
HAL Id: hal-01062054
https://hal.science/hal-01062054v1

Submitted on 9 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving Adaptiveness of AUTOSAR Embedded
Applications

Hélène Martorell, Jean-Charles Fabre, Matthieu Roy, Régis Valentin

To cite this version:
Hélène Martorell, Jean-Charles Fabre, Matthieu Roy, Régis Valentin. Improving Adaptiveness of
AUTOSAR Embedded Applications. ACM Symposium on Applied Computing, Mar 2014, Gyeongju,
South Korea. pp.384-390. �hal-01062054�

https://hal.science/hal-01062054v1
https://hal.archives-ouvertes.fr


Improving Adaptiveness of AUTOSAR
Embedded Applications

Hélène Martorell123 Jean-Charles Fabre23 Matthieu Roy 24 Régis Valentin1

{helene.martorell,regis.valentin}@renault.com {fabre, roy}@laas.fr
1Renault S.A.S. 2CNRS, LAAS 3Univ de Toulouse 4Univ de Toulouse

1, avenue du Golf 7 avenue du colonel Roche INP, LAAS LAAS
Guyancourt, France F-31400, Toulouse, France F-31400 Toulouse, France F-31400 Toulouse, France

ABSTRACT

AUTOSAR (AUTomotive Open System Architecture) is the
most recent standard for automotive embedded systems. A
major drawback of AUTOSAR lies in its lack of flexibility.
Software-wise, ECUs (Electronic Control Unit) are tested,
validated and uploaded; these three steps are performed in
a monolithic process. Adding adaptability features into the
standard is a major challenge in this context, and may result
in consequent savings of time and money. On-line adapta-
tion allows the inclusion of new functionalities in an efficient
way. In this paper, we first extract relevant features from
AUTOSAR for allowing dynamic software updates. Then,
we define our approach for performing updates, and provide
an evaluation of our approach on a RISC micro controller.

Keywords

Partial Updates, Architecture, Automotive Embedded Systems,

Real-Time System, AUTOSAR

1. INTRODUCTION
Automotive embedded systems are usually characterized

by scarce resources and a real-time behaviour. Custom de-
signs were therefore preferred for optimization purposes. Yet,
growing complexity and increase number of partners led to
the creation of a standard called AUTOSAR [2] for im-
proving time-to-market and reducing costs. AUTOSAR de-
fines a component-based architecture with standardized in-
terfaces[6] for increasing reuse of components by abstracting
from the hardware.

Once the ECU (Electronic Control Unit) is set up in the
vehicle, no standard ways for updates currently exist: either
the ECU is completely reloaded or low level patches are set
up. Therefore changes are, at the moment, quite expensive
and done in an ad-hoc way. In this context, allowing partial
updates of automotive software is a hot topic [11][8]. In our
view, this encompasses both upgrades of current function-
alities and addition of new ones. Such a mechanism would,
for example, allow the addition of functions that were not
available when the vehicle was first put into service.

Partial updates within AUTOSAR – concepts.
Enabling partial software updates in AUTOSAR is a ma-

jor challenge that we tackle in this paper. AUTOSAR im-
poses a static and frozen architecture, and thus disables by
design any further update. Thus everything must be de-
fined before compiling and the approach we offer is static:

everything is defined beforehand. A high level model of the
software architecture, compatible with AUTOSAR, is de-
signed to specify adaptation areas. The latter will enable to
fit in new or evolved functionalities during system lifetime,
and as such, should contain all relevant information. Obvi-
ously, in order to be acceptable by the automotive industry,
the process should be fully compliant with the AUTOSAR
standard. Our main motivation in this paper is to define a
clean and standardized way for allowing partial updates and
upgrades within the boundaries defined in the standards.

Off-line support.
The second step to perform updates, once adaptation ar-

eas have been carefully defined, is the development of their
implementation counterparts. The realization of these place-
holders, that we call containers in the remainder of the pa-
per, have to be added to the application before compilation
time. These container can then be filled during the opera-
tional lifetime of the system, either with a new implemen-
tation of an existing functionality or a new functionality al-
together. The creation of updates also need specific off-line
support, in particular for testing and validation purposes.
A framework should be available during the lifetime of an
application for developing these updates.

Runtime support for partial updates.
The updates need to be first tested offline for validation.

