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Continuity
of Varying-Feature-Set Control Laws

Nicolas Mansard, Anthony Remazeilles, Frangois Chaumette

Abstract—Classical sensor-based control laws are based onthe system is controlled from learning-based joint control
the regulation of a set of features to a desired reference value. gnd half-plane constraints are temporarily added to eaforc
In this paper, we focus on the study of control laws whose gy ation-dependent constraints. Some specific featuses ¢
feature set varies during the servo. In that case, we first .
show that the classical control laws that use an iterative least- a's‘? be ?d.ded to enforcg locally the system Con_Stramm suc
square minimization are discontinuous. We then show that these @s joint limits [23], occlusion [17] or obstacle avoidan@].
discontinuities are due to the pseudo-inverse operator, which is  In these papers, the properties of the obtained control
not continuous at matrix rank change. To solve this problem, scheme are studied on a case-by-case basis, in particular by

we propose a new inversion operator. This operator is equal 10 \qing some hypotheses specific to the studied system. The
the classical pseudo-inverse operator in the continuous cases,can

ensures the continuity everywhere. This operator is then used to results are thus difficult to generalize. In the fo_"OW'ng thes

build a new control law. This general control scheme is applied Propose to study such control laws as a generic control sehem
to visual servoing, in order to ensure the continuity of the control called varying-feature-set control scheme. In particulae

law when some visual features leave the camera field of view. Theyjl| prove that the control laws computed directly from the
experiments prove the interest and the validity of our approach. varying feature set are not continuous in the general case.

From this observation, a solution that ensures the cortyinui
Index Terms—Sensor-based control - velocity control - control il be proposed.

continuity - linear algebra - least-square inverse - visual servoing

- Visibility constraint Some classical control laws are firstly recalled and unified

in Section Il. Based on this unification, the varying-featur
set control scheme is defined in Section Ill. We then prove
in Section IV that the classical control laws coming from
A generic task function may be defined by a set of featurgsis definition are unable to ensure the continuity everyehe
computed from the sensor output that should be regulatggl remove these discontinuities, a new inverse operator is
to a desired value. Various control laws have been propasecstoposed in Section V. Some visual-servoing experiments
regulate such tasks to zero. For example, a generic approfighlly presented in Section VI, as an experimental comparis

to build stable control laws is proposed in [25]. Usuallye thof the classical control laws and the proposed solution.
number and the type of features in the set are constant. The

continuity of the control law and the stability of the systane
then generally obtained outside some singularities thes ka
be avoided [21]. In this section, we quickly recall some classical contralda

In this paper, we focus on task-based control schemes whadwse feature set is varying during the servo. An effort is
input set is not constant. Some works have already bemade here to homogenize the different notations used by each
proposed that consider servo schemes based on such a vargistor.
feature set. In [12], the features are removed from the sehwh
they can not be computed anymore due to sensor-visibili&/ Classical control law
lost. Similarly, the features detected as outliers are k@mo *
from the set in [8]. On the opposite, a feature can be removed-et us consider an error functiansuch that:
when it is close enough from its desired value, in order to . .
give more freedom to the robotic system [6], [24]. In [3], e=Jq @

Manuscript submitted October 15, 2007; revised Jully, 15082@nd where.q is the system CC.)angl.Jratlon antl = Qe/@q IS the
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I. INTRODUCTION

Il. STATE OF THEART
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where )\ is a positive parameter used as a gain to tune tkeremove the outliers from the feature set. The weightare
convergence velocityA™ stands for the pseudo inverse (ocomputed from a robust estimation algorithm. They vary from
least-square inverse) of matri [2], and A is an approxima- 1 when the robust estimation gives full confidencedtarhen
tion of A. the feature is doubtlessly an outlier. The derivative ofttsk

Control law (2) ensures an exponential decrease of eaghis &, = Hé + He. In [8], it is assumed thaH is varying
component ofe until regulatione = 0 if JJ+ = I,, (since slowly. The second term of the derivative is thus neglelcted
in that caseé = —\JJte = —)e). The global asymptotic and the control law is computed by analogy with (2):
stability can be obtained as soon.handJ are full-rank {.e. . +
k=m) andJJ+ > 0 [25]. In all other cased.e. k > m), only 4= —A(HJ)"He 3)
the local asymptotic stability can generally be demonsttat When the confidence in a feature decreases, it is smoothly
This classical control scheme has been widely used for sengemoved from the control law by decreasing the value of the
based control [11], [26], [13], [19], [16]. corresponding vector componehte;. Simultaneously, it is

In the following, all the computations will be realized ugin also smoothly removed from the feature set by nullifying the
the hypothesis that is perfectly known. We will show in the corresponding line of the matriElJ. The weighting matrix
experiments that the obtained control scheme is robustigo tH is thus used to smoothly remove or add a feature to the

hypothesis. task. It will be proved in Section IV-C3 that this is enough to
ensure the control law continuity as long @J)*H is full
B. Evidence of discontinuities rank.

2) Continuous visual servoing despite changes of vigjbilit
[12], the authors directly address the problem of the rabnt
law continuity when the number of features varies, in the

We now underline the discontinuities that can occur wth
modifying the feature set. Let us consider a tagkcontrolling
my of then DOF of the system. At timé, we increase the task

. . . particular case where this variation is due to visibilitysso
byeaddlng a terme,, controlling m, DOF. The task is now When a feature leaves the camera field of view (fov), it has

e; ] If the feature set is abruptly modified, is it possible teo be removed from the feature set, which thereof causes
keep the control law continuity? I, < n, then, obviously, the control law to be discontinuous. As previously, the use
the DOF not controlled by; and that are now controlled by ©f & weighting matrix enables to take care of these features
e, are subject to a discontinuity (passing from a zero contrjaving the fov. The error vector is writtasy, = We where
input to a non-zero control input). lf.; = n, the problem W = Diag(w,...,w;) is the weighting matrix used to

is the same, whatever the valueof,. Before timet, all the SMoothly remove a feature that is going to be non visible.
DOF of the system are controlled only lay. After time ¢, The weightw; is null when the feature is out of the fov, and

a trade-off is realized by the pseudo inverse to fulfill at th§ €qual tol when the feature is at the center of the image
same timee; and e,, which produces a discontinuity in theframe.

general case. It is possible to show [18] that the control law used in [12]
For example, when realizing a visual servoing based éheduivalentto: .
a multi-point target, the control law is different when con- q=—-AHJ) He 4

sidering a four-point target or a five-point target. Therefo \ ooy — /W is a diagonal matrix whose coefficients vary
passing from four pomts.to f'V? p(_)lnt_s causes a dIS(,:Ongmu'f:ontinuously betweefi and1. This control law is identical to
(an example of such a discontinuity is given in Section VI)'the one obtained in [8].

