-incubation 422 



of zymosan in 100% plasma [40], because of zymosan particle (about 3 µm) aggregation. 423 

Malham et al. [98] and Ballarin et al. [115] highlighted also the importance of phagocytose 424 

duration in this type of study, as phagocytosis enhancement after plasma incubation mainly 425 

occurred after 30 min. This is consistent with our study and that of Rodriguez-Dominguez et 426 

al. [40] which report plasma-dependent phagocytosis decrease after 120 and 90 min of 427 

phagocytosis duration, respectively. Our results demonstrate the presence of a Hcy-like 428 

coating molecule with agglutinin function in S. officinalis plasma, which can modulate 429 

phagocytosis according to (1) pre-incubation plasma concentration and (2) phagocytosis 430 

duration. 431 

 432 

4. Conclusions 433 

 Our study demonstrates, using FCM, light- and electron-microscopy, that a single 434 

granulocyte population with variable internal complexity circulates in the hemolymph of S. 435 

officinalis, as in other cephalopods. Acid phosphatase, lysozyme, and for the first time in 436 

cephalopods proPO system enzymes were detected in Hcs, but not in plasma [31,116]. These 437 

cells were able to recognize and incorporate foreign material at high rate independently of 438 

temperature and without need for plasma. Concurrent TEM and FCM analysis suggested a 439 

role for Hcy in foreign particle coating probably associated with its hypothesized agglutinin 440 

function. These data provide important information to understand the Hc-mediated immunity 441 

in the common cuttlefish, and a useful background for future studies of cephalopod Hcs. 442 
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Table 1: Reported circulant Hc concentrations (mean ± SD and range, ×10
6
 cell ml

-1
) in 

cephalopod, gastropod and bivalve mollusks 

 
In italic: data calculated from standard-error or 95% confident interval. 

Species N Concentration Range Authors

Cephalopod

Loliginidae

Sepioteuthis lessoniana 18 2.80 ± 4.24 - [63]

Sepiidae

Sepia officinalis 31 7.23 ± 5.62 0.92 - 20.31 Present study

Sepiolidae

Euprymna scolopes - 5.0 - [42,64]

Octopodidae

Eledone cirrhosa ≥ 5 > 10.0 - [65,66]

Octopus vulgaris 28 10.67 ± 7.32 2.3 - 25.0 [40]

O. vulgaris 92 10.3 ± 7.77 0.49 - 32.0 [62]

Gastropod

Ampullariidae

Pomacea canaliculata 3 1.1 ± 0.1 - [20]

Haliotididae

Haliotis discus discus 38 2.24 - [18]

Planorbidae

Biomphalaria tenagophila 10 0.25 ± 0.13 0.11 - 0.55 [19]

Turbinidae

Turbo cornutus 35 1.50 - [18]

Bivalve

Cardiidae

Cerastoderma edule 10 4.54 ± 2.21 - [67]

Cerastoderma glaucum 10 0.55 ± 0.22 - [9]

Mytilidae

Mytilus edulis 10 5.68 ± 3.63 - [67]

Perna perna 60 3.41 ± 1.77 - [68]

Perna viridis 20 1.30 ± 0.35 0.73 - 2.20 [12]

P. viridis 6 5.54 ± 1.30 - [7]

Ostreidae

Crassostrea ariakensis 15 0.71 ± 0.22 0.33 - 1.23 [11]

Crassostrea virginica - - 0.65 - 2.80 [69]

Pectinidae

Argopecten irradians ≥ 20 37.9 - [70]

Pharidae

Ensis siliqua 10 6.48 ± 2.50 - [67]

Semelidae

Scrobicularia plana ≥ 10 2.99 - [6]

Tridacnidae

Tridacna crocea 6 - 0.3 - 2.6 [71]

Unionidae

Cristaria plicata 30 2.37 ± 0.51 - [72]

Veneridae

Chamelea gallina 120 - 1.2 - 2.4 [73]

Macrocallista nimbosa 51 1.08 ± 0.47 0.12 - 2.06 [58]

M. nimbosa 40 0.99 ± 0.52 0.26 - 2.2 [74]

Table



Table 2: Specific activity repartition in hemolymph compartments: Hcs (10×10
6
 cell ml