Loading an update is done by the update manager, which
checks whether a given update can fit (at least) one free
container. The update manager also has to perform sev-
eral compatibility checks. Then, during the lifetime of the
newly added components, online safety protections should
be added. Those last two points are mentioned here for the
sake of completeness. Potential solutions to implement such
protection mechanisms are based on runtime assertions and
safety bags [5]. In this paper, we focus on designing the
implementation of the adaptation features according to AU-
TOSAR constraints.

The paper is organized as follows: Section 2 describes
the context of our work and presents briefly the AUTOSAR
standard, extracting key elements to define our approach.
We then introduce the overall approach itself in Section 3,
provide details of our design for adaptation in Sections 4, 5
and 6. We describe an early proof of concept and related
tests we performed in Section 7. Finally, we compare our
approach with related works in Section 8 and conclude.



2. CONTEXT

2.1 Motivation
As for most critical systems, automotive embedded sys-

tems are extremely static, and introducing a way for allow-
ing updates is not a straightforward process. Yet, dynamic
updates are an upcoming and necessary feature for vehicles.

Currently, adding features that were not available when
the vehicle was put in service is not possible. Therefore
car owners cannot keep up with the latest technology and
their vehicles can become outdated. Enabling updates in
AUTOSAR ECUs could allow them to benefit from software
technology that were developped after they purchased their
vehicles.

Furthermore, when buying a new car it could become pos-
sible to customize vehicle at a fine-grain level easily by al-
lowing customers to select the software options they value
most.

This could later result in some optimization during the
manufacturing process of vehicles: the amount of software
uploaded can be reduced for minimizing the corresponding
latency time. In such a scenario, only core functions of the
software would be loaded, and everything that is considered
as an option can be set aside at that time. By extension,
car realignments (i.e the reprogramming of an ECU between
initial load and shipping to customer) would become less
expensive since only the changes would have to be loaded.

Maintaining a vehicle up-to-date during its lifetime could
also be eased by allowing the car owners to perform updates
without the constraint of going back to the garage.

Finally, partial updates would also reduce logistic as they
require less material, and be significantly quicker than re-
flashing the whole ECU—experience shows that we can have
transfers up to 50 times faster since the amount of data to
transfer is significantly smaller.

2.2 AUTOSAR concepts
This sections gives an incomplete presentation of the stan-

dard. It only aims at identifying the different dimensions of
an AUTOSAR application which will be necessary for mod-
elling purposes and for defining a reference for adaptation.

AUTOSAR is a layered architecture divided into four main
levels. The bottom layer corresponds to the hardware. Above
the latter stands the basic software layer that contains low-
level services and the operating system. The top layer corre-
sponds to the applicative layer divided into specific software
components. The latter are unaware of lower layers, and
implement functions. Finally, between the basic software
layer and the application layer, the Run Time Environment
(RTE) acts as an ad-hoc middleware.

2.2.1 Run-Time Environment (RTE)

The RTE enables the software components to communi-
cate with one another and with the basic software. Using
specific tools, the RTE is automatically generated to con-
form with application’s specifications. Its roles are to handle
communications within the ECU and trigger the execution of
functions by sending events. Eventually RTE can be seen as
a collection of communication channels either between differ-
ent software components or between components and basic
software. A communication channel enables an amount of
data to be sent (resp. received) by a SWC to (resp. from)
another SWC or an element of the basic software. These are

static: source and destination must be known at generation
time, although the SWCs themselves do not the identity of
the other SWCs it communicated with (this improves reuse).

2.2.2 Software Components (SWC)

Software Components (SWC) correspond to application
functions. A SWC is defined as a group of fragments of exe-
cutable code that are called runnables (a sort of processing
step, e.g. a C function). A runnable implements a specific
function and can be executed either periodically or on the
occurrence of a specific event (e.g. the reception of input
data). A runnable can also wait for an external event (at a
wait point). The presence or absence of wait point divides
the runnables into two categories: Cat. 1 corresponds to
runnables without wait point and Cat. 2 to runnables with
wait point. The rationale behind this classification is first to
separate runnables for which execution will surely terminate
(Cat. 1) from those that could hang (Cat. 2), e.g. when
waiting for user’s input. In order to communicate with other
SWCs or with the basic software layer, a SWC is associated
with input and output ports.

Notice that SWCs only correspond to a structural break-
down that does not have real existence in the final binary
objects. Indeed, this role is played by the runnables that
are mapped onto tasks of the operating system, regardless
of which SWC they belong to. Thus, runnables and tasks
are key concepts that must be considered in our approach
for adaptation.

