
HAL Id: hal-01061929
https://hal.science/hal-01061929v2

Submitted on 27 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Checking models based on an iterative co-specification
process of a critical system

Fabien Bouffaron, Pascale Marangé, Gérard Morel

To cite this version:
Fabien Bouffaron, Pascale Marangé, Gérard Morel. Checking models based on an iterative co-
specification process of a critical system. 12th International Conference on Indusrial Informatics,
INDIN 2014, Jul 2014, Porto Alegre, Brazil. �hal-01061929v2�

https://hal.science/hal-01061929v2
https://hal.archives-ouvertes.fr


Checking models based on an iterative 
co-specification process of a critical system 

Fabien Bouffaron / Pascale Marange / Gérard Morel   
Université de Lorraine, CRAN, UMR 7039 

CNRS, CRAN, UMR 7039, France 
Vandœuvre-lès-Nancy, F-54506, France 

{fabien.bouffaron, pascale.marange, gerard.morel}@univ-lorraine.fr 
 
 

Abstract— Recurrent incident reports indicate that 
critical systems such as power plants exhibit unintended 
emergent behaviors outside of acceptable limits, despite 
of the increasing development of dependable automation 
technologies as well as of a lot of techniques related to 
dependability issues. Among many causes, the role of 
human for operating technical artefacts is of 
importance, but also for designing them from the early 
stages of specification in order to check the basic 
property of wholeness of any system. A mean is to 
ensure a continuum of compliant models to component 
integration through an iterative process between all the 
disciplines involved to engineer these systems as whole 
all along their life cycle. However, a human-based 
process to check the “right-system requirements-right” 
remains not fully adequate at the scale of real systems 
engineering projects and in any case to critical issues. 
This paper explores the formal checking compliance of 
architecting models with dependability requirements. 
These models are refined iteratively by specialist and 
specialty engineers interoperating with a system 
engineer through a co-specification process on a 
particular case study of a critical power-plant sub-
system. 

Keywords—model based systems engineering; co-
specification; verification/validation, model-checking; 
dependability requirements;   

I. INTRODUCTION  

Because of the resilient nature of human operators 
to face unintended emergent behaviors [1], a 
generation of power plant remains largely under 
human control. They are assisted in their work by 
automation technologies that provide the least 
important part of the overall control information. 
Control room operators and field operators 
interoperate together to perform documented 
procedures in order to align a lot of devices only 
partly automated to process energy flows. The 
increasing readiness level of automation technologies 
embedding somewhat of a technical intelligence is 
expected to enlarge the part of digital control 
information in order to offer new services to field 
operators.  

 
This last objective is addressed by some R&D 

programmes for the next generation of power plant as 
well as for the revamping of current ones technical 
and ecological issues. Its purpose is to design 

innovative architectures compliant with the main 
advances in component solutions for distributed 
industrial automation systems. To meet the main 
objective of increasing the dependability integrity 
levels of the overall process, the systems engineering 
(SE) framework is a model-based integrative 
approach. Its aim is to check how the system parts, 
and consequently the related engineering ones, 
interoperate such that they reproduce or transform a 
whole. The expected result, “in contradistinction with 
traditional control engineering approaches focusing 
first on separate parts”1, is to check the “right-system 
requirements-right” between all the stakeholders 
involved throughout a power plant life cycle, 
including the enabling systems, and especially the 
automation system engineering. The use of models for 
verification and validation of dependable 
requirements to component solution integration is 
compliant with the last recommended best practices in 
industry [2].  

 
The role of the system architect beyond technical 

aspect remains challenging and issues presented in 
this paper and others related ones [3], [4] are in line 
with those of this R&D programme. Section 2 
contextualizes our CISPI-AFW case study reflecting 
on a lab-platform some critical features of power 
plant automation. It also presents the co-specification 
process used to engineer this system. Section 3 details 
a particular co-specification scenario to design a 
logical architecture in order to highlight the set of 
models refined iteratively by specialist and specialty 
engineers interoperating with a system engineer. 
Section 4 formally checks the consistency of the 
overall models with dependability system 
requirements at different stages of the studied co-
specification process. To conclude, section 5 
highlights on going works related to others 
engineering domains involved in a broader co-
specification process for critical power plant control. 
Moreover, some perspectives are drawn on how to 
combine model-checking and co-simulation 
techniques for verification and validation issues.     