In the following, we will present several works where the 3) Region reaching controlin [6] the main purpose is to

classical control .S’Cheme (2) has been modified to take irﬁﬂng the end-effector of the robot to a region instead of a
account the varying dimension of the taeK8], [12], [24], Eoint. The goal region is defined as the intersection of a set

.[6]' We will gmphasize the SO".J“‘”.‘S thaF hqve been propos fjk simple regions, each one being analytically defined by an
in these articles to prevent this discontinuity to happerd ainequality'

unify these works in an unique mathematical formulatione Th
common idea is to smooth the discontinuity that happens at
feature activation and inactivation by introducing at teéva- where X is the position of the end effector in the Cartesian
tion border a buffer area where the feature is partiallyvacti space. The control aims at reducing the value of the leftqfart
This buffer area is defined by introducing a smooth activatieach inequality until they are all negative. When an inegyali

Vi=1.k e(X)<0 (5)

function H, as explained in the following paragraphs. is respected, the corresponding part of the control is stdpp
If the control law was developed to ensuse = 0, the
C. Some varying-feature-set control laws robot would be controlled toward the intersection of all the

1) Robust visual servoingtn [8], the problem of outliers contours of the regions (5). In order to bring the robotic

in the Input set Is addressed by associating to each feature 1"I’\Ieglecting}‘l is a classical approximation that is also found in [12], [6],

weight computed from the confidence that this feature is n@#]. In practice, wherH ande decrease in the same directidre(when the

an outlier. The proposed error functionég — He, where gradient of bothe anddiag(H) are in the same half-space, which is typically
*\ - the case when the minimum ef is inside the area defined B = 0, as

e = (s —s*) is the error between current and desired featu

. ) ) - ffone in [6], Section 1I-C3 or in [24], Section 1I-C4) this apgimation does
values, andd = Diag(hq, ..., hi) is a weighting matrix used not disturb the stability of the control.
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system inside this region, the task vector is defined to lperator is continuous when the rank of the matrix is coristan

eq = H(%ef, cey %e,f), whereH is a diagonal matrix whose It is very important to notice that this is the basic hypoibes

components are null if the corresponding regions have beearthe three control laws presented above. This is a sufticien

reached, and equal tb otherwise. Using these notations, itcondition to ensure the continuity of the control law.

can be shown [18] that the control law proposed in [6] is However, the pseudo inverse operator is not continuous

equivalent to: at rank change. This means that these control laws are not
q=-\HJ) " He (6) continuous if the number of features decrease below a pertai

N . .. level (which is not considered in [8], [12], [24]). In [6], ith
The form is similar to the two previous control laws, but with - .
T . " case can happen. The continuity of the control law is then
the transpos¢H.J) " instead of the pseudo invergeLy)™. obtained by using the transpose operator instead of thelpseu
4) Qualitative servoing:The main objective of the quali- y g P b P

tative servo control proposed in [24] is to enlarge the conve' Vorse operator (the transpose is always continuous, aven

- . matrix-rank change). However, using the transpose can lead
gence area, by explicitly requiring that the ereoconverges

toward a confident interval, instead of a particular desiretg a very non-opt.|mal contrql, and the pseudo inverse isofte
a much more efficient solution [11].

value as it is usually performed. In this sense, the system I, ; . . :
. o n the following sections, the generic control law (8) will
thus required to perform qualitative convergence . .
be proved to be continuous as long as the number of active

. tThZe||$rrJ?gP:r?gt::%r§3elrs ﬁfc'ge:rs;‘?gv :el:gec_oer’g ‘(’Jv:eel;tel‘; . features is sufficient (in a sense that will be defined précise
g ) P the following). It will also be shown that strong discontities

below its corresponding threshoid the associated part of the . . -
P 9 oid P can appear when the number of active features is not sufficien

control is inactivated. The activation matrH is a diagonal . . : . .
. C . Based on this observation, we will build a new matrix oparato
matrix whose coefficients vary continuously betwéetio 1 as . . . . ;
that is continuous in all cases, and acts like the pseudaoseve

the system enters or leaves the convergence area. outside of its discontinuities. From this new operator, ataa
The control law that regulates the ermimto the confidence . - ;
law with a similar form will be proposed and proved to be

interval proposed in [24] is: . .
continuous in all cases.

4 =—A(HJ) H(e — &) (7)
Once more, we recoghize the same form of the previous 1. DEFINITIONS
control laws. In this section, we define all the notions that are required
for the following study. We firstly propose a global definitio
D. Synthesis to refer to the tasks whose form is similar to those presented

in the previous section. Then we propose formal definitions

Several control laws that deal with varying feature set ha\{e characterize some classical notions of the redundaney of
been presented in the previous subsections. All have bean 4

written using an equivalent framework, with similar nodais, system with respect to a given task.
as a matter of comparison. A common control law equation
can be noticed: A. Varying-feature-set task

d=-\H J)EEHe @8 Definition 3._1 (\/_arying-feature_—set tasklet e be any fea-_
_ . . ture vector which is called task in the following. Its Jacaobi
where ® is a matrix operator (the pseudo inverse or thig supposed to be of constant rank. The tagkis a varying-

transpose). feature-set taskased ore if it respects:
The control law is a composition of three parts: the matrix
HJ, the matrix operato, and the vectoHe. The diagonal eq = He C)

activation matrixt is used to smoothly remove or add feature§here H is a diagonal matrix whose coefficients continuously
of e and also to nullify the corresponding lines of the Jacobl%ry within the interval0, 1].
matrix. When® is the pseudo inverse, this second point iBemark 3.1: The four control schemes @), (4), (6) and (7)

fundamental. Indeed, if the Jacobian line is not nullifiee. f  ocalled in the previous section are based on a varyingfeat
q = —M\JTHe is used), then the feature is taken into accouRbyt task.

into the least-square minimization, and the control laesttio

minimize the motion of the inactivated feature, by imposing .

the velocityé; = 0 (which is a control in itself, and the resultS: Input redundancy and decoupling

is very different to not constraip; at all). Definition 3.2 (Full-rank matrix): The matrixA is full row
To ensure the continuity of the control law, the simplesank (FRR)iff the number of its rows is equal to its rank. It is

solution is to ensure the continuity of each of the compamnentull-column rank (FCR)ff the number of its columns is equal

In particular, it is not sufficient to ensure the continuifyldJ  to its rank.

andHe if the matrix operatof® is not continuous. Thanks to  Definition 3.3 (Non-redundant input).et e be any task.

a correct definition oH, both the task vector and the Jacobiaiihe taske is said to be non redundant in input (or to have a

matrix are continuous at feature activation or inactivatibo non-redundant input) if its Jacobian matrix is FRR.

ensure the control law continuity, it is then enough to easur Definition 3.4 (Redundant inputlOn the opposite, a task

the continuity of the matrix operatdf. The pseudo inverse has a redundant input if its Jacobian is not FRR.
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Remark 3.2: If the matrix J is not FRR, it is possible to J1J3 =0 (13b)
separate its lines into a generator $gtand a redundant sdf )
that can be defined as a linear combinatiodgf J; = yJo. Proof: A well-known result concerning the kernel and the