2.3 Operating System principles
The operating system in an automotive context essentially

deals with the scheduling of tasks, alarms and events. AU-
TOSAR OS is the real-time OS associated to the AUTOSAR
standard. It implements the following main characteristics:
fixed priority scheduling, interrupt handling, and protection
against unintended uses of OS services.

2.3.1 Tasks model

Runnables of SWCs need to be mapped onto tasks, thus
the task model is an important aspect of our analysis. There
are two types of tasks in AUTOSAR OS: basic tasks and
extended tasks. The main difference between them is that
an extended task can wait for an event while a basic cannot.
Thus basic tasks only get synchronized at the beginning and
at the end of their execution while extended tasks enable
more synchronization points since they can interact with
other tasks using events.

2.3.2 Allocating runnables onto tasks

When creating an AUTOSAR application all the runnables
belonging to the various SWCs must be mapped onto tasks
for execution. Runnables can be seen for example as func-
tions in C which will need to be activated and scheduled by
the OS. All runnables are called within the body of various
tasks.

The allocation is usually done by the integrator of the
system. It depends on the available tasks and the needs
of the runnable, e.g. periodic runnables need to be put
into tasks either with the same period, or with a smaller
period. If the second option is chosen, then the runnable
will not be executed each time the task executes: glue code
will be automatically added at generation time so that the
runnable only executes at the appropriate period. On the



other hand, aperiodic runnable, which would typically be
event-triggered, have to be mapped onto extended tasks (see
section 2.3.1).The code for each task’s body with the proper
glue code for tasks execution and each runnable called in
order is generated.

3. APPROACH FOR PARTIAL UPDATES
Partial updates done dynamically are not supported in

AUTOSAR: everything must be defined when the RTE is
generated. Therefore, the degree of freedom to be integrated
into the architecture for allowing this feature must be stud-
ied and integrated upstream. The goal is to load only part
of the application and the modifications must be added me-
thodically and monitored to insure proper behaviour. Adap-
tation areas are defined based on specific elements of design
and development of an AUTOSAR application.

SWCs are defined in section 2.2 as a group of runnables.
Thus the proper granularity for updates is a runnable: up-
dating every runnable of a SWC means updating a SWC.

3.1 High-Level View
Application view
When designing an AUTOSAR application, firstly the neces-
sary SWCs (and thus runnables), inputs and outputs based
on the specification are determined. Communications and
the characteristics of the runnables are also required, and ap-
propriate tasks for executing the runnables are created. The
different characteristics of an application are represented in
Table 1. Runnables and Tasks will be detailed in the follow-
ing sections: their will be the basis for defining our key con-
cepts namely adaptation area and containers. Data, on the
other hand, are relevant to determine which communication
channels will be already available for the future updates.

Table 1: Characteristics of AUTOSAR Applications
Details Comments

Tasks Tasks and corresponding
characteristics

Runnables Runnables and correspond-
ing characteristics

Internal
Connec-
tions

Communication
between runnables
of different SWC

Communications within
one ECU using the RTE.

Data
[IN/OUT]

Input and Output
data Application-
wise

Communication with SWC
located on different ECUs
(use of communication
bus)

Runnable View
Table 2 shows the relevant characteristics of a runnable

w.r.t. partial update, i.e. activation mode, Inputs and Out-
puts and Category (1, 2). The key characteristics here are
Activation Mode and Category as data depend on the func-
tionality of each runnable.

3.2 Execution support
To upload a complete application with all its characteris-

tics (Table 1) in an ECU embedded into a car, it requires
to take into account the execution support. From the OS
point of view, execution support means tasks (with their
features). The characteristics for these tasks are presented
in Table 3. The memory consumption of the application and
the time used for execution are also important parameters

Table 2: Characteristics of AUTOSAR runnables
Details Comments

Activation
mode

Periodic / Spo-
radic

A runnable is either peri-
odic or triggered by events.

Data Input and Out-
put Data (RTE-
base and IRV) and
corresponding ac-
cess mode

Corresponds to commu-
nication needs of the
runnable. Required to
plan ahead the proper
connections. Linked to the
runnable category.

