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Modal analysis is a widely used model-reduction method in structural dynamics for the low-

frequency (LF) band. This LF band is classically characterized by the presence of relatively

well separated resonances associated with global elastic modes (non local elastic modes). In

this case, a basis constituted of such elastic modes is efficient for the construction of a small-

size and predictive reduced-order model. In this work, we are interested in predicting the

dynamical response of complex structures presenting several structural scales (for instance,

the presence of flexible panels connected to a stiff master structure). For such structures, a

high modal density can be observed in the low- and the medium-frequency bands. This high

modal density for the low-frequency band is not the usual case considered by the modal anal-

ysis which would require a large number of elastic modes to represent the response with a

good accuracy. In this context, a new methodology is introduced for constructing a small-size

reduced-order basis adapted to span the global displacements space. This construction is per-

formed from the computational dynamics model by solving a non usual generalized eigenvalue

problem for which the rank of the mass matrix is modified allowing the local elastic modes

(small-wavelength) to be removed (filtered). The so-built global basis allows the frequency

response in the stiff part to be predicted with a good accuracy. The efficiency and utility of this

methodology is demonstrated and a numerical application is presented for a heterogeneous

thin plate constituted of two structural scales.

1. Introduction

In this research, we are interested in predicting the dynamical response of complex structures

which are characterized by the presence of a stiff master structure supporting numerous flexible com-

ponents. Even though the highly detailed computational models arising from such structures are very

large, the calculation of thousands of elastic modes from finite element models having millions of

degrees of freedom is nowadays carried out effectively. The medium- and high-frequency ranges are

classically characterized by a higher modal density (see [1]), related to small-wavelength vibrations.

Localized heterogeneities, such as flexible components connected to the master structure, can have

their fundamental natural frequencies belonging to the low-frequency band. In such a case, modal

density rapidly increases as soon as such local elastic modes appear. The number of local elastic

modes coupled with the first few global elastic modes can be found to be high, thus resulting in high-

dimension reduced-order models constructed by the modal analysis method (see [2, 1] concerning
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this widely used tool) in low-frequency dynamics.

In this work, we are interested in constructing a small-dimension reduced-order model adapted to this

particular case of high modal density in the low-frequency band, for predicting the global dynamical

behavior of such complex structures, that is the response in their stiff master part. To achieve this ob-

jective, we consider the fact that, in contrast with global elastic modes, local elastic modes, i.e. elastic

modes whose displacements are localized on a delimited region of the structure (typically displace-

ments of the flexible components), have a more or less negligible impact on the response of the stiff

master structure. That is to say, assuming the elastic modes were either exclusively global or exclu-

sively local, the small-dimension basis constituted of the global ones would allow the global response

to be represented in an approximate but still accurate way. The energy stored by the local elastic

modes is responsible for an apparent damping (as explained in [3, 4, 5]) at the resonances associated

with global displacements. Besides, local elastic modes with non-negligible kinetic energy can result

in the presence of corresponding small resonances among the main global resonances in the response

of the stiff part. On top of that, in fact, the elastic modes cannot in general be separately defined as

global or local elastic modes, as their shape is a combination of global and local displacements.

There is few research concerning the filtering of local displacements for the construction of reduced-

order models adapted to the dynamical analysis of complex structures. Concerning the vibration

analysis of automotive vehicles in the low-frequency range, the common methods are based on the

use of modal analysis with sub-structuring techniques (see [1, 6, 7]).

This paper is a continuation of the method proposed in [8] and presents an original methodology

which allows us to separate the local displacements from the global displacements. The direct sum

of the subspace of global displacements with the subspace of local displacements constitutes the ad-

missible displacements space. These two subspaces are separately spanned by the eigenvectors of

two distinct eigenvalue problems for which the kinetic energy is modified while the elastic energy is

kept exact. The global eigenvalue problem is obtained reducing the kinematics of the kinetic energy,

without altering the elastic energy. The local eigenvalue problem is built upon the residual kinetic

energy.

The reference matrix model and its reduction on the elastic modes are first introduced. Then, the

methodology for the construction of both the global and local displacements spaces, from which the

original reduced-order model is constructed, is exposed. Finally, a numerical validation involving a

heterogeneous thin plate is presented.

2. Theory

2.1 Reference Dynamical Model

We are interested in predicting the dynamical response in the frequency band of analysis B =
[ωmin, ωmax] of a tridimensional linear damped structure (without rigid body displacements) occupying

a bounded domain Ω and subjected to external loads. The reference computational model is con-

structed using the finite element method (see [9, 10]) and the complex vector U(ω) of the m degrees

of freedom is solution of the following matrix equation, for all ω in B,

(−ω2 [M] + iω [D] + [K])U(ω) = F(ω) , (1)

where [M], [D] and [K] are the symmetric positive-definite (m×m) real mass, damping and stiffness

matrices, and where complex vector F(ω) corresponds to the external forces.