The couple(Jo, x) is calledfactorization Its formal definition fange of a matrixA. is:

is the following. Ty _ 1
Definition 3.5 (Matrix factorization):Let J be a non-FRR R(A") =N(A) (14)

matrix. Let P be a permutation matrix]lo a FRR matrix and where N(A) is the kernel ofA, and E* is the orthogo-

X @ matrix such that: nal complementary of subspade. Using (12), we obtain
R(J;1") € N(Jg). Since R(J; ") = R(J;T), this proves
J P{ JJO ] (10) (13a).
XJo Reciprocally, if (13a) is true, the®(J; ') = R(J;T) C

N(J3). Since R(J27) = R(J3") = N(J2)*, then R(J7)
is orthogonal toR(J3 ). The dual equation is obtained by the
|

then the se(P,Jo, x) is calledfactorizationof the matrixJ
by Jo. Jo is the generatormatrix of J, and x is the multi-
plier of the factorization. In order to simplify notations, the>2Me Way.
permutationP will be often omitted. Thereby, a factorizationremark 3.4: I all the features ofe are decoupled, then it

of J is denoted(Jo, x) (P is easily deduced frond, Jo and js easy to show that has a non-redundant input. Moreover,

X)- if one feature is decouplea; can not have a full-redundant
Remark 3.3: If some columns of the multiplieg are null, jnpyt.
the factorization can be developed: Intuitively, the behavior of the control law when progres-
Ja sively inactivating a feature will differ if a redundant feee,
J— Jg (11) @ non—redynQant or a decoupled one is considered_. The four
v8JB characterizations of the features that have been defineer upp

(redundant, non redundant, full redundant and decouplea) c
with Jg = { Ja be enlarged to the varying-feature-set tasks.
JB Definition 3.8 (Charasteristics of a varying-feature-sa$k):
to Jg and xgJgs are the redundant part of the input vectol.et e, be a varying feature set. The corresponding active

J A corresponds to the non-redundant part, because none oft{¥k e , is constructed by considering only the input features
features can be defined as a linear combination of the featufghose weight inH is not null. Furthermore:

associated td o . On the opposite, if the multipliey does not
have any null column, then the factorization is said to béy/ful
redundant.

Definition 3.6 (Full-redundant input)The task e has a
full-redundant input if all partitions of its Jacobiah of the
form (11) result inJ 5 = 0.

Corollary 3.1 (Characterization of a full-redundant input
The taske has a full-redundant inpuff its JacobianJ can

and x = [0 xg]. Features corresponding

o The varying-feature-set task,; has a non-redundant
active input if the associate active tagly has non-
redundant input.

» The varying-feature-set task, has a redundant active
input if the associate active taslk has a redundant input.

o The varying-feature-set task, has a full-redundant
active input if the associate active taslk has a full-

3 redundant input.

be writtenJ = P XJOo J whereP is a permutation matrix, e« An active featuree, is decoupled from the other active

Jo is FRR and none o featl_Jres ifes is deco_upled f_rom the other features be-

longing to the associate active task .

null.
Proof: The proof is given is [18]. m Using these definitions, we will now study the control
Definition 3.7 (Decoupled input feature)et e be a fea- laws based on varying feature set (such as those recalled in
ture set. The feature, is distinguishedl from the other Section Il) in the general case.
features denoted,. Let J; andJ, be the Jacobians af;
ande, respectively. The feature, is said decoupled from the IV. VARYING-FEATURE-SET CONTROL SCHEME
other feature®; of e if:

the columns of the multipligris

This section considers the continuity of different control

€ aws derived from Definition 3.1, and presented in Sec-
R(J7) L RIS 12) | derived f Definition 3.1 dp din S
tion IV-A. It will be shown in Sections IV-B to IV-D that

where R(A) is the range of matrbA. when the Jacobian of the task is not fully redundant, none of
Corollary 3.2: Two feature sete; and e, are decoupled tnese control laws is continuous.

iff :
JJ7 =0 (13a) _
and A. Control laws based on a varying-feature-set task
Let eq be a task characterized by a varying feature set such
thatey, = He. Its derivative is:

2Denoted with bold font are the vectomsg.e; and matricese.g.J, and .
with non-bold font the scalar variables.g. eo. éq = Hé + He (15)
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As seen above, it is usually considered thhivaries slowly. fully redundant. It is also shown that the smoothness brough
With the approximationH = 0, we obtain the simple ex- by H is not effective when the number of active features is
pressionJ., = HJ whereJ and J., are respectively the not sufficient. More precisely, it will be shown that control

Jacobians ot andeg. laws (18) and (17) are surprisingly equivalent when the task
Knowing Je,, it is possible to apply directly the classicalis non redundant. Three cases are separately studied,avheth
control scheme (2), obtaining thus: the task is not redundant, redundant or fully redundant.
— — 1) Non-redundant input signal:
G=-Md,eq=-X(HJ) He (16)  Theorem 4.1:Let e, be a varying-feature-set task whose
i i — active input is non redundant. The two control laws (17) and
Several choices can be considered .Iiig Apart from the (18) are equal.
classical approximation of (see [15] for a review), we will Proof: Let us first introduce another inverse of matax
focus on five POSS'bk’j chomes concerniHg in order to try the generalized inverse [2]. It has been introduced in finea
to get the global continuity of the control law: feedback control in [27], and widely used since [4], [1]. A
q= —)\(AJ)+}AIe (17) very good analysis of such an inverse can be found in _[10].
) N Let W be a full-rank square matrix. The weighted generalized
4= —-)\(HJ) He (18) inverse matrix ofA weighted on the left by the weightév
o — _)\(HJ)THe (19) s defined to be [10]:
d= -A(HJ) He (20) AV# = (WA)TW (22)
. +5
a= _)‘(HJ) He 21 The (full-rank) weight matrixH ; is defined fromH by:

~

H is an approximation of H defined as: H =
. 1 if hy #£0
Dlag({ 0 otherwise

square inverse ofA [20], [9] (the interest of this inverse Using this definition, we can write:
operator will be given in Section IV-D). It is trivial to ohita . NP M
(18), (19) and (20) from the general relation (16). Since (HJ)"H = (HyHJ)"H/H = (HJ)"/7H  (24)
+ . . .
H™H o H_’ Eﬂ';(ﬂ) aﬂd (erl)fre respectilelyi obtalne_d béy a simple feature reordering, we suppose that the Jacobian
approximatingJd, by (HJ)"H' and (HJ) H'. Even if 31 pe written:
these two derivations do not seem to be intuitive, their final
formulations correspond to easily understandable s@nosafi
e.g. a full approximation and a partial one. In particular, ) ] o ]
the use of bothH and H in (20) and (21) is explained in whereJ; is FRR since the active input ef; is non redundant.
Section IV-E. One of the major results of [10] is to prove that the weighted
The following sections study the behavior of these differef{Vérs€, (22) is invariant to the choice W' if A is FRR. Since
control laws, and especially their continuity at Jacokliank f(’; = [AT0], this result can easily be generalized to the

change. . . . .
g case (25). Thus, sincH;J; is FRR {; is FRR andH; is
invertible), it is possible to write using (24):