Category 1: No wait point A wait point is the moment
2: Wait Point when a runnable wait for

an external event to re-
sume its execution

Activation Mode

Category 
(1 ou 2)

Time Budget

Trigger

Priority

1

Periodic
Alarm
10 ms

2 1 ms

Figure 1: Example of an adaptation area

which need to be taken into account. Yet, these parameters
are target specific.

Definition (Adaptation area) A set of possible instantia-
tions of different parameters extracted from Tables 2 and 3
defines the edges of adaptation areas for an update runnable.
Figure 1 shows an example of such an adaptation area and
the specific characteristics. Activation Mode and Category
(green) axes are extracted from Table 2 and Trigger and Pri-
ority (brown) ones from Table 3. An extra axis is added for
taking into account timing characteristics.

In an AUTOSAR development process runnables are de-
fined first with their corresponding characteristics, and tasks
must be then created to satisfy these characteristics. For this
reason, tasks characteristics encompasses all the character-
istics of a runnable in addition to their own.

Table 3: Characteristics of AUTOSAR OS Tasks
Details Comments

Type Basic / Extended A basic task cannot wait
for an event, only extended
tasks can.

Activation
Mode

Periodic or Event-
triggered

Periodic tasks are triggered
by alarms and sporadic
tasks by events.

Preemptive Full-preemptive Suspended if a higher-
priority tasks is ready or by
an interrupt

Non-preemptive Only suspended by an in-
terrupt

Priority A higher number means
higher priority.

Trigger Alarm Periodic Tasks
Events Sporadic Tasks

Activation
mode

Periodic / Spo-
radic



4. ADAPTATION AREAS & CONTAINERS
The granularity for updates being the runnable, an adap-

tation area will correspond to all possible characteristics for
fitting a runnable within the application on an ECU. It is
represented by a combination of values for the different pos-
sible parameters in order to outline an area in the application
with desirable features (see example on Figure 1).

Definition (Container) A container is a physical represen-
tation of an adaptation area that will implement the required
characteristics in order to act as a placeholder in the em-
bedded application. It is designed for harboring an update
runnable with matching characteristics. Figure 2 shows an
example of a container placed inside a task.

In this work, we use a pre-wired approach: the level of adap-
tation available for a given application is determined before-
hand and prepared off-line. Both structural and run-time
characteristics of the containers must be determined when
they are placed in the application.

When a container is created, it is allocated a time budget
— maximum amount of time available for code that would
be set up in it. However, when any container is empty, it
only corresponds to the execution of an empty function: no
time is used; the extra time added for the containers will
be considered as slack time. When an update occurs and
a runnable must be placed inside the container, the WCET
(Worst Case Execution Time) of the update runnable should
not be greater than the time budget of the container.

When adding a container corresponding to an adaptation
area in the application, a suitable task needs to be found.
This task should have matching characteristics (Table 3),
in particular regarding its type and activation mode (peri-
odic or event-triggered). Obviously, the scheduling analysis
should take into account the new container’s time envelope
or, to be more specific, the WCET any update loaded into
the container must satisfy. If all these criteria are met, it is
then possible to add this specific container into the applica-
tion.

An example of a task with an empty container is shown
on Figure 2. On this example the main rectangle represents
the task, the smaller one either runnables or containers and
the arrows stand for communications.

Task 1
Runnable 1
(SWC 1)

Runnable 3
(SWC 2) Container

Runnable 4
(SWC 2)

Figure 2: Example of task with an empty container

When designing adaptation areas and consequently con-
tainers, their characteristics must be carefully chosen. They
have to implement a trade-off between genericity (being gen-
eral enough to support the fitting of as much runnables as
possible) and performance (all resources used by the empty
container are “wasted” until the container is filled).

Therefore, we base our implementation choices on recent
statistics on real automotive systems: the kind of runnables
that are the most frequent in automotive system should give
a good indication of parameters for adaptation areas. To se-
lect the appropriate adaptation area, characteristics of the

needed containers have to be defined along the various pa-
rameters of the reference model. Our analysis is based on
the study of a few automotive applications used by Renault.
On average, 70% of tasks in these applications are periodic.
The remaining 30% are typically tasks that either execute
only once on start up or are event-triggered. Furthermore
on a runnable level, 71% of runnables are periodic. This
means that to start with, it is meaningful to add contain-
ers in periodic tasks. Note that the percentage of periodic
runnable is independent from the number of periodic tasks
since several runnables can be mapped onto a task.

5. PROCESS BASED CODE GENERATION
The general process for developing automotive software in

compliance with AUTOSAR standard is shown on Figure 3.
The top level corresponds to the early stage of the design
and the bottom to the actual code.