                                                           
1 http://www.collegepublications.co.uk/systems/syt/ 



II. CO-SPECIFICATION PROCESS OF THE STUDIED 

SYSTEM 

Our case study reflects, on the one hand, some 
features of an auxiliary feedwater (AFW) system in 
emergencies. It is historically recognized as a critical 
sub-system [5] [6] of some power-plant generations. 
AFW aim is to maintain an adequate water level in 
the steam generator (SG) by providing feedwater to 
the latter, during normal operations (startup and 
shutdown evolutions) as well as for emergency issues 
(Fig.1). 

 
 

Fig. 1.   AFW sub-system in emergencies (adapted from [7] ) 

 
Then, our co-specification process reflects, on the 

other hand, a set of engineering domains involved in 
the automation design of such AFW sub-system. 
Systems engineering play an integrative role as a 
concurrent, iterative and recursive problem-solving 
process when architecting a system solution through 
feedbacks (Fig.2).  

 

 
 
Fig. 2. Systems engineering and management paradigm [8] [9] 

A. Studied Critical Sub-System   

Our CISPI lab platform2 is composed of three 
tanks, one of which may be associated with the 
feedwater storage tank and another with a steam 
generator. SG tank leakage output aims to simulate 
the flow of steam released relaxation into the 
atmosphere. These two tanks are interconnected by 
two redundant lines consisting of a manual valve, a 
flow meter and a control valve (Fig.3).  
 

 
 
Fig. 3. Piping and instrumentation diagram of CISPI AFW-like 
process 

 
The architectural concept is to distribute around a 
fieldbus a set of “intelligent actuation and 
measurement systems” (IAMS) within an integrated 
system of control, maintenance and technical 
management (CMMS), including control by human 
operators [10]. This paper highlights some 
dependability issues related to the preliminary logical 
definition of this architecture by several specialist and 
specialty engineering. This step is before the 
allocation of the specified function blocks to human 
operators and/or to automation components.  

B. Studied Co-Specification Process 

We revisited in previous works [3] the nature of these 
SE feedbacks focusing mainly on the System 
Breakdown Structure. (Fig.2). Following and 
extending the problem-frame approach for software 
engineering [11] related to the meaning of 
requirements specification [12], we argue that the 
basic driver of these feedbacks is first the quest of 
knowledge by the system architect from specialist 
engineering domains at each level, which is then re-
iterated through the system breakdown structure.   
Let’s consider such a knowledge-based iteration3 
between the problem-space (PSSE) of the SE domain 
and a solution-space (SSAE) of the Automation 
Engineering domain. We argue that the added 
knowledge (K_SSAE) from the AE solution-space (1) 
contributes iteratively to achieve the satisfaction of an 
automation (software-based) system specification 

                                                           
2 http://safetech.cran.univ-lorraine.fr/ 

3 “K_PSiE” and “K_SSjE” notations correspond 
respectively to the knowledge of problem spacei 
(PSiE) and solution spacej (SSjE) for the next sections 

 



(SAE) from system requirements (SSE) described by an 
SE problem-space (2) according to entailments: 
 

K_SSAE, SSE   SAE (1)

K_PSSE, SAE   SSE  (2) 

At the scale of an overall SE process restricted to 
our case-study, we generalize this iterative co-
specification process between all the problem-
space/solution-space of the engineering domains 
(PSOESSOE, PSSESSSE, PSPESSPE, PSAESSAE 
PSDESSDE) interoperating to satisfy the originating 
operational entailment:  
 

WOP, SSE    ROE (1)

 
where WOP represents the operational environment 
knowledge of the target system and ROE  is a set of 
requirements described by the related operational 
engineering problem space (PSOE). 
 
Note that each specialist specification may be 
verified, for example by execution of models, within 
its own solution-space but must be validated by the 
related problem-space. In order to improve a lean 
management of the overall engineering workflow, we 
suggest distributing this co-specification process 
around a bus (Fig.4).  
 