Hf:Diag<{ hi 1 b # 0 ) (23)

), and AT is the damped least 1 otherwise

(25)

HI = [ HiJy ]

0

B. Full approximation (17) N N ~ N
o _ +H — H [ — +
This first control law corresponds to the naive way to (HJ)"H = (HJ)"/"H = (HJ)"H (26)
consider a task with a varying feature set: a componeni@ettirpjg |4t result proves that if the active input featuresrame

inside the activation area is directly considered withi@ thgy,nqant, the two control laws (17) and (18) are equal.&f th
minimization scheme, without any progressive activation. e input is not redundant, the weightsHfare not taken

course, this kind of control law is not continuous [12], &R, account. The discontinuities are thus the same thamwhe
explained in Section 1I-B. The importance of the discontiyu using the simple matrisfl -

depe_nds on thg .valu@ ar_1d also on the way the add.mon of 2) Redundant input signalThe previous result can be

the line Jo modifies the singular values of the Jacobian. easily extended to the case of a redundant input as long as
the input is not fully redundant.

C. No approximation (18) Theorem 4.2 (Weighted least square invariance):

To solve the discontinuity of (17), a logical solution is td-€t J be any matrix, andW be a diagonal and invertible
use an activation matrif. When a feature gets inside theveight matrix. LetJ be a factorization such that:

activation area, it is thus progressively (or smoothly) extld Jo

within the control scheme, until full activation. The caitr J—P I, 27)
law (18) can be found in [12], [8], [24], as presented in vaJa

Section II.

This section shows that this control law is continuous aghere(Jo,J4) is FRR. The same factorization can also be ap-
long as enough features are activated so that the inputplied to the weighting matriWv = P Diag(Wo,Wl,Wz).
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Then the non-redundant paly of J is invariant to the computed from the singular values by:
weights W when computing the weighted general inverse

WH. A — 32
J #_ - 0; 0,12 + 772 ( )
JW# — gW# (28) , : : .
Theoretically, the introduction af does not bring any new
whereW = P Diag(I, W1, Wy). parameter to tune, since it only replaces a threshold used

This result can be proved by using a full-rank decompgthen computing the pseudo inverse to bound the singular-
sition of the Jacobiad. The demonstration is technical and/alue inversion. We thus deno#e”" = AT in the following.
fastidious, and is thus not given here. The interested rdade This operator can be used instead of the pseudo inversion

referred to [18] for additional details. in the classical control laws (2). As proposed in [7], the
Using the Theorem 4.2, the following corollary is immedidamped least square inverse reduces the effect of the tontro
ate. singularities. On the opposite, it also reduces the pratisi

Corollary 4.1: Let e4 be a varying-feature-set task whosdhe control. In particular, when the damped least squares ar
active input is redundant but not fully redundant. Then tie-n Used with (2), the effect is not the nice decoupled decrease
zero weightsh; corresponding to the non-redundant featurés= —\e sinceJJ is not the identity. The higher the value
are not taken into account in the control law (18), that is #f 7. the better the smoothing, but the more the reference
say apartially active featureh # 0 is taken into account as aPehaviour will be disturbed.
fully active featureh = 1. In the control law (19), the damping factor acts as a

Let us consider a task, whose first feature is non re-Smoothing of the discontinuity. The smoothing is effectate
o o h 0 ) rank changes (when a singular value passes from non zero
dundant. The activation matrix Bl = L 0 H; } Using  to zero), that is to say at activation or inactivation of anon
ull: redundant feature. In theory, the introduction of the dangpi
factor thus solves the problem of the discontinuity enceret
(HI)™H = ({ (1) Ig }Jﬁ { 10 } in (18). However this is not the case in practice. Practjcall
1 . ] (29) the damping is only effective around the threshgld

— ( L J)* Let us consider the activation of a non-redundant feature
h—0 0 H; 0 H; .
to H,—; = I. The matrix(HJ)'H
However, if h is null:

Corollary 4.1, we can write ify is not n

from Hj,—g = 0 1

is numerically equal tqHyJ)"H, when the corresponding
0 o 0 o ingular value is very small compared typically in
HIVFH — I+ 30) Singu y p tp typically
(FLJ) ({ 0 H; } ) { 0 H, } (30) [0, 1e=3n]. It is numerically equal tqH;J) H; = J* when
the singular value is very large compared #p typically

The matrix (HJ)™H is n ntin wh . The . : .
e mat (. J) S ot continuous e — 0 © in [1et2n,1]. In practice, the matrix HJ)'H passes from
control law is thus not continuous when some features th t 4 . i 3
0J)"Hy to J* in the very small intervalle—°n, le°n].

are non redundant are inactivated. . 6 : .
. . j L For example, ifp = 1e~° as classically done, the smoothing
3) Full-redundant input signal:On the opposite, it is €AY ffective into the intervalle-2, 1e~3], that is to say on
to show that (18) is continuous when the activated input IS ' ' y

. : . .
fully redundant. In this case, the activation or inactivatiof a%e':tree%agvmh0;%5?%21‘”:5@2?33 tﬁe?/gri;rt]i?) '&gf? )oTsIﬁe,
any feature will not modify the rank oHJ. The pseudo- g :

. . . is smooth into[0, 1], whose length isl. The smoothing is
inverse operator is continuous when the rank of the matri . . .
. . . . . effective on a large interval. The comparison between the
is constant [2]. SincdlJ is continuous, this proves that the . . )

! . smoothness is shown on Fig. 1. As shown by Fig. 1-(a), the
control law is continuous.

; . ontrol law (19) is smooth in theory. However, as shown by
In conclusion, the behavior of the system controlled by (18). 1-(b), both control laws (18) and (19) are equivalent in

. . . ig.
is continuous when enough features are activated so that the . .
. . . . . practice, and discontinuous.
input is fully redundant, and discontinuous when the input

is only redundant or non redundant. The discontinuity of tthea-ls-ht(e) ggescét f,%?serﬂuﬁn\,(\:,ﬁiclﬁ it;]ihrt:eregi?egnsgi E\ﬁirsgflrgt?r:e
classical solution (18) is due to to the discontinuity of the y g 9 y

. . erformances of the control. The damped least squares are
pseudo-inverse operator when the rank of the Jacobianxma i . : "
changes [2]. us not a relevant solution to smooth the irregularitieshef

varying feature set.

D. Using the damped least square inverse (19) E. Partial approximations (20) and (21)

To compensate the discontinuities of the pseudo-invers§ue have shown in the previous sections that the classical
operator, it has been proposed to use the damped-leasesaygniro| laws (17) and (18) are unable to ensure the conginuit
inverse [20], [14], [9]. This operator is defined by: of the control law when the input is not fully redundant.