AUTOSAR ECU

For each ECU

1 Specifications

Global Functional Model
Functional Architecture2

Software Functional Model
Standard interfaces - Dispatch into SWC 3

AUTOSAR Software Model
Dispatch SWCs between ECUs 4

Applicative software 
AUTOSAR software layer 5.2Execution Support5.1

Figure 3: Automotive embedded software Process

Starting with the specifications (step 1, the different high
level functions, necessary for fulfilling the needs, are cre-
ated: this is the Global Functional Model (step 2). Once
all the functions are available, they are divided into Soft-
ware Components to create the Software Functional Model
(step 3). If amongst the different functions that have to be
implemented, several of them are common, or have similar
purposes, they can be grouped inside a same SWC regardless
of the initial high level function it belonged to. The commu-
nication channels also have to be defined at this point. This
is a high level view of the communication channel: it does
not matter to which ECU the SWC will be allocated. Then
the various SWC are dispatched between the different ECUs
(step 4). This creates a system that is distributed amongst
several ECUs. Yet, in this work, we focus on a single ECU.

Finally, each ECU has to be processed in two parallel
steps. Firstly, the lower level layers (step 5.1): the RTE, the
OS and MCAL and the Basic Software. This is AUTOSAR-
specific glue code for the RTE and hardware specific func-
tions that are necessary for the proper execution of applica-
tive code. Then the functional code of the application is
created (step 5.21).



6. DESIGN FOR ADAPTATION

6.1 Process Modifications for Updates
The process described in section 5 needs to undergo two

slight amendments to support partial updates. Firstly, in
the early stages of development for automatically adding
containers in the original Software Functional Model (at step
3 ). Among the software components, one or more hollow
ones are added: each of their runnable will correspond to
the envelope of containers. Adding them early in the process
allow us to pass them along and propagate the changes.

These empty functions are then passed to the AUTOSAR
Software Model (step 4), and each of them corresponds to
a SWC with containers (i.e. the representation of a number
of adaptation areas). Finally these containers are set up in
existing tasks matching their characteristics.

The second amendment corresponds to a post-processing
step on one of the RTE files (step 5.1). Indeed, it is neces-
sary to add all the necessary mechanisms for handling the
updates: an extra level of indirection in order to modify
the execution flow and run the new updates and an update
manager for handling the changes. These post processing
operations have been automated using python scripts.

6.2 Creation of an Update Runnable
Prior to their integration into an application with the ap-

propriate update services, Update Runnables undergo a de-
sign process. The latter is shown on Figure 4, from the cre-
ation of an update to its integration. Updates are first tested
off-line: starting with unit tests that check that the required
functional properties are properly implemented. Then inte-
gration tests are carried out: the update is tested within
a representative context. The update runnable has to be
tested off-line within the AUTOSAR application it will later
be integrated to. In particular, the execution flow, the
scheduling and the communication flows. This last point
is particularly relevant since the runnable will reuse existing
channels in order to communicate with its environment.

After tests completion, the runnable are validated within
the application. This way, when the runnable is validated, it
can be integrated to the embedded application. The Update
Manager will handle the update runnable in order to load
it inside a container. On the left hand side Figure 4 shows
the process for creating the update runnable. On the right
hand side it shows the current AUTOSAR application with
update services, containers, and points in the application
pointing to the container for executing the updates.

Off-Line On-Line 

Validated Update 
Runnable

Current 
AUTOSAR 
Application

Update Manager

Containers

Initial AUTOSAR 
Application 

Update 
Runnable

Unit Testing

Integration 
Testing

Whole Application 
Validation

Figure 4: Integration of an update runnable

6.3 Technical Approach
There are several steps which must be performed to up-

load the runnable into a container and ensure it executes
correctly in the current environment. Notice that the new
runnable is tested, in its operational environment, off-line by
the system manufacturer (see section 6.2. However, some
subtle runtime parameters can have an impact on its be-
haviour on the target system. This calls for defensive inte-
gration based on run-time assertions, e.g., as a wrapper for
dependability.

To increase modularity, the addition of an extra level of
indirection between the runnable and the caller is necessary.
This can be realized by slightly modifying the AUTOSAR
process: an extra step in the tool-chain [13] has to be added
to automatically modify the calls to runnables and add this
extra level of indirection. This kind of process was used for
safety purposes [10] and dependability properties [7].