 
Fig. 4. Distributed co-specification process 
 
A main interest is that engineers from various 
domains can use their own tools, methods, technics to 
interoperate with each other by the mean of a 
common language, such as the de-facto standardized 
SysML [13] in our case-study. Indeed, maturity of 
digital technologies for modeling and simulation 
allows considering the exchange and model co-
execution through standardized interfaces for 
connecting different simulation environments.  The 
“Functional Mockup Interface” [14] defined by the 
European ITEA2 Modelisar project is a promising 
candidate to become the industry standard for co-
simulation models and cross-company collaboration 
[15]. The validation of a co-specification by co-
execution of models can replace current technics of 
code generation and integration that are dependent on 
interoperability levels between tools. Thus, in our 
R&D framework, various domains and their 
respective tools (process engineering: Dymola®, 

automation engineering: Matlab®/Simulink®, system 
engineering: IBM Rational® Rhapsody) interoperate 
through a co-simulation bus4.  

 
Section III, describes a co-specification scenario 

between SE problem space (PSSE) and specialist 
engineers who prescribe specification models (Smodel) 
from the system specification (SSE). As addressed in 
section IV, a special attention should be paid to the 
transversal dependability engineering solution space 
(SSDE) to check more formally theses specification 
models satisfying: 
 

K_PSSE, Smodel, K_SSDE  SSE. (2)

III. LOGICAL ARCHITECTURE CO-SPECIFICATION 

We focus our scenario on the study of systems 
engineering activities during the co-specification of 
logical architecture.  At this point, we consider the 
following set of system requirements (SSE) satisfying 
the set of stakeholder requirements (ROE) during an 
accident situation (WOP) (Fig. 1) according to the 
entailment (3): 
 

TABLE I.  DRIVING CISPI-AFW SYSTEM REQUIREMENTS (SSE) 
 

Stereotype ID Text 

Functional SSE1

The water level shall be 
maintained at 50 cm in the 
steam generator tank 

Functional SSE2
The emergency water flow 
shall be 20 L.min-1 

Dependability SSE3

The feedwater system shall 
satisfy single failure 
criterion 

 
System engineer has to prescribe a logical 

architecture (LASE) requiring knowledge of several 
specialist solution spaces (process and automation 
engineering) in order to meet system requirements. 

A. Specification of the AFW process  

A first iteration is to specify the physical process 
to be controlled. From this task, there is an emergent 
problem about the specification of a process 
observing the laws of physics. Indeed, system 
engineer does not have the expertise to perform this 
task. In this sense, system engineering problem space 
formalizes this problem into requirements. These are 
then broadcast on the co-specification bus, pending a 
specialist engineer can address it. Process engineering 
solution space   (SSPE) being able to meet this 
problem (SSE) specifies CISPI-AFW process (SPE) 
according to:  

 

K_SSPE, SSE   SPE (3) 

                                                           
4 http://site.cosimate.com/ 



SPE prescribes a process with two alignment functions 
(Water_Supply) providing transport of water between 
two storage functions (Water_Storage). So that the 
process engineer can interact with the system 
engineer, it is important that both share a common 
representation of the solution in a common language. 
In this sense, the process engineer has to externalize 
his specification (SPE) by transcribing it in SysML 
language (red in Fig.5 and Fig.7). Once done, process 
solution space engineer prescribes SPE to SE problem 
space for validation.  CISPI-AFW being a critical 
system, systems engineer must formally validate at 
least that SPE is compliant with dependability 
requirement SSE3. However, systems engineering 
domain does not necessarily have the skills to 
formally perform this task. In this sense, a second 
iteration is drawn on the expertise of dependability 
engineering solution space to formally validate SPE. 
This validation task is described in the next section.  

B. Specification of the AFW control functions  

Once the CISPI-AFW process validated, it remains to 
specify the control thereof.  As with process 
engineering domain, control functions specification 
requires a third iteration between SE problem space 
and automation engineering solution space (SSAE). As 
addressed by [14], automation as a specialist 
engineering has to broaden its traditional disciplinary 
domain in order to prescribe a control functions 
specification (SAE)  compliant with both process 
specification (SPE) and system requirements (SSE) 
according to entailment:  
 

K_SSAE, SSE, SPE   SAE (4) 

This specification SAE consists in the definition of two 
control functions (Control_Water_Height) and one 
observation function (Observation_Height) (blue in 
Fig. 5). In the same way as for the validation of SPE, 
systems engineer draws again on the expertise of DE 
solution space to formally validate SAE. This 
validation task is also described in the next section.  