AT — vy T (31) These discontinuities can be u_nders_to_od ngively by v_vriting
that (HJ)™H = JTHTH = J* (if H is invertible andJ is

where (U, X, V) is the singular-value decomposition (SVD)FRR). The use oH both inside and outside the pseudo-inverse
of A andX"! is a diagonal matrix whose coefficiena'tgr are operator induces intuitively a simplification that canctis
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= = Decoupled (18) | ‘ ‘ ‘ least squares corresponding to the coupling between the two
€T A = Jacobians. To simplify the notations in the following, , is
E written X, = [X1, X2, |, whereX2, is simple column.
3 Sel Using this decomposition and (33), the inverse used in (20)
8" can be written:
2k . })‘ L L 4
5 E ® E ; _ JF hJ*] + [Xl hX2 ] if h#0
10 10 Time (5)10 10 10 (HJ)+H _ 1 2 12 12 7&
(a) Log scale Jir O} if h=0
(35)
— a5l _ The discontinuity clearly appears in this formulation gnc
23
S ] lim ((ﬁJ)+H) - [J{ 0} + [X}2 0} (36)
g = = Decoupled (18) h—0
% 251 — Decoupled (19) || . . ) . )
S | Moot o) which is different from|J; 0| whenh = 0 and if X,, is
2t —— not null. To prove the equivalence between decoupling and

0 o.‘2 o.‘4 o.‘e o.‘s 1 112 14 16 18 L ) ) X
continuity, we thus just have to prove thxt,, is null iff e

_Time (s)
(b) Linear Scale is decoupled. Let us suppose tBaf, = 0, thatis to say ™ =
Fig. 1. Comparison between the smoothnesgHd )™ H (control law (18)) [J1J33]. The definition of the pseudo inverse giv&sJJ+ =
and (HJ)TH (control law (19)) when adding a non-redundant feature, ang+, By developing the value af in this equality, we obtain
then g s eduant e e gaph s St Wb g X358 33,51~ 0 and finally,33 133, 37, — 0. We obiai
similarly J;J3 = 0. Using Corollary 3.2, this proves thag
and e, are decoupled. Reciprocally, i is decoupled, then
smoothing. To prevent this simplification, a logical proios  J* = (J7J1+J3J2)[J7J3] [2]. Corollary 3.2 finally proves
is to use the true activation matrill only once and its thatJ* = [J{J3] and thusX,, = 0. u
approximationH elsewhere. Two possibilities arise then: we In fact, (20) manages to smooth the part of the control
can use the approximatioH inside the pseudo inverse andcorresponding to the minimization ef. However, it is unable
use the exact matri¥I outside of the inverse, in factor of theto smooth the parK i, of the control that corresponds to the
task e (this solution corresponds to (20)) ; or we can e coupling betweere; and the other features. Whenis not
inside the inverse, anHl outside (this gives then (21)). null, the space corresponding to the coupling maki, is
Control law (20) smoothly nullifies the feature values thatsed as a trade-off to realize both ande;. As soon ash
are getting close to the activation frontier, but abruptimoves really becomes nullXj, becomes instantaneously available
the corresponding part of the Jacobian matrix. The Jacobi@i e1 alone, which results in a strong discontinuity in the
matrix is thus not continuous, but it is hoped to obtain @ontrol law.
continuous control law by correcting the discontinuitiesghw
smoothed input features. The following theorem proves thatFinally, control law (21) may not be realizable due to
the continuity is obtained only in the very particular cage dll conditioning. Indeed, when some components Hf are
a perfect decoupling. small, the matrixHHJ can be very ill conditioned. Its pseudo
Theorem 4.3:Let e, be a varying-feature-set task basetiverse(HJ)" is thus very large. In (18), the large coefficients
on e. Control law (20) is continuous at feature activation of (HJ)* are diminished when multiplied witi. If the
inactivationiff the activated features are decoupled from tr&pproximationH is used instead, no correction is brought
other ones. since the small coefficients df are approximated by. The
Proof: Let us first consider a taskwhere all the features matrix coefficients of(HJ)"H can thus be very large, and
but one are fully activated. This last feature is denated_et the result on the control is unpredictable.
Jo be its Jacobian. The Jacobian of the taskan then be

written J = j1 , where J, is single line. Since all the F. Conclusion

2 . .
features corresponding thy are fully activated, the activation In this section, several control laws have been proposed,
matrix can be written: based on the classical methods in the state of the art. The
I o continuity of these control laws has been investigated when
H= (33) the number of visual features varies, and the general char-

0 h o .

. S acteristics observed are summarized on Table I. None of
The pseudo inverse of can be decomposed usingd&ide these control laws is continuous when the task is not fully

and conquerapproach: redundantj.e. when at least one feature can not be expressed
3.1 as a combination of the others. Indeed, when this feature is
Jt = { Jl } = {Jf Jﬂ + X4 (34) activated or inactivated, the system earns or looses a elegre

2 of freedom. In this situation, the nice properties of couitiyn

where[J] J3] is the least-square minimization of each Jac®r stability demonstrated in [25] can not be obtained diyect
bian J; andJ, taken separately, anX,, is the part of the anymore.
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NON REDUNDANT CASE REDUNDANT CASE

CONTROL Non Full

LAW Decoupled Redundant uly
redundant redundant
a7 (AJ)+IA{ discontinuous| discontinuous| discontinuous | discontinuous
(18) (HJ)*H discontinuous| discontinuous| discontinuous | continuous
(29) (HJ)TH discontinuous| discontinuous| discontinuous | continuous
(20) (AJ)JFH discontinuous| continuous discontinuous | discontinuous

(1) | (HJ)'H ill conditioned
TABLE |

SUMMARY OF THE CONTROL LAW BEHAVIORS

V. BUILDING A NEW INVERSE OPERATOR whereB (k) = PB(1..k) = {P| P C 1..k; are all the subsets

Since the classical control schemes based on the pseugigmposed of thé: first integers, andl» = HJ whereh; is
inverse operator are not able to ensure the continuity,equal tol if i € 7, and to0 otherwise (. Jp is the Jacobian
control law based on a new inversion operator is proposgttrix J whose only activated lines are those7y.
in th'is ;ection. We first propose a formal specifiqation of thRemark 5.1: If J has two lines J = J1 ), then the
continuity properties that this operator should fulfill toserre L . . J2
the control-law continuity. We propose then an implemeaiat defln[tlon ,Of the coupling matrixX, corresponds to the
that respects these specifications, and we use it to buildva f&tation %lyeg 'P (34). build an i g
control law that is proved to be continuous. We finally prove USINg this definition, itis now easy to build an inveis
that the obtained control law has similar properties of IIoc‘I;rIat respects the specification given in Definition 5.1.