-1
) and 

plasma. Asterisk (*) indicates significance between PO- and APO-like activities in each 

compartment (p<0.05) 

 

 
 

Hc Plasma

Acid phosphatases                                          

(U mg prot -1)
9 23.5 ± 10.6 0.1 ± 0.1

Lysozymes                                             

(µg HEW lysozyme eq. mg prot -1)
10 21.9 ± 9.0 0.1 ± 0.1

PIs                                                            

(trypsin inhibition %age)
9 0.0 31.8 ± 14.6

PO-like                                                                

(U mg prot -1)
20.3 ± 9.5 2.6 ± 1.0

APO-like                                                              

(U mg prot -1)
30.5 ± 7.4* 2.9 ± 0.9

Hemolymph compartment

10

Specific activity N



Figure 1: Freshly adhesive Sepia officinalis Hcs presenting refringent (arrowhead) and non-

refringent (arrow) granules. Inset: Hcs completely spread 

 

Figure 2: Stained S. officinalis freshly adhesive Hcs; (A) Wright staining highlighting large 

nucleus (n), slightly basophilic cytoplasm, acidophilic granules (arrow) and lucent granules 

(arrowhead) in spread hemocytes; (B) Neutral red uptake staining of two Hcs highlighting 

lysosomal system. 

 

Figure 3: Electron micrographs of S. officinalis circulating Hcs. (A) SEM micrograph of 

several Hcs showing similar aspect; (B) SEM micrograph of one hemocyte producing many 

pseudopodia; (C) Transmission electron micrograph of circulating Hcs presenting 

caracteristic lobate-nucleus (N) with highly condensed chromatin along the inner surface of 

the nuclear membrane, well-developped rough endosplasmic reticulum (rER), electron-dense 

lysosomal vesicles (arrow) and electron-lucent vesicles (arrowhead). Bar: 1 µm. Inset: high 

magnification of mitochondria (m) and Golgi apparatus (G). Bar: 0.1 µm; (D) Transmission 

electron micrograph of circulating Hcs presenting numerous vesicles; electron-dense 

lysosomal granules (arrow) and electron-lucent vesicles (arrowhead). Bar: 0.5 µm. (E-F) 

Electron-lucent vesicles showing inner Hcy-like molecules (small arrow). Bars: 100 nm. 

 

Figure 4: Flow cytometer bivariate plots showing distributions of particle size (FSC) vs 

internal complexity (SSC) of fresh Hcs of S. officinalis. Insets representing histogram of both 

variables. (A) Typical cuttlefish dot-plot; (B) Dot-plot showing wide internal complexity 

(SSC) distribution sometimes observed. 

 

Figure 5: Graphs representing evolution of phagocytic parameters function of time (30, 60, 

120 and 180 min) at three temperatures (4, 15 and 25°C) (N = 5); (A) Phagocytic Hc 

percentages and (B) engulfed bead number. 

 

Figure 6: TEM micrographs of S. officinalis Hc. (A) Phagocytic Hc presenting several 

engulfed 1 µm latex beads (b). Bar: 1 µm. Sequential events of the internalization of beads 

(B-D); (B) Hc-bead adhesion. Bar: 0.1 µm; (C) bead engulfment. Bar: 0.2 µm; (D) and fusion 

between phagosomal and lysosomal compartments. Bar: 0.5 µm. 

 

 

Figure



Figure 7: Graph representing phagocytic Hc percentage and mean engulfed bead number of S. 

officinalis Hcs (N ≥  4; 2h incubation at 15°C) function of plasma concentration (%) 

treatments. Statistically significant differences were made against control (0% plasma 

concentration) at each plasma concentration for phagocytic cell percentage (º) and engulfed 

bead number (*); * and º p<0.05; ** p<0.01. 

 

Figure 8: TEM micrographs of 1 µm latex beads (b). (A) One bead after incubation in 

medium without plasma add; (B) one bead after incubation in plasma presenting important 

Hcy-coating (arrow). Bars: 100 nm. (C) Apparent Hcy-like molecule implication in bead 

aggregation (arrow). Bar: 200 nm. 
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