In the AUTOSAR process, SWC can be delivered either
as source code or object code. The functional code of SWC
might not be available for adding indirections. Yet, Figure 3
shows that the RTE is generated independently from the
actual code of the SWC in the AUTOSAR related branch
of the process; it is a reasonable hypothesis to consider that
the source code of RTE will be available. Thus, we can
modify directly the RTE code in order to add a new level of
indirection. This step is performed thanks to a tool called
Indirection Handler that we developed —cf. Section 6.5.

6.4 Necessary Meta Data
Along with the generation of code some meta data are

created, some of which are necessary for the dynamic up-
dates, e.g. the address of each runnable in the ECU. This
is necessary when an update occurs in order to swap the
appropriate runnable. The table corresponding to our extra
level of indirection is also necessary for modifying it.

For safety purposes it is also important to offer a possibil-
ity for rolling back to a previous version (e.g. if a problem
occurs with an update or an upgrade). A support for restor-
ing the system into its initial configuration is also a desirable
feature. This requires storing the initial address along with
the current runnable address. Meta data, that will enable
to keep the values for a default configuration or a previous
one that is guaranteed to work properly, must be stored.

Finally the address of every container must be stored
along with a corresponding descriptor for determining their
characteristics, verifying they are empty and filling them.

6.5 Indirection Handler
To instrument the application and add the necessary ex-

tra level of indirection, relevant characteristics of runnables
must be extracted from the description file corresponding
to each SWC. Tasks’ bodies are then modified accordingly.
This corresponds to a post-processing of the RTE files. This
step needs to be done automatically for a better integration
to the process using a python-based tool we developed.

The Indirection Handler is divided into two steps. The
first step consists in extracting relevant information for adding
an extra level of indirection from the .arxml description pro-
vided with each SWC, i.e. necessary information relative to
the runnable (name, period, etc).

When runnable information is available, the second step
modifies the Rte.c file. This file contains the body of all
tasks in the system and therefore the direct call to each



runnable mapped into them. These calls are modified for ac-
tually adding the indirection level along with specific mech-
anisms for a subsequent dynamic update.

7. IMPLEMENTATION AND TESTS
The objective here is to create and execute a simple auto-

motive software that includes containers and update mech-
anisms. Containers can then be filled in with appropriate
update runnables, during the lifetime of the system. It is
necessary to prepare the application before compile time: we
add indirections and mechanisms to enable a switch from an
empty container to an actual runnable.

To support our tests, we used an operating system com-
pliant with AUTOSAR OS’ specifications: Trampoline [3],
an open source implementation.

7.1 Simple example application and tests
For testing purposes, a simple application was extracted

from an ECU similar to BCM (Body Control Module) and
modified. This application is used as an early proof of
concept for showing the feasibility of updates within AU-
TOSAR. It controls the blinkers in a car by reading from the
sensors (turn switch sensor and warn light sensor), treating
the received data and sending a signal to the actuators to
trigger the flashing of the light bulbs.

A main motivation for choosing this application is its vi-
sual feedback, which means that it can be put into a demon-
stration board and anyone can observe the outputs of this
application. This feature cannot be taken for granted when
dealing with embedded systems! For the update, we first
create an empty container, and generate a software update
that flashes the warnings in case of emergency braking: fill-
ing up that container will be seeable.

Experimental tests are carried out using a PowerPC pro-
cessor —of type MPC5510— on a dedicated Freescale devel-
opment board, along with Code Warrior IDE and compiler.

7.2 Updates and the Infrastructure
In this section we present the overhead related to the

mechanisms added to the application and that is necessary
for enabling updates in AUTOSAR architecture. Our main
concerns here are regarding memory and run-time impact of
the addition of containers and the use of indirections.

Memory is scarce in automotive systems and therefore the
impact on this parameter is paramount. Our approach im-
pacts memory on several levels. First, meta data are neces-
sary (see section 6.4): since an extra level of indirection (see
section 6.5) is added for modifying the code at run-time,
each pointer’s address need to be stored. Each entry in the
table of indirection represents the size of an address (32 bits)
and of an ID which can be the index in the table (and there-
fore free). For a simple application with 10 runnables and
3 containers this would represent 416 bits. This is quite
small compared to the size used by the application(around
32 KB). Moreover the addresses of runnables also need to be
known and placed into a table. This would also consume 32
bits per address. The size of necessary meta data will grow
linearly with the number of runnables.