. .y - . @H .
stability than the classical pseudo-inverse-based colas. _ Definition 5.3 (Continuous inversé™™): Let J be a ma-
trix of size (k x n) andH the corresponding activation matrix

whose component§:;),_, , belong to the interval), 1]. The

A. Formal definition ) ; / . )
. . i ) continuous inverse a¥ activated byH is defined by:
In a first time, let us define the properties of the operator
3= S (n) %e

we are looking for. This operator should be equivalent to the
classical pseudo-inverse when all the features are fuliyeac PeR(k) i€P
or inactive (.e.whenVi = 1..k, h; € {0,1}). The operator

(40)

v L Remark 5.2: The continuous inverse of a double-line Jaco-
should maintain the continuity whénsmoothly evolves from J. i -
0 to 1. This is formalized through the following definition: PianJd = J, | activated byH is:

Definition 5.1 (Continuous inverse)l:et A be a matrix of
size (k x n) and H be a diagonal activation matrix of size
(k x k), whose components belong @, 1]. The continuous
inverseA ™M of a matrix A subject to an activatioBl respects
the two following properties:

o if Vi=1.k, h;€{0,1}, then:
A — (HA)" = (HA)'H

IO = hhyX g2y + X1y + ho X2y

41
= |:h1J1L hQJ;r:| —|—h1h2X12 ( )

This last equation matches exactly the preliminary goattermi
in (38).

Definition 5.3 proposes a new operator to inverse a matrix
J activated by a diagonal activation matiX. This operator
will now be proved to respect the specification given in
Definition 5.1.

Theorem 5.1 (Continuity af ¥ ): The inversel ®* of J

B. Construction of a continuous inverse ) . A .
) . . o activated by H fulfills the specifications of a continuous
We now propose an implementation of this definition, baseq erse given in Definition 5.1.

on the study of (20) and particularly on the discontinuity  proof: Two points have to be proved. First of all, we prove

observed in (36). The goal is to build an inverse of thg . yeH g equal to the classical pseudo inverddJ)H

following form: when the components & are binary {e. no feature is within
the transition region). LeP be the set of non-zero components
of H. Using the notations of Definition 5.2, we have thus to
The generalization of such relation requires a more genepabve thatJ ®H = J;g_ Using (40), it is possible to write:
definition of the coupling matrices.

Definition 5.2 (Coupling matrices of a matrik): The JOH =Xp + Z Xo
coupling matrices of ak x n-matrix J are indexed by QCP

:Ziufsui\t/):g?c%? of the k first integers. They are deﬁned,:m,-n (39), i_t is knoyvh thatXp — J;g _ Zgg) X%. Intro-
ducing (39) in (42), it is finally possible to obtalH*** = J£.

The second point to prove is the continuity of the inverse
with respect to the variation dfi. All the coupling matrixX,,

(37)

« The function(A, H) — A* is continuous wrtH.

JOH _ [hlJ{ hQJﬂ + hiheXaa (38)

(42)

if P=9g, Xg=0unxk

otherwise VP € B(k), X, =I5 > gcpXo (39)
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Algorithm 1 CalculateJ ®™ Algorithm 2 Calculate the coupling matriXp

Parameters: JacobianJ, activation H, coupling matrices Parameters: JacobianJ, subsetP
o ... X1k Ensure: Xp is computed

Ensure: R = JoH ;; k <><:%)k<:kd|mJ
. - X
;: kX %) < dimJ 3: for all 7 in P do
P Unse 4 H(i,i) <1
3: forPaIIdP cll..k: do 5. end for
4. rod <= . +
5. forall iinP do 6: Xp < (HJ)
6: Prod < Prod x H(i,1) 7: for all Q C P do
7. end for 8: p <= Xp —Xg
88 R <R+ ProdxXp 9: end for
9: end for
10: return R

particular, if all the features are active at the desiredtjpos

are independent tH (by Definition 5.2). Thus the inverse (40)the control law (43) is locally asymptotically stable atkas
is simply a polynomial form of thé;. Since a polynomial is Completion.

always continuous, the continuity of the inverse with respe

to the variations ol is demonstrated. B E. Stability of the control law

Theorem 5.2 (Asymptotical statibility at binary activat)o
C. Computation of the continuous inverse Let e be a task whose activation is denoted by the diagonal

As given by (42), the continuous inverse operator is basgtatrix H and whose Jacobiad = dJe/dq is full rank.
on a sum of the coupling matrices. Algorithm 1 details thket eq denote the equivalent active tasi,(= He) whose
computation of the continuous inverse based on the valuesJagobian is denoted,. Then, when all the components of
all the coupling matrices. The computation of the couplingl are binary (e. Vi = 1.k, h; = 0 or h; = 1), Control
matrices is then detailed in Algorithm 2. Law (43) has the same local properties of stability than the
To perform the scan of all the members @f(k) (as €quivalent active task functioeq:
expressed in Line 3 of the algorithm), two solutions are o it is stable in the sense of Lyapunov.
possible. The first one is to exhaustively describe off-lifle  « it is asymptotically stable in the sense of Lyapunoy if
the subparts of..k, and to store the result in a list, which can s full rank.
then be scanned during the control. The exhaustive deseript Proof: The control law associated to the task is
is costly, but has to be done only once. The second solution
is to use the binary representation of the integers as a eniqu q=-A\(HJ) He (44)
representation of each subpartloft by defining the following
bijective associationz = Zf:o bi2" — {i, so thatb; = 1},
where (bg...bx) is the binary representation of Using this
bijection, the set of all subparts can be scanned directly B
covering all the integers fro to 2*. On the opposite, the scan,
of P expressed by Line 5 of the algorithm is simply realizepz

by expressingP as a list. Corollary 5.1: (Local asymptotical stability around the-de

As already said, each specific coupling matly can be _. AN . :
computed as detailed in the recursive Algorithm 2. As prevEred position): Consider the tasi(e, H, J), whose desired

From the first point of Definition 5.1, control law (43) is edua
to (44) when the components ®f are 0 or 1. Then locally it
as the same properties of stability as given by [25]. &
YThis last result is particularly interesting when the aatiion
binary around the desired position, as formalized by the
llowing corollary.

v the | Line 7 i rformed b ing th val tosition is a submanifold of the activation area. for all
ously, the loop Line 715 performed by using the equivale onfigurationsq, if e(q) = 0, thenH(q) = I. Then the

integer representation of the subset. The computation df €& htrol law (43) is asymptotically stable in a neighborhood

matrix Xp has to be pe_rformed only_ once, by storing th(glround the desired position if the matJ is full rank at
already-computed value in an appropriate structure. the desired position

Proof: Let D* = {q : e(q) = 0} denote the goal

D. Continuous control law position, andV = le'He. V is a positive continuous
Based on this new inversion operator, it is possible fonction of the configuratiory. In the manifoldD*, we have
propose the following control law: H = H? and H = 0: thus the derivativel’ is equal to

