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Abstract: This article covers a tracking appoach for multiple simultaneously flying animals. The idea is to constraint
the tracking to the physically possible space without any knowledge of the scene. Accordingly, we propose
to use a naively made trajectory dataset as a base to track the targets into the possible space rather than the
probable space. First, a trajectory database is computed under weak assumptions (permissive classic Kalman
Filter). Then, for the effective tracking, we replace the prediction phase of the Kalman Filter to rely only
on the dynamic stored in the database of previous trajectories. We show that performances can reach these
obtained by other methods based on strong assumptions (e.g. the 3D model of the scene).

1 INTRODUCTION

Forced to observe the worldwide decline of hon-
eybees (Apis mellifera), biologists began to study dif-
ferent hypotheses that could explain the phenomenon.
Recently, the authors of [1] highlighted the evidence
of behavioral alterations caused by pesticides. In that
study, entrance and exit data was collected by a radio-
frequency identification monitoring device placed at the
beehive entrance. So far, no biological study has been
conducted at a big scale on honeybees flight behaviors.
In cause, the lack of suitable methods to collect trajec-
tories of honeybees in flight. The only method used by
biologists (harmonic radar) is intrusive and suffers from
biases. We believe that computer vision can effectively
achieve this task with the respect of the application con-
straints. We note however that some work exists on hon-
eybees trajectoires inside the hive [2].

In a first paper [3], we laid the foundations for a
stereo vision-based system for monitoring multiple si-
multaneously flying honeybees in 3D at the beehive en-
trance. The tracking follows a detect-before-track ap-
proach based on a Kalman Filter (KF) coupled with
Global Nearest Neighbor for track assignments. The ap-
plication is illustrated by Figure 1. Results were satisfy-
ing, but could possibly be improved by injecting more
assumptions into the tracking process (e.g. for the KF
[4]).

Thus, in [5], we proposed to constraint the predic-
tion phase of the Kalman Filter according to the scene
(namely the flight board). The idea was to reduce the
maximum assignment distance relatively to the distance
of the bee from the board. The advantage of the method
was shown thanks to a ground truth made of semi-
simulated trajectories. However, this method required
the acquisition of a 3D model of the flight board, which
was possible to compute automatically in that applica-
tion. But this requirement is clearly a break for the
adoption of the method.

Therefore, we propose in this paper a new method
to constraint the tracking without having to model the
scene. The idea is to use a naively made trajectory
database as a base to track the targets into the possi-
ble space rather than the probable space as the Kalman
Filter does. The trajectory database is computed un-
der weak assumptions (classic KF with low constraints).
We use the fact that even if some trajectories of the
database are not well computed, the error is compen-
sated by the huge amount of the data.

Figure 1: On the left, cropped top camera view of the flight
board with detected flying bees. On the right, 3D reconstruc-
tion of the beehive with trajectories of bees being tracked at
the entrance.

This article is organized as follows. First, we revisit
in Section 2 the classic tracking approach based on the
Kalman Filter used in [3]. Then we detail in Section 3
a new method for tracking with constraints based on a
trajectory database. In conclusion, Section 5 proposes
potential improvements and opens perspectives relative
to behavioral analysis applications.

2 Tracking based on probabilities

In order to settle the base, the following briefly sum-
marizes an application of the classic Kalman Filter for
tracking on flying honeybees in 3D [3].



In a first independent step, the system detects flying
bees thanks to a hybrid segmentation that takes advan-
tage of both intensity and disparity images provided by
a stereo camera. After projection, each observation is
then defined by the 3D coordinates (x,y,z) in the cam-
era coordinate system, which is a 3D Euclidean space
with the camera located at (0,0,0).

In a second step, each target is tracked by a Kalman
Filter [6]. Despite the apparent rough dynamic of bees,
frames were acquired at a sufficiently high frequency
(about 47 fps) so that a constant speed model can be as-
sumed. As assumptions on bee dynamic are weak, noise
matrices (Q for the model evolution, R for the measure)
are set with a relatively high covariance which allows
the tracker to be permissive. Let us suppose Y1:n the se-
ries of observations corresponding to a target from time
1 to n. A Kalman Filter is instantiated with Y1 and later
destroyed when the step k > n. For a given step k, an
observation is defined by the vector Yk = [xm,ym,zm]

T ,
and the estimated state of a target is modeled by a poste-
rior Gaussian probability density with µ defined by the
state vector x̂+k = [x,y,z, ẋ, ẏ, ż]T (combining the 3D po-
sition and velocity), and the uncertainty ε defined by the
covariance matrix P+

k . Figure 2 lays down the recursive
mechanism of the Kalman Filter.