Table 4 shows the memory consumption for different ver-
sion of our blinker application. It only shows the flash con-
sumption since the code is stored in flash and so will be the
updates. Adding a level of indirection is negligible regarding
memory consumption. To have a better evaluation for the

Table 4: Memory usage our test applications (Bytes)
Bare Blinker Blinker

with in-
direction

Blinker with
Update
Manager

Blinker with
Update Manager
and Indirections

17748 23288 23352 31908 31972

memory impact of the modules added for dynamic update,
we compare the sizes to a bare application, more precisely
an application which contains the minimum mechanisms for
executing a simple runnable that periodically increments a
static variable. This application is made of the necessary
files for OS, basic software and specific board-related drivers.
Based on this application, we add incrementally several func-
tionalities. Adding the functional code for the blinker appli-
cation represents an increase of 31.2%, adding the services
for dynamic updates represents an increase of 37% compare
to the simple blinkers application.

Overall, the mechanisms for dynamic updates use i) a
small amount of memory for keeping relevant meta data
required for dynamic upload, ii) virtually no memory for
adding a level of indirection, and iii) a constant amount
of memory for the Update Manager (Flash Manager and
Charger). Memory-wise, update mechanisms represent less
than 20% of total application space for our very small ex-
ample.To sum up, the bigger the application is, the smaller
the memory impact of update manager represents in ratio
to the total memory use.

Finally, prior to their activation, updates have to be up-
loaded in memory. We chose to place them right after the
application, contiguously in the memory. Therefore they
only use the required amount of memory; as long as there is
enough memory available, further updates can be stored.

Determining the time consumption added by the runnables
was done using hook mechanisms. Trampoline provides Pre
Task Hook and Post Task Hook for triggering specific soft-
ware instruction before and/or after each task executes. This
allows for comparing execution times. We used a Mixed Sig-
nal Oscilloscope (Agilent Technologies MSO 6034A) in order
to measure the execution time for each task and we take an
average value on 10 executions of each task. Then we com-
pare the application with indirections with the original one.

This early proof of concepts is a simple example with 5
tasks. Measurement shows that average run-time for each
of them is identical whether the indirection level is added
or not. Indeed, this only corresponds to the dereference of
a pointer, and is therefore negligible. Observation are only
made on the periodical tasks. There are some small differ-
ences between the time spent in the tasks with and without
pointer, however these differences can be explained by the
measurement imprecision.We also measured the necessary
time for switching from one task to another: about 9 µs.
In a nutshell, run-time performances are not impacted by

the addition of the mechanisms for updates and their mem-
ory consumption is limited to around 20% of total applica-
tion space. Yet, the updates themselves also use memory for
storage. This fact should be anticipated, and extra memory
regions have to be pre-allocated for them. The overhead for
the Update Infrastructure is therefore limited while it brings
flexibility to an otherwise fixed and frozen architecture.

Note that in the application provided by Renault Engi-
neering, a runnable represents less than 10 kB in memory,
whereas a full application represents several hundred kilo-



bytes. This means that a runnable is at least tens of times
smaller than a complete application. Therefore, considering
that there is some overhead related to the upload mecha-
nisms, updating a single runnable will be at least ten times
faster than uploading a complete application.

8. RELATED WORK
Adaptable software will enable cheaper maintenance, bet-

ter ability to cope with complexity, to increase the quality
and evolution of the software [4].

For updating component-based software, there are three
major approaches: routine-based update, component-based
update and updates at the granularity of the whole program.

Routine-based update corresponds to a finer granularity
as it typically updates individual functions or objects. For
example Ksplice [1] uses a system of patches for hot updates
on operating system’s kernels without reboot, and replaces
entire functions. Our approach does not focus on the oper-
ating system but instead on the applicative and middleware
level. Ginseng[9] explores the same concepts: using patches
for dynamic updates of C programs, in order to perform fine-
grained updates while insuring a continuity for the state of
the program. Yet, this approach requires access to the source
code of the application and AUTOSAR allows both source
code and object code with appropriate XML description for
SWC. Besides, this approach was not designed for embedded
systems either. Nevertheless the underlying concept that we
want to explore for allowing dynamic update in an automo-
tive embedded context are similar. That is to say we need
to make the code dynamically updatable. It is worth noting
that the AUTOSAR methodology is built around a tool-
chain[13]: dynamic update will require an extra step.