V = —xe"HI(HJ) He = —eq " JoJqeq < 0 (with eq
the equivalent active task function whose Jacobiard 3.
Thanks to the nice properties of the continuous inverse, tB&ce V' is continuous with respect to the configuration in
control law (43) is continuous everywhere. Moreover, whethe closed seD*, there exists an open neighborhoad of

all the features are fully active or fully inactive.€. Vi = D* such thatV’ < 0 inside . In A, the control law (43) is
1.k, h; € {0,1}), the control law (43) is equivalent to theasymptotically stable in the sense of Lyapunov. ]
classical control law (2)if. ¢ = —\Jfea, wheree, is the Remark 5.3: The case of Corollary 5.1 is the one considered
active part ofe). As shown in the following paragraph, (43)in the experiments presented in Section VI: as explaineden t
has thus the same stability property of the equivalent task. following, at the desired position, all the visual featuags in

q=-\J%He (43)



ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON AUTOMATIC CONTRO 10

the fov of the camera and are thus active in the control |

On the opposite, it has not been possible yet to demons or T

the stability of the system whefh < h < 1. In particular, 20 ,j"

when the desired position is inside the activation border, MO o e e e e e e e e e ;.«_*"_ ______ .
have only be able to verify experimentally that the behay so Pred

of the system seems appropriate. o*

80

Remark 5.4: (Bounded-input bounded-output Stabilitylf
the Jacobiad is considered constant, the continuous inve > %

CH i o ; . i F
J is simply a polynomial form: 120 ]
oH _ _ . 1401 £ Image border
! ; POlyn(hl’ o hn) a Z monemy [hl] XP 1601 4"/ -== Actigation border
PeP(k) s L1 -+ Initial position
(45) 180" ¢« 7 % Bnalposiion
== Control law =
where monomplh;] is a product of the subpart of the;. Control law (18
! 2001 Control law §433

Since theh, are bounded by0, 1], the polynomial form is S E— w
80 100 120 140 160 180 200 220 240 260 280
X

k-Lipschitz continuous, with a constahtthat depends on thi
coupling matricesXp. It is therefore possible to prove therig 2. Experiment 1: points trajectories in the image. At tegibning of
bounded-input bounded-output (BIBO) stability. Howewlg the servo, Point 2 is out of the image. The two desired positame within
better bound that we have found for the constaigt2*. where the full-activation area. Control law (19) using a too largdue of ), even

. L. J . if the velocity is continuous, is unable to converge and ttmschieve the
k is the number of features, which is not relevant in practicask. on the opposite, control laws (18) and (43) manage thré desired

position. Control law (18) provides an image trajectory whis quite abrupt
VI. EXPERIMENTAL RESULTS when the points enter the activation area. On the opposite trajectories
using control law (43) are smooth.
We present in this section several experiments that study

the behavior of the system running the new control la@inimum. However, due to this approximation, some points
presented in the previous sections. The experiments h&yay leave the camera fov during the servo [5]. These points
been realized in simulation, using the classical visualaing are then removed from the feature set as proposed in [12]. The
scheme based on feature points [13], which is first recalle®ffor task is a varying-feature-set task based on (46), etéfin
Three typical experiments are then presented in detailinju Py eq = He. H is the activation matrix whose coefficients
the execution, some points may leave the camera fov. Theyare defined byho; = hoi1 = min(hy(2:), hy(vi)) The

are then removed from the feature set. As done in [12], &frizontal activation functior,, is defined by:

activation buffer is defined at the image border to smoothly 1 if 2= +e, <x <zt —e,
inactivate the feature that are leaving the fov. 0 if 2 >7Torax <z~
ho(x) =9 f(2— (2t —€)) fat—e<z<zt

A. Visual servoing implementation

The work presented above is general and could be applied to
any robotic task defined by a derivable ereorin the follow-
ing, the error function is computed from visual features]|

fe @ 4+e)—a) F2-<ax<T +e
(48)
13Where[z~, z*]is the horizontal range of the image, tunes
the length of the transient interval and the transient fioncf,
e=s—s" (46) is defined byf. () = L (1+ tanh(< — =7)). The vertical
wheres is the current value of the visual features for tasfctivation functionhy is defined similarly.H defines around
e ands* their desired value. In the experiments, the visu#ie image amctivation bufferwhere the feature that is leaving
features are the 2D positiong = (z;, ;) of a set of points, the fov is progressively and smoothly inactivated.
whose 3D positions within the camera frame are denBted
(X:,Yi, Z;). $; = Lg,v, wherev is the instantaneous camerdB. First experiment: non-redundant task
velocity. For one poinp;, Ly, is the well-known matrix given  The first experiment has been realized using a two-point
in [11]. The interaction matrix of the task is finally L = target. The dimension and the rank of the task are thus both
(Lpys---» Lp,,,). From (46), it is clear that the interactionequal to4 at full activation: the task is always non redundant.
matrix L and the task Jacobiah are linked by the relation: At the initial position, one point is out of the fov. We mainly
J — LMJ (47) consider the continuity of the control law when the poineest
4 the fov. The experiment is summed up in Figures 2 and 3.
where J is the robot Jacobiani(= Jqq4) and M is the The continuity of control laws (17), (18), (19) and (43)
matrix that relates the variation of the camera velosityo are compared in Fig. 3. As shown in Section IV-C, (17)
the variation of the camera pose parametrizatior=(Mr).  and (18) are equivalent in this case. An acceleration peak
As already said in 1I-A, an approximatiah has to be used appears at rank change (see Fig 3-(a) and (b)). An inflection
in practice. In particular, different choices are possilBeL.  point (corresponding to a discontinuity of the derivatieégo
[15]. We choosel = L*MJ,, whereL" is the interaction appears in the point trajectories (see Fig. 2).
matrix computed at the desired position. This choice is fre- Control law (19) is able to ensure the continuity jf
qguently done since it reduces the risk of falling in a locas properly set. However, Fig 3-(c) and (e) point out the
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Image border
- = = Activation border

-+ Initial position

% Final position
""-Tl == Control law (19)n=1

2001

1801

10 100

Control law (18)

160

Accelerations
Accelerations

1
1
1
1
1
1
+ 1
_____ \\ _— fee e o b — 1 § Control law (19)n=1€°
™~ e ~Y <=1 1 [} Control law (43)
—_— Paiois —— | I,*\ 140F f kN
—_— 1 r — y 1 I,
. P B > 1200 | 1 T,
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(a) Control law (17) (b) Control law (18) Tz . T
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< <
. . . . . .
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(c) Control law (19)n =1e-9 (d) Control law (19),n =1e-3 Fig. 4. Experiment 2: image point trajectories. The main regLinotion is
a rotation around the optical axis. With the classical aanfaw (18), Point
P, leaves the image. Due to discontinuities in the control lasgilations
appear then in the control, arfds oscillates around the image border. The
point is stuck up at the border and the servo is even unablenwecge.
~ With an appropriate tuning of control law (19) or with the tianous control

vio law (43), the servo converges.
[}
()