2.2 Modal Analysis Method

The eigenfrequencies ωα and the associated elastic modes ϕα in R
m are obtained solving the

generalized eigenvalue problem corresponding to the conservative dynamical model,

[K]ϕα = λα [M]ϕα , (2)
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with α = 1, . . . ,m and where the real eigenvalues λα = ω2

α are such that 0 < λ1 ≤ λ2 ≤ . . . ≤ λm .

The elastic modes form a vector basis of Rm and the modal analysis method consists in approximating

vector U(ω) in the subspace of Cm spanned by the first n elastic modes, with n ≪ m , such that

∀ω ∈ B, U(ω) ≃ Un(ω) =
n∑

α=1

q̃α(ω)ϕα = [Φ] q̃(ω) , (3)

where [Φ] = [ϕ
1
. . .ϕn] is the (m× n) real matrix of the first n elastic modes, that is the modes

associated with the first n (smallest) eigenvalues. The vector q̃(ω) in C
n is the complex vector of the

generalized coordinates. For all ω in B, the classical reduced-order model constructed with the modal

analysis method allows the generalized coordinates to be solved,

(−ω2[M̃ ] + iω[D̃] + [K̃]) q̃(ω) = F̃(ω) , (4)

where [M̃ ] = [Φ]T [M] [Φ] , [D̃] = [Φ]T [D] [Φ] and [K̃] = [Φ]T [K] [Φ] are the symmetric positive-

definite (n × n) real generalized mass, damping and stiffness matrices and F̃(ω) = [Φ]T F(ω) is

the generalized force. Then, Un(ω) is derived using Eq. (3). The modal contributions of elastic

modes corresponding to higher eigenfrequencies are neglected. To ensure its accuracy, a convergence

analysis of Un(ω) with respect to n must be carried out, for all ω in B.

2.3 Reduced Displacements Space

Let Hr be a subspace of Rm of dimension dr and let us note || · ||
M

the norm associated with the

Euclidean inner product ⟨v,w⟩
M
= w

T [M]v, for v and w in R
m. For all U in R

m, we then have to

find U
r in Hr such that

||U− U
r||

M
= inf

Ũr∈Hr

||U− Ũ
r||

M
, (5)

where the reduced displacements vector Ur is the orthogonal projection of U on Hr given by U
r =

[Hr]U , where [Hr] is a projection matrix. The complementary displacements vector Uc = U − U
r

is such that [Hr]Uc = 0 . Thus, vector U
r is constructed such that the residual kinetic energy is

minimized. The construction of the projection matrix [Hr] is relative to the corresponding reduced

displacements space Hr . In order to be able to spatially control the kinematics reduction, we perform

a domain partitioning of the structure using the Fast Marching Method (FMM - see [11, 12] and see

[13] for homogeneous domain partitioning of the complex mesh of an automotive vehicle). Each

subdomain kinematics is reduced on a few dynamic degrees of freedom so that small-wavelength

vibrations can no longer be represented in a given subdomain, provided the displacement kinematics

of its kinetic energy is sufficiently reduced.

2.4 Reduced-Order Model

2.4.1 Global Displacements Space

The following generalized eigenvalue problem corresponding to the conservative global dynam-

ical model is introduced,

[K]ϕg
α = λg

α [M
r]ϕg

α , (6)

where the mass matrix [Mr] of rank dr , defined as [Mr] = [Hr]T [M] [Hr], is positive semidefinite

such that the dr real eigenvectors {ϕg
α , α = 1, . . . , dr} associated with the dr finite positive eigen-

values 0 < λg
1
≤ λg

2
≤ . . . ≤ λg

dr
are used as a vector basis for spanning the global displacements
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space, Vg . We denote as [Φg] the (m × ng) real matrix of the first ng global eigenvectors such that

[Φg] = [ϕg
1
. . .ϕg

ng
] with ng ≤ dr . The global elastic modes ψg are then defined as

ψg = [Φg]ψ̃
g
, (7)

where the generalized global elastic modes ψ̃
g

are solutions of the generalized eigenvalue problem

[Kgg]ψ̃
g
= λm,g[M gg]ψ̃

g
, (8)

in which [Kgg] = [Φg]T [K][Φg] and [M gg] = [Φg]T [M][Φg] . The global eigenfrequencies ωg are such

that ωg =
√
λm,g and the global elastic modes ψg are obtained using Eq. (7).