C. Specification of the AFW logical architecture  

In this stage, the CISPI-AFW process 
specification (SPE) and the control functions 
specification (SAE) are validated by systems 
engineering domain. Taking into account 
dependability engineering specification SDE (“adding 
an observation function” see next section), SE 
problem space (PSSE) must logically architecting 
process and control components in order to provide a 
logical architecture of CISPI-AFW system (LASE) 
according to the entailment:  
 

K_PSSE, SPE, SAE, SDE  LASE (5)

 
This task requires to compromise between specialist 
and specialty specifications in order to prescribe 
LASE. Indeed, systems engineering solutions has to 
check that the resulting architecture of logical 
architectural design process is compliant with systems 
requirements (SSE).  Thus, a last iteration with 
dependability engineering solution space is required 
to verify the specified architecture (LASE). 





 
Fig. 5 Internal Block Diagram representing control functions specification (SAE) (blue) of AFW process (red).  
 

IV. CHECKING CO-SPECIFIED MODELS 

 
Through the integrative system engineering 

processes, it is important to perform validation 
process [8]. This is in order to check that any 
engineering products resulting from engineering 
processes are compliant with given system 
requirements models according to the predicate (4). 
This is particularly true with critical systems and 
dependability requirements where the use of formal 
techniques is strongly recommended [2] by safety 
standards.  
 

The dependability requirement (SSE3) of our 
case-study is about the single failure criterion. 
Critical systems satisfy this criterion if their aim is 
ensured in the presence of any single component 
failure. CISPI-AFW system being used for short 
term during emergencies, only the single active 
failures must be taken into account, i.e. alignment, 
control and observation components. In other 
words, the system requirement SSE3 can be 
expressed as following: “if a failure is present on 
one of components, is there an alternative (another 
way) to achieve the system aim?” This led us to use 
reachability analysis method to check the 
compliance of the different specialist specification 
models with SSE3. Indeed, the reachability analysis 

is a particular model checking method, which 
determines in a state-space (behaviour) if there is a 
way that respects a given property.  Moreover, 
model checking methods allow producing a 
counterexample when a model fails to satisfy a 
desired property. “This faulty trace provides a 
priceless insight to understanding the real reason 
for the failure as well as important clues for fixing 
the problem” [16].  

 
To express the property, the language that we 

have chosen  for formal checking is Computational 
Tree Logic (CTL) [18] because it is sufficient to 
formalize the requirements of our case study into 
properties. The tool used is UPPAAL [19] which is 
an integrated tool environment for modelling and 
model-checking timed automata.  
  

A. Checking of CISPI-AFW process specification 
(SPE) 

For model checking and reachability analysis 
purposes, the dependability requirement SSE3 has to 
be refined as a formal property. During the first 
iteration between system specialist engineering and 
dependability specialty engineering, the checking 
should determine whether the specified CISPI-
AFW process (SPE) is compliant with SSE3. In other 
words, “if a failure is present on one of alignment 

waterway_1:Water_Supply1

Operations

Water_Transportat ion(flow _setpoint :doubl...

pControl

upstream_flowdownstream_flow

Flow _setpoint

waterway_2:Water_Supply1

Operations

Water_Transportation(flow_setpoint:double):flow

pControl

upstream_flowdownstream_flow

Flow _setpoint

FeedWater_Tank:Water_Storage1

Attributes

w ater_height:double

Operations

W ater_Storage(flow:double):Vo...

downstream_flow upstream_flow

SteamGenerator_Tank:Water_Storage1

Attributes

w ater_height:double

Operations

Water_Storage(flow:double):Volume

upstream_flowdownstream_flow

w ater_height

Control_1:Control_Water_Height1

Attributes

height_setpoint:int

Operations

Height_Regulat ion(height_measure:double,height_setpoint :int):flo...

pWaterSupplyFlow _setpoint

height_measure

Control_2:Control_Water_Height1

Attributes

height_setpoint:int

Operations

Height_Regulat ion(height_measure:double,height_setpoint :int):flo...

pWaterSupplyFlow _setpoint

height_measure

Observation:Observation_Height1

Operations

failure()
Height_Measure(w ater_height:dou...

w ater_height

height_measure



functional components, is there a way to achieve 
the system aim?”  This is represented by an 
observer (Fig.6) with an initial state, followed one 
state representing the occurrence of a failure and 
followed by another state representing the system 
aim satisfaction.  