10

Accelerations
Accelerations
5

0 100 200 300 400 500 0 100 200 300 400 500

(e) Control law (19),n=1 (f) Control law (43) of dimension and rank. The required displacement is mainly
a large rotation around the optical axis. During the rotati®,
Fig. 3. Experiment 1: Comparison of the acceleration peaksnwiging gets close to the activation border (see Fig. 4). At this fpdin
control laws (17) on (a), (18) on (b), (19) with several tunim graphs (c) o the two points are considered in the feature set, the comdpute

(€) @ = 1e=?, 1e~2 and1) and (43) on (f). The acceleration is measured at - :
the robot end effectoi,e. at the camera focal point. Since the main relevan©@Ntrol makesP, leave the camera fov. On the opposite, if

situation occurs when the second point enters the camera feraion200, considering only the poirf?; remaining in the fov, the control
the plots have been limited to the intery@ 500]. Control laws (17) and (18) becomes maimy a pan—tilt motion that terls to enter again

are unable to ensure the continuity. Concerning (19), tleatgr the tuning L S .

parametem, the smaller the acceleration peaks are. A good compromiseﬂge activation zone. The oscillation observed is thus due to
obtained for this experiment with = 1e~3 (with = 1, the behavior seems this dilemma: if P, is inactivated, it enters the image which
to be correct while looking the continuity, but Fig. 2 sholattit is not when  5-tivates it. which makes it leaves the image ete

considering the overall task). Control law (43) also pregé smooth control, M T -
with no peak of acceleration. The oscillation occurs due to the control law discontinuity

Control laws (17), (18) and (19) with too small oscillate,

importance of the threshold) of the damped-least-square(Se€e Fig. 5). Moreover, (18) is unable to leave the osaltati
operator. When; is too small (Fig. 3-(c)), the same peak ofirea: the servo does not converge. On the opposite, usijig (43
acceleration as with (18) is obtained. The marincreases, the control is smooth, and no oscillation appears (see fig. 6
the more the acceleration peak decreases (until disapgeari
see Fig. 3-(d)). However, ify is too large, the convergenceD. Third experiment: redundant task
becomes very slow (like if using the transpose operator). INhis |55t experiment points out the discontinuities that ca
some particular cases, the robot is unable to converge (3eeyr with a redundant task when a non-redundant feature is
Fig. 2). A good trade-off hgas to be carefully selected (it i5ctivated. The target is composed of eight points. Theajlo
obtained here withy = 1e™*). This experiment emphasizesagy is thus fully redundant. The desired motion is mainly
thatl|t is very d|ff|c_ul_t to find a correct value for any conaiis. o oiakion around the optical axis. While performing this
Finally, the original control law (43) provides a goodyiion, a large amount of points initially close to the image
behavior. The control law is continuous (see Fig. 3-(f))d an,q qers leaves the camera fov. Due to the point inactivation
the acce_leratlon is similar to the one obtained with (19):"_:@ the task becomes redundant, then not redundant (between
best tuning ofy. The good properties of (43) are also Visible ations 150 and 500, only two points remain within the
on Fig. 2: the point trajectories are smooth and continuous; mera fov). Finally, when the robot achieves the required
) o motion at the end of the execution, all the points enter
C. Second experiment: oscillations at rank change the image frame again and the global task converges. The
This experiment illustrates the problems that may occur éxperiment is summed up on Figures 7, 8 and 9. The behavior
the control law is discontinuous. In the case presentedahelds equivalent when using (17), (18), (20) or (19) with a low
the classical control laws oscillate when a point leaves tlgain . Therefore, we only give the graphics for (19) with
camera fov, which could even prevent the convergence. Thiiéferent values fom.
problem is solved when using a continuous control law. The The point trajectories obtained with control law (19) are
experiment is summed up in Figures 4, 5, and 6. given in Fig. 7-(a). They are very abrupt, showing large
The target used in this experiment is the same as fioflection points when a point enters the image. WH&n
Experiment 1. Two points are considered, which gives a taskters back in the active area, it is temporarily stuck on the
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activation border, causing oscillation in the control |avhis

is due to a similar phenomena as in the previous experime
The point is finally detached from the border whHen enters 0
the activation area (the task becomes then fully redund@mt)

the opposite, the trajectories using (43) are smooth, witharig. 9. Experiment 3: Cost of the control law computation. Thstdirectly
any inflection point nor oscillation. depends on the number of features inside the activation (ifle whose

The required accelerations are shown on Fig. 8. Wigs 2ctvation parameteh is such thal </ < 1.

small, (19) produces strong peaks of acceleration (see8Fig. = . . , )
(a)). We can notice the peak at iteration 250. At this tirmg)’ptlmlzatlon on a classical desktop computer (Pentium BBG

three points are active. The task is fully redundant. Howev&10N0COre). Moreover, all the computations are done onfine:

it is still ill conditioned [5], which finally also produces aSPeCial pre-process is perform beforehand. The cost isesea

discontinuity. While increasing the damping parametethe with the qumber of featurg; inside the .actlvatlon _buffer_e_Th

accelerations peaks are reduced (Fig. 8-(a) and (b)). Fer fotal co;t |s.far below the milisecond, which makes it sudiiti

experiment, thegood value of7 is 1e~2. This emphasizes the O @pplication on a real robot.

difficult choice of#, that has to be tuned differently for each

experiment. On the opposite, Fig. 8-(d) shows that the obntr VII. CONCLUSION

law (43) is continuous. No acceleration peak appears, weate This paper has considered tasks defined by a set of features

the rank of the conditioning of the task is. whose dimension is varying along the time. Such tasks have
Finally, the computation cost of the control law (43) is give been addressed in the literature for several applicatiOles-

in Fig. 9. The computations have been realized without sppecsically, the variation of the size of the feature set is penied

Computation time (micro secs)
&
o

1500 2000 2500

Iterations

500 1000 3000
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by using an activation matrix whose values varie between[20] Y. Nakamura and H. Hanafusa.
and 1. Within this context, a natural interrogation concerns

the behavior of the resulting control law at the critical ngoi
of activation or inactivation of a feature. We have studieid t
situation, through several combinations and approximatiuf
the Jacobian associated to such varying feature set.

The main point of this theoretical study is that using an

activation matrix with a classical pseudo inverse is ingffit

to ensure the continuity when the input signal is not full£/23]
redundant. It has been proved that the pseudo inverse igalwa4]
discontinuous at the activation of a non redundant feature

except in the particular case of a perfect decoupling.

To deal with this problem, an original inverse operator has
been introduced. It insures the continuity even when thé ral?6l
of the Jacobian changes. This new inversion operator has the
been used to define a new control law, continuous everywheps]
The good properties of this control law have finally been

verified through several visuakrvoing experiments.
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