2.4.2 Local Displacements Space

We introduce the generalized eigenvalue problem, corresponding to the conservative local dy-

namical model

[K]ϕℓ
α = λℓ

α [M
c]ϕℓ

α , (9)

where the mass matrix [Mc] = [M]− [Mr] of rank dc = m− dr is positive semidefinite such that the

dc real eigenvectors
{
ϕℓ

α , α = 1, . . . , dc
}

associated with the dc finite positive eigenvalues 0 < λℓ
1
≤

λℓ
2
≤ . . . ≤ λℓ

dc
are used as a vector basis for spanning the local displacements space, Vℓ . We denote

as [Φℓ] the (m × nℓ) real matrix of the first nℓ local eigenvectors such that [Φℓ] = [ϕℓ
1
. . .ϕℓ

nℓ
] with

nℓ ≤ dc . The local elastic modes ψℓ are then defined as

ψℓ = [Φℓ]ψ̃
ℓ
, (10)

where the generalized local elastic modes ψ̃
ℓ

are solutions of the generalized eigenvalue problem

[Kℓℓ]ψ̃
ℓ
= λm,ℓ[M ℓℓ]ψ̃

ℓ
, (11)

in which [Kℓℓ] = [Φℓ]T [K][Φℓ] and [M ℓℓ] = [Φℓ]T [M][Φℓ] . The local eigenfrequencies ωℓ are such

that ωℓ =
√
λm,ℓ and the local elastic modes ψℓ are obtained using Eq. (10).

2.4.3 Reduced-Order Model

The union of the global eigenvectors {ϕg
α , α = 1, . . . , dr} spanning space Vg with the local

eigenvectors
{
ϕℓ

α , α = 1, . . . , dc
}

spanning space Vℓ form a vector basis of R
m such that vector

U (ω) in C
m, which is a solution of Eq. (1), can be expanded as

U (ω) =
dr∑

α=1

qgα (ω)ϕ
g
α +

dc∑

β=1

qℓβ (ω)ϕ
ℓ
β , (12)

where qg (ω) in C
dr is the vector of the global generalized coordinates and q

ℓ (ω) in C
dc is the vector

of the local generalized coordinates.

We denote as [Φgℓ] the (m×nt) real matrix constituted of the first ng global eigenvectors and the first

nℓ local eigenvectors such that [Φgℓ] = [Φg Φℓ] with nt = ng + nℓ . The global-local elastic modes ψ

are then defined as

ψ = [Φgℓ]ψ̃ , (13)
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where the generalized global-local elastic modes ψ̃ are solutions of the generalized eigenvalue prob-

lem

[K̂]ψ̃ = λm,gℓ[M̂ ]ψ̃ , (14)

in which [K̂] = [Φgℓ]T [K][Φgℓ] and [M̂ ] = [Φgℓ]T [M][Φgℓ] . The global-local elastic modes are ob-

tained using Eq. (13).

The approximation Ung ,nℓ
(ω) of U (ω) at order (ng, nℓ) with ng ≤ dr and nℓ ≤ dc is, for all ω in B,

such that

Ung ,nℓ
(ω) =

nt∑

γ=1

qγ (ω)ψγ = [Ψ]q (ω) , (15)

in which the matrix [Ψ] is such that [Ψ] = [ψ
1
. . .ψnt

] and where the global-local generalized coor-

dinates vector q (ω) is constructed solving

(−ω2[M ] + iω[D] + [K])q (ω) = F (ω) , (16)

where [M ] = [Ψ]T [M] [Ψ] , [D] = [Ψ]T [D] [Ψ] and [K] = [Ψ]T [K] [Ψ] are the symmetric positive-

definite (nt × nt) real global-local generalized mass, damping and stiffness matrices, and where

F (ω) = [Ψ]T F (ω) is the global-local generalized force. Then, Ung ,nl
(ω) is derived from Eq. (15).

3. Application

3.1 Finite Element Model

The dynamical system is a heterogenous 0.26 × 0.2m2 plate constituted of a stiff master part

supporting 12 flexible panels.