Figure 2: Recursive mechanism of the Kalman Filter for the
estimation of x.

In this application, up to 20 targets can be observed
at each step, which requires a multi-target tracking ap-
proach. The commonly used Global Nearest Neighbor
(GNN) [7] method handles observation to track associ-
ations, track instantiations and destructions. In GNN,
the assignment matrix A[ci, j] represents all the possible
associations and the costs generated by those associa-
tions. A includes the possibility for each observation to
be associated to an existing track, not to be associated
to any track or to be associated to a new track. ci, j is
the cost for the observation i to be assigned to the pos-
sibility j. The best configuration of associations is the
solution that minimizes the global cost (e.g. solved by
the Hungarian method). The association cost between
an observation and a track is computed by the Maha-
lanobis distance given by:

d2 = (Y −Hx̂−)′S−1(Y −Hx̂−)
S = HP−H ′+R (1)

where Y is the measure vector corresponding to the ob-
servation, M the measurement matrix, x̂− the predicted
a priori position, S the innovation covariance with R as
the measure noise matrix, and P− the predicted noise
covariance matrix.

Then, in later work, we proposed in [5] to add con-
straints to the tracking by adapting the uncertainty ma-
trix according the location of the target from the flight
board. Despite the better performances, this approach
suffers from its need of a 3D model of the scene to be
able to calculate distances.

3 Tracking based on possibilities

This section introduces our new approach for adding
scene constrains into the tracking process, where con-
trary to [5], the modeling of the scene is no longer
needed.

The application of monitoring honeybees at the bee-
hive entrance is conceived for many hours of video, and
enables to collect thousands of trajectories per hour. So
the idea of the proposed approach is to take advantage
of this huge amount of data that we consider to represent
most of bee dynamic possibilities.

3.1 Making of the trajectory database

In a preliminary step, a rough trajectory database is
made by using a naive tracking. As we have no knowl-
edge about the scene, the tracker is configured to be per-
missive, as mentioned in Section 2. Namely, noise ma-
trixes Q and R are set with high values to allow tracks
to be associated with relativelly farther observations.
Naturally, this leads to tracking errors, such as miss-
ing tracks, track swaps or track end failures. But even
with an high error rate, the chances for an error to occur
twice or more times at the same point of the 3D space
are low. So, the huge amount of data compensates the
potential errors of the trajectory database. Finally, the
database represents globally all the dynamic of the bees
in flight at an exhaustive number of points of the space.
Figure 3 shows a sample of the trajectories collected in
the database.

Figure 3: 0.1% of the trajectories constituting the database,
with the flight board displayed as reference. Colors are given
to trajectories according to their action; red for departure,
green for arrival, blue for crossing.



3.2 Kalman Filter prediction based on the
trajectory database

Our new tracking method consists in replacing the
tracking prediction phase of the Kalman Filter in order
to base the state estimation directly on the trajectory
dynamic database rather than relying on probabilities.
Formally, let Q be a query subtrack for which we want
to predict the further state. DBtra jectories is the database
of trajectories. DBsubtracks is the set of all the subtracks
of the same length of Q that can be considered from
DBtra jectories. Using a weighted Euclidian distance
(letting more importance to the beginning of the
tracks), a set C of n closest subtracks of Q is found from
DBsubtracks. Then, considering the set of next moves
associated to each subtracks of C, we estimate the
further state of Q. The following details the different
steps of our approach.

1) Definition of a query subtrack Q of length l
corresponding to a track T that we want to estimate the
next step (already estimated over the steps 1→ k−1) :

Q← Tk−l:k with l← min(lQ,Tlength) (2)

with lQ the maximum length of a query (e.g. 15 steps).

2) Construction of the database of subtracks DBsubtracks
from DBtra jectories :

Data: DBsubtracks =∅
for T ∈ DBtra jectories having Tlength > l do

for i← 1 to Tlength− l do
add Ti→i+l in DBsubtracks

end
end

3) Find from DBsubtracks, the set C of n closest subtracks
of Q. Or more specifically the corresponding indexes:

C-indexes← sort(dist(Q,X), ∀X ∈ DBsubtracks)1:n
using dist(Q,X) = ∑

l
i=1 ωi(Xi−Qi)

2

(3)
with ω proportional to i for example.