 

 
 

Fig. 6. Observer for process specification (SPE) 

 

For each failure, the property to check is: “Is 
there a way to reach the system aim after the failure 
occurrence?” In the CTL, this property is written:  

 
E <> (failurei == 1) && (Observ.aim) (6)

 
This property must be checked considering that 
each process function may have a failure. Two 
results are possible:  
 The property is satisfied: this result allows 

concluding that CISPI-AFW process specification 
(SPE) is compliant with system requirement (SSE3). 

 The property is not satisfied: this result allows 
concluding that CISPI-AFW process specification 
(SPE) is not compliant with system requirement 
(SSE3). However, by analysing the counterexample 
returned by the model checker, dependability 
specialist is able to identify where the problem is. 

 
Note that the checking of this property, allows also 
checking the compliance with systems requirements 
SSE1 and SSE2. Indeed, from a point of view of the 
process, we assume that if the upstream flow of the 
SG  tank  is greater or equal to the downstream 
flow (20 L.mn-1), the system can ensure to maintain 
the level in the SG tank (Fig.6). This is 
implemented in automaton diagram by the guard: 
flow_SG>=0 && (Alignment_Performed_way1 + 
Alignment_Performed_way2) where flow_SG = 
downstream_flow_SG – upstream_flow_SG (Fig. 
9).   
 
Thus, with SE problem space and DE solution 
space knowledge (K_PSSE, K_SSDE) we are able to 
check the compliance of CISPI-AFW process 
specification (SPE) with systems requirements (SSE) 
according to the instance of entailment (4): 
 

K_PSSE, SPE, K_SSDE   SSE (7)

 
To perform the checking, the specified behavior 

of functional process components must be modeled 
in UPPAAL. For this, the DE solution space has to 
translate behavior described by SE problem space 

in SysML statechart diagram into timed automata 
diagrams. Note that for reasons of size, the models 
presented in this paper do not represent the 
complete system. We focus for this study to the 
alignment function (Fig.7 and Fig.8) and to the 
formalization of the logical architecture (Fig.9). 
Many studies deal with the passage from statechart 
to automata diagrams [20] [21]. However, to apply 
these rules, several iterations between dependability 
and systems engineers have been necessary for the 
interpretation of the semi-formal SysML statechart 
diagram. Thus, each SysML states are represented 
by automaton states. Note that the state Operational 
does not appears in the automaton but it includes in 
the states {Aligned, Misaligned, Aligning, 
Misaligning}.  Moreover, in the automaton diagram 
the state Init_State is included in the state Init.  
Therefore we add two transitions to the state Init to 
initialize the alignment component either in state 
Aligned or in state Misaligned.  
 

 
 
 Fig. 7. SysML statechart diagram of alignment function 
(Water_Supply) 

 

 
 

Fig. 8. Timed automata diagram of alignment function 
(Water_Supply) 

 

Operational

Aligned

Reactions

downstream_flow = upstream_flow;

responseAligned to pControl

Misaligned

Reactions

upstream_flow=0;

responseMisaligned to pControl

Aligning

Reactions

Water_Transportation(flow_setpoint);

requestAlignment

Alignment_Performed

Misaligning

Reactions

Water_Transportation(0);

requestMisalignment

Misalignment_Performed

Init_State

Alignment_Performed

Misalignment_Performed

requestAlignment

Alignment_Performed

requestMisalignment

Misalignment_Performed

Alignment_Performed

Misalignment_Performed

Broken

failurefailure

failureInit

not_failure

failure

not_failure



Finally, the specified process architecture (red 
in Fig.5) needs to be also modeled by an automaton 
(Fig.9). This automaton represents the link between 
functional process components through water flows 
exchanged between them. Moreover, it allows 
updating water flow values at each evolution of the 
system.  