Figure 1: Dynamical System

Each panel is an isotropic and homogeneous square plate with side of 0.04m and with a constant

thickness of 10−4 m . The master structure is constituted of isotropic and homogeneous identical

plates with a width of 0.02m and with a constant thickness of 0.005m . The elastic properties of

the structure are roughly uniform as only the Young modulus changes depending on the panel. The

mass density is of 7, 850 kg/m3 and the Poisson ratio is of 0.29 . The Young modulus of the master

structure is of 210 × 109 Pa and the Young moduli of the 12 panels are of 131, 147, 154, 174, 147,

171, 49, 109, 174, 134, 168, and 61× 109 Pa , going first from the left to the right and then from the

bottom to the top. The master structure is modeled with about 40, 000 Kirchhoff plate elements and

the flexible panels are modeled with about 6, 500 Kirchhoff plate elements each with a total of about

120, 000 elements for the whole structure. In-plane displacements and rotation are constrained and

as boundary conditions the four corner nodes are fixed. The structure has 60, 391 nodes and 181, 161
DOFs. The frequency band of analysis is B = 2π × ]0, 1400] rad/s .
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3.2 Reduced-Order Models

3.2.1 Classical Elastic Modes

The usual elastic modes are computed using Eq. (2). In the frequency band of analysis B , there

are 57 elastic modes. The flexible panels are responsible for the presence of numerous associated

local elastic modes and the proportion of global elastic modes rapidly decreases with respect to the

frequency. The first elastic mode is a global one coupled with local displacements. The second one is

a local elastic mode.

Figure 2: First Elastic Mode (left), Second Elastic Mode (right)

3.2.2 Global Elastic Modes

The domain of the structure is partitionned into 20 subdomains that do not coincide with the

flexible panels. We first introduce H1

r defined as the space Hr of vectors whose displacements compo-

nents are constant in each subdomain and whose rotations components are set to zero. The projection

matrix [Hr], denoted as [Hr
1
], is constructed accordingly to space H

1

r of dimension 20 and allows the

mass matrix [Mr
1
] to be obtained. Then, the 20 global displacements eigenvectors in Vg , denoted as

V
1

g , are computed using Eq. (6) and the associated global elastic modes are computed using Eq. (7).

In the frequency band of analysis B, there are 10 so-defined global elastic modes.

Figure 3: Subdomains

We now introduce H
2

r defined as the space Hr of vectors whose displacements components

correspond to rigid body displacements in each subdomain and whose rotations components are set

to zero. The projection matrix [Hr], denoted as [Hr
2
], is constructed accordingly to space H

2

r of

dimension 60 and allows the mass matrix [Mr
2
] to be obtained. Then, the first 40 global displacements

eigenvectors in Vg , denoted as V2

g , are computed using Eq. (6) and the associated global elastic modes

are computed using Eq. (7). In the frequency band of analysis B, there are 26 so-defined global elastic

modes.

The frequency distributions of such global elastic modes are plotted in Fig. (4) in comparison with

the usual elastic modes distribution.
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Figure 4: Modal density: usual elastic modes (grey), global elastic modes in V
1

g (blue or dark-grey in

b&w), global elastic modes in V
2

g (red or mid-grey in b&w) .

3.2.3 Frequency Responses

For all ω in B , the structure is subjected to an external point load of 1N (following the normal

direction) located in the master structure at the black-marked node depicted in Fig. 1. The damping

matrix is constructed using a Rayleigh model associated with a damping rate ξ = 0.04 for the fre-

quencies fα = 1Hz and fβ = 2, 300Hz . The modulus in log scale of the normal displacement of

the observation node located in the master structure at the white-marked point depicted in Fig. 1 is

calculated using different projection bases: the usual elastic modes until convergence in B (n = 400),

the first n1

g = 20 global elastic modes belonging to V
1

g, and the first n2

g = 40 global elastic modes

belonging to V
2

g . Convergence of the reference constituted of usual elastic modes is slowly reached,

especially in the 2π × [1000, 1200] rad/s band (there are only 57 elastic modes in B). The responses

obtained via the usual elastic modes basis with dimensions n1

g and n2

g are computed for comparison

with the global bases.

Figure 5: Frequency response in log scale for different projection bases: usual elastic modes (n =
400), solid line; n1

g = 20 global elastic modes in V
1

g , mixed line; first 20 usual elastic modes, dashed

line.

Figure 6: Frequency response in log scale for different projection bases: usual elastic modes (n =
400), solid line; n2

g = 40 first global elastic modes in V
2

g , mixed line; first 40 usual elastic modes,

dashed line.
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Both the small-dimension global bases allow the frequency response to be predicted with a

good approximation on a wide frequency band in comparison with the usual modal basis of same

dimension. The global basis constructed using rigid body kinematics for the kinetic energy is more

accurate at the expense of its dimension.

4. Conclusions

We have introduced a general methodology which allows the automatic separation between

global and local displacements to be performed within the computational dynamical model. The

small-dimension basis spanned by the space of global displacements is adapted to predict the response

of the master structure, for which local displacements are of lower importance.
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