4) Replacement of prediction phase of the KF,
the mean state and the uncertainty associated by a
covariance matrix are given by :

x̂−k = [µx,µy,µz, ...]
T

P̂−k (m,n) = cov
(
Cx(m),Cx(n)

) (4)

with C-coords(d) is the set of coordinates for each point
corresponding to the next step of each subtrack of C,
given the dimension d (namely x, y, z, ...). The mean
point is given by µd = E

[
C-cords(d)

]
. Let us notice

that we previously applied to each point of C-coords a
translation to recenter this potential move in the context
of the query track Q, as:

C-coords(d,i) = T(d,i)l+1 − (T(d,i)l
−Q(d,l))

with T(d,i) = DBsubtracks(C-Indexes(i))
(5)

with d the coordinate dimension, i the track index and l
the point index. Figure 4 illustrates an example of query
and associated subtracks for the prediction.

Figure 4: Top view comparison of both constrained ap-
proaches. The ellipses represents the prior estimated Gaussian
probability densities.

4 Results

The success rate of our approach is correlated to the
size of the database. Figure 5 shows that in a hypothet-
ical 2D situation, for a database made of at least 25k
trajectories, the mean error for state prediction reaches
a value comparable to other methods. Naturally, when
adding a dimension (such as in our application which is
in 3D), it seems more difficult to reach this performance.
It may be possible with much more data. Concerning
the prediction of the uncertainty, the more samples are
available in the database, the lower the incertitude of
prediction would potentially be, which appears logical.

Figure 5: State prediction error relatively to the size of the
database. A 2D situation (simpler) is shown as a comparison
to 3D.

Similarly to [3], the comparative evaluation of the
methods is made thanks to a pseudo-simulated ground
truth. Namely, in this case, scenarios were built by time
shifting random picked real trajectories from a base of
200 manually annotated trajectories. For the creation of
the scenarios, we focused on the problems highlighted
in [3, 5]: the simultaneous (or close) departures and ar-
rivals at the flight board. Thus, in this current evalua-



tion, tracks were simulated in couples (a landing track
followed by a near take off).

We evaluated the performance of both constrained
methods, ”Constrained KF with scene model” intro-
duced in [5], and ”Constrained KF with database” pro-
posed in this paper, over 100 random generated sce-
narios, under each of the 6 following configurations:
2, 4, 6, 8, 10 and 12 simultaneous couples. Also, as
a reference, we compared the results with the classi-
cal ”Unconstrained KF” introduced in [3]. The met-
ric used for the evaluation is the ratio of well recov-
ered tracks. A track is considered well recovered if at
least 90% of its associated observations match one of
the ground truth tracks. Figure 6 show the advantage
of both constrained methods which increase the perfor-
mance by around 10%. But, among these two methods,
the one proposed in this paper is especially interesting
as it doesn’t require any scene model. The weakness
of the proposed method is the computation time, as it
requires browsing the entire database at each step and
for each target. However, even if it is currently taking a
few seconds per step (on non-optimized code), distance
calculations on this kind of data is highly parallelizable.

Figure 6: Compared mean performances over 100 scenarios
of the unconstrained and constrained methods according to the
number of simultaneous targets

5 Conclusion

We proposed in this article a method for tracking
simultaneously multiple flying insects considering the
possible space, namely by constraining the prediction
relatively to the historical moves of other members of
the colony. The dynamic of motion is stored in a mas-
sive trajectory database, which is naively established
in a preliminary step thanks to a permissive tracker.
The base contains errors such as swaps and track end
failures. However, the massive amount of tracks of-
fers some redundancy that avoids those errors to prop-
agate through the system. Results are satisfying on the
generated scenario, which highlighted one difficulty of
our application, namely the creation and destruction of
tracks around the flight board. Nevertheless, when on-
line realtime tracking is needed, classical methods could
still be preferable for simpler scenarios.

For a further version, a first idea would be to take
into account the distance between the query track Q
and the subtracks in order to weight the calculation of
the mean and the covariance. A second idea would
be to avoid using the Kalman Filter which is mono-
modal. It would be interesting to support multi-modal
predictions, for example by using a particle filter where
each particle would be associated to a trajectory of the
database.

Concerning perspectives, this work is a preliminary
for a behavioral analysis. Based on 3D trajectories col-
lected, we will be able to build a database of bee be-
haviors in front of the beehive entrance. Some methods
based on non-parametric Bayesian approaches [8] seem
to be interesting candidates for clustering behaviors.
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