 

 
 

Fig. 9. Logical architecture of AFW process represented in timed 
automaton 

 

From these models, we are able by model 
checking to check that the property (8) is satisfied.  
Therefore we can affirm that the CISPI-AFW 
process specification SPE is compliant with systems 
requirements SSE according to predicate (9). 

 

B. Checking of CISPI-AFW control functions 
specification (SAE) 

As for the checking of process specification 
(SPE), the same approach can be applied to check 
the compliance of control function specification 
(SAE) with systems requirements (SSE) according to 
the instance of predicate (4):  
 

K_PSSE, SAE, K_SSDE   SSE (8)

 
The property (8) to check is the same as 

previously, however the observer has to be 
redefined to take into account control and 
observation functions. Indeed, the satisfaction of 
SSE1 requires to observe and to control process in 
order to maintain level in SG tank. Thus, the 
observer (Fig.10) consists on an initial state, 
followed of a state representing the occurrence of a 
failure, and followed by another state representing 
the system aim satisfaction if system is able to 
control and to observe the water level in the SG 
tank. 
 

 
 

Fig. 10. Observer for control specification (SAE) 

 
Following the same method as previously, 

dependability engineer transforms statechart 
diagrams of control and observation functional 
components into automaton diagrams. Diagrams are 
not presented in this paper for space limitations. 
Once all models have been updated, dependability 

engineer checks the property (8) for each 
components failure. For functional control 
component failure, the single failure criterion is 
satisfied. Indeed, if a failure occurs on 
Control_1component, the Control_2 component on 
waterway 2 (with its associated process) 
components can ensure the CISPI-AFW system 
aim. As against, for functional observation 
component, if a failure occurs there are no other 
functional observation component to observe the 
water level in SG tank. Therefore, it is no longer 
possible to ensure the CISPI-AFW system aim. In 
this sense, DE solution space prescribes to systems 
engineering problem space that the AE 
specification (SAE) is not compliant with systems 
requirements (SSE). It prescribes also that another 
functional observation components is required to 
ensure the compliance of SAE with SSE. A new 
iteration between SE problem space and AE 
solution space is necessary to satisfy the predicate 
(10).  

V. CONCLUSION AND PERSPECTIVES 

We would point out that UPPAAL is not yet 
integrated into our co-simulation framework but it 
could be in future works. This means that the 
verification/validation process remains human-
based (properties formalization, models 
transformation) with the aid of an automated 
checker. On contrary, it is important to emphasize 
the role of the co-specification process to aid also 
human checking modeller to ensure the correctness 
of its own dependability engineering models 
through several iterations with the system engineer 
in order to exhibit the right properties to the 
satisfaction of SSE. A future work will focus on the 
use of SCADE® tool for checking with the 
advantage to automatically import IBM Rhapsody® 
statechart diagrams. 
 

Others ongoing works continue to experiment 
the powerful role of this co-specification 
framework based on the quest of knowledge from 
the systems engineering domain to others specialist-
engineering domains. For example, we are working 
with human-centred engineering (4) in order to 
satisfy operational requirements when field 
operators perform some control tasks but also with 
automation engineering in order to define a new 
kind of intelligent controller for CISPI-AFW [22]. 
A future work will also improve this co-
specification process to fully define a logical 
architecture and then a technical one.  
 

All these works, sometimes exploratory, are 
based on sound modelling rather than drawing for 
systems engineering, and aim in-fine to contribute 
to Human System Integration, both in operation and 
Design, as addressed by [23]. 

 



REFERENCES 

 
[1] E. Hollnagel and D. D. Woods, Joint cognitive systems: 

Foundations of cognitive systems engineering: CRC Press, 
2005. 

[2] [G. Fanmuy, A. Fraga, and J. Llorens, "Requirements 
verification in the industry," in Complex Systems Design 
& Management, ed: Springer, 2012, pp. 145-160. 

[3] F. Bouffaron, D. Gouyon, D. Dobre, and G. Morel, 
"Revisiting the interoperation relationships between 
Systems Engineering collaborative processes," presented at 
the INCOM 2012, 14th IFAC Symposium on Information 
Control Problems in Manufacturing, Bucharest, Romania, 
2012. 