In [14], the authors present a framework that enables dy-
namic update for component-based embedded system. How-
ever in their approach they introduce a component manager
that is itself an updatable component, to handle dynamic
update and wiring for the other component. They present
update algorithm, state transfer and specific update points
in the execution of the program. Several techniques aim-
ing at dynamically updating component-oriented embedded
system where studied and compared in [12]. Yet, none of
the proposed technique is designed for automotive system.

9. CONCLUSION
We investigated AUTOSAR-related concepts required for

allowing partial updates or upgrades of software in an AU-
TOSAR application. To that aim, we presented a model we
built for designing adaptation areas and associated contain-
ers, which are implementation counterparts of adaptation
areas. Design for adaptation, application of the concepts
to an early proof of concept were also detailed in the last
sections of this paper. In this work, we use a “pre-wired”
approach: we define at design time adaptation containers
that can afterwards be filled in with new runnables.

These containers must have specific features that will cor-
respond to future runnables’. The impact of our approach
on run-time and memory consumption has been studied on
a simple yet real automotive application. Interestingly, the
run-time impact of the mechanisms is negligible from the
timing point of view since it solely consists in adding a level
of indirection. Moreover, since the system is designed for ac-
commodating new runnables, added updates can be taken

in by the currently running application without creating ex-
ecution overhead. Memory consumption is also limited since
specific services have a fixed size and necessary meta-data
for performing updates grows linearly with the application.
However, adaptation is not free as extra space has to be
allocated beforehand, both for memory and execution time.

In the future, our adaptation engine should handle sev-
eral extra contingencies such as keeping track of available
containers, or detecting new updates available.

Dynamic updates must be monitored for safety purposes:
the update should not prevent the system from working
properly. We are investigating techniques to add safety
mechanisms to ensure safety of dynamic updates [10, 7].
Indeed, one of the interesting use of dynamic update could
be to quickly spread bug-fixes on a large scale.

10. REFERENCES
[1] J. Arnold and M. F. Kaashoek. Ksplice: automatic

rebootless kernel updates. In Proc. ACM EUROSYS,
pages 187 – 198, 2009.

[2] AUTOSAR Development Cooperation.
www.autosar.org.

[3] J.-L. Béchennec, M. Briday, S. Faucou, and
Y. Trinquet. Trampoline - an opensource
implementation of the OSEK/VDX RTOS
specification. In IEEE EFTA, 2006.

[4] I. Crnkovic. Component-based software engineering -
new challenges in software development. Software
Focus, December 2001.

[5] J.-C. Fabre, M.-O. Killijian, and F. Taiani. Robustness
of automotive applications using reflective computing:
lessons learnt. In SAC, pages 230–235. ACM, 2011.

[6] S. Furst, J. Mossinger, S. Bunzel, T. Weber,
F. Kirschke-Biller, P. Heitkamper, G. Kinkelin,
K. Nishikawa, and K. Lange. AUTOSAR - a
worldwide standard is on the road. International VDI
Congress Electronic Systems for Vehicles, 2009.

[7] C. Lu, J.-C. Fabre, and M.-O. Killijian. An approach
for improving Fault-Tolerance in Automotive Modular
Embedded Software. In RTNS, 2009.

[8] S. Mollman. From cars to tvs, apps are spreading to
the real world. CNN, October 2009.
http://edition.cnn.com/2009/TECH/10/08/apps.realworld/.

[9] I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol.
Practical dynamic software updating for C. In PLDI,
2006.

[10] T. Piper, S. Winter, P. Manns, and N. Suri.
Instrumenting AUTOSAR for dependability
assessment: A guidance framework. In DSN, pages
1–12, 2012.

[11] R. B. Software. Red bend partners with vector to
update automotive ECUs
using delta and over-the-air technology. June 2013. red-
bend.com/?option=com releases&view=article&id=1976.

[12] B. Y. Vandewoude Yves. An overview and assessment
of dynamic update methods for component-oriented
embedded systems. In ICSM, pages 521–527, 2002.

[13] S. Voget. AUTOSAR and the automotive tool chain.
In DATE, pages 259–262. IEEE, 2010.

[14] M. Wahler, S. Richter, and M. Oriol. Dynamic
software updates for real-time systems. HotSWUp ’09,
pages 2:1–2:6, New York, NY, USA, 2009. ACM.