[4] F. Bouffaron, J.-M. Dupont, F. Mayer, and G. Morel, 
"Integrative construct for Model-Based Human-System 
Integration: a case study," presented at the World Ifac 
Congress 2014, Cape Town - South Africa, 2014. 

[5] D. Casada, "Auxiliary feedwater system aging study," 
https://hal.archives-ouvertes.fr/hal-01087867/document 
Regulatory Commission, Washington, DC (USA). Div. of 
Engineering; Oak Ridge National Lab., TN (USA)1990. 

[6] R. Belles, J. Cletcher, D. Copinger, B. Dolan, J. Minarick, 
and M. Muhlheim, "Precursors to potential severe core 
damage accidents: 1998, A status report," NUREG/CR, 
vol. 4674, 1998. 

[7] J. Duco, "Accidents nucléaires. Three Mile Island (Etats-
Unis)," Techniques de l'ingénieur. Génie nucléaire, pp. 
BN3883-1, 2004. 

[8] A. Pyster, D. Olwell, N. Hutchison, S. Enck, D. Anthony, 
H. Squires, and A. Squires, "Guide to the Systems 
Engineering Body of Knowledge (SEBoK). Version 1.0.1," 
Hoboken, NJ: The Trustees of the Stevens Institute of 
Technology  ©2012. Available at:  
http://www.sebokwiki.org/index.php/article_title, 2012. 

[9] A. Faisandier, collection : Engineering and Architecing 
multidisicplinary systems, Sinergy’Com, From 2012 

[10] D. Dobre, G. Morel, and D. Gouyon, "Improving human-
system digital interaction for industrial system control: 
some systems engineering issues," in 10th IFAC Workshop 
on Intelligent Manufacturing Systems, IMS'10, 2010. 

[11] M. Jackson, Problem frames: analysing and structuring 
software development problems: Addison-Wesley, 2001. 

[12] Z. Jin, "Revisiting the meaning of requirements," Journal 
of computer science and technology, vol. 21, pp. 32-40, 
2006. 

[13] OMG, OMG Systems Modeling Language (OMG SysML) 
(v 1.2), 2010. 

[14] T. Blochwitz, M. Otter, J. Åkesson, M. Arnold, C. Clauss, 
H. Elmqvist, M. Friedrich, A. Junghanns, J. Mauss, and D. 
Neumerkel, "Functional mockup interface 2.0: The 
standard for tool independent exchange of simulation 
models," in 9th International Modelica Conference, 2012. 

[15] Bertsch, C., & Schulmeister, E. A. U. “The Functional 
Mockup Interface-seen from an industrial perspective”.10 
th International Modelica Conference, Lund, Sweden, 2014 

[16] C. Cassandras and R. Braatz, "People In Control," IEEE 
Control Systems Magazine, vol. 31, p. 24, 2011. 

[17] E. Clarke, O. Grumberg, and D. Peled, Model checking: 
The MIT Press, 1999. 

[18] E. Clarke and E. Emerson, Design and synthesis of 
synchronization skeletons using branching time temporal 
logic: Springers, 1982. 

[19] G. Behrmann, A. David, and K. G. Larsen, "A tutorial on 
uppaal," in Formal methods for the design of real-time 
systems, ed: Springer, 2004, pp. 200-236. 

[20] A. Knapp, S. Merz, and C. Rauh, "Model checking timed 
UML state machines and collaborations," in Formal 
Techniques in Real-Time and Fault-Tolerant Systems, 
2002, pp. 395-414. 

[21] W. Ji, D. Wei, and Q. Zhi-Chang, "Slicing hierarchical 
automata for model checking UML statecharts," in Formal 
Methods and Software Engineering, ed: Springer, 2002, 
pp. 435-446. 

[22] M. Fliess and C. Join, "Model-free control," International 
Journal of Control, vol. 86, pp. 2228-2252, 2013. 

[23] G. Boy and J. M. Narkevicius, "Unifying Human Centered 
Design and Systems Engineering for Human Systems 
Integration," in Complex Systems Design & Management 
CSD&M 2013, Paris, 2013. 

 


