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RESONANCES AND CONVEX CO-COMPACT CONGRUENCE SUBGROUPS OF P SL 2 (Z)

Let Γ be a convex co-compact subgroup of P SL 2 (Z), and let Γ(q) be the sequence of "congruence" subgroups of Γ. Let R q ⊂ C be the resonances of the hyperbolic Laplacian on the "congruence" surfaces Γ(q)\H 2 . We prove two results on the density of resonances in R q as q → ∞: the first shows at least Cq 3 resonances in slowly growing discs, the other one is a bound from above in boxes {δ/2 < σ ≤ Re(s) ≤ δ}, with |Im(s) -T | ≤ 1, where we prove a density estimate of the type O(T δ-ǫ1(σ) q 3-ǫ2(σ) ) with ǫ j (σ) > 0 for all σ > δ/2, j = 1, 2.

Introduction and results

Recently, "thin" subgroups of SL 2 (Z) have attracted some attention in Number Theory. By "thin" we mean an infinite index subgroup Γ ⊂ SL 2 (Z) whose dimension of the limit set δ Γ satisfies 0 < δ Γ < 1. While the results of Bourgain-Gamburd-Sarnak [START_REF] Bourgain | Generalization of Selberg's 3/16 theorem and affine sieve[END_REF] focus on the density of almost primes found among entries of the orbits of thin subgroups, the works of Bourgain and Kontorovich [START_REF] Bourgain | On representations of integers in thin subgroups of SL 2 (Z)[END_REF][START_REF] Bourgain | On Zaremba's conjecture[END_REF] are concerned with the density of various subsets of N obtained through the action of Γ. One of the key steps of the proofs involves reduction (localization) modulo q where q is a square-free integer, in particular one is led to consider "congruence subgroups" Γ(q) defined by Γ(q) := γ ∈ Γ : γ ≡ 1 0 0 1 mod q .

A critical ingredient is the spectral theory of the infinite area hyperbolic surfaces X q := Γ(q)\H 2

where uniform estimates on the spectrum of the Laplacian are often required. Let us recall some basic known facts about the Laplacian on these objects. Let H 2 be the hyperbolic plane endowed with its standard metric of constant gaussian curvature -1. Let Γ be a convex co-compact discrete subgroup of isometries acting on H 2 . This means that Γ admits a finite sided polygonal fundamental domain in H 2 , with infinite area. We will require that Γ has no elliptic elements different from the identity and that Γ has no parabolic elements (no cusps). Under these assumptions, the quotient space X = Γ\H 2 is a hyperbolic surface with infinite area whose ends are given by hyperbolic funnels. The limit set of Γ is commonly defined by

Λ(Γ) := Γ.z ∩ ∂H 2 ,
where z ∈ H 2 is a given point and Γ.z is the orbit of that point under the action of Γ which by discreteness accumulates on the boundary ∂H 2 .

The limit set Λ does not depend on the choice of z and its Hausdorff dimension is commonly denoted by δ Γ . It is the critical exponent of Poincaré series [START_REF] Patterson | The limit set of a Fuchsian group[END_REF] (here d denotes hyperbolic distance) P Γ (s) := γ∈Γ e -sd(γz,z ′ ) .

Let ∆ be the hyperbolic Laplacian on X. Its spectrum on L 2 (X) has been described completely by Lax and Phillips in [START_REF] Lax | Translation representation for automorphic solutions of the non-Euclidean wave equation I, II[END_REF]. The half line [1/4, +∞) is the continuous spectrum and it contains no embedded eigenvalues. The rest of the spectrum (point spectrum) is empty if δ ≤ 1 2 , finite and starting at δ(1δ) if δ > 1 2 . The fact that the bottom of the spectrum is related to the dimension δ was first discovered by Patterson [START_REF] Patterson | The limit set of a Fuchsian group[END_REF] for convex co-compact groups.

By the preceding description of the spectrum, the resolvent R Γ (s) = (∆s(1s)) -1 : L 2 (X) → L 2 (X), is therefore well defined and analytic on the half-plane {Re(s) > 1 2 } except at a possible finite set of poles corresponding to the finite point spectrum. Resonances are then defined as poles of the meromorphic continuation of R Γ (s) : C ∞ 0 (X) → C ∞ (X) to the whole complex plane. The set of poles is denoted by R X . This continuation is usually performed via the analytic Fredholm theorem after the construction of an adequate parametrix. The first result of this kind in the more general setting of asymptotically hyperbolic manifolds is due to Mazzeo and Melrose [START_REF] Mazzeo | Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature[END_REF]. A more precise parametrix for surfaces was constructed by Guillopé and Zworski in [START_REF] Guillopé | Scattering asymptotics for Riemann surfaces[END_REF][START_REF] Guillopé | Upper bounds on the number of resonances for non-compact Riemann surfaces[END_REF]. It should be mentioned at this point that in the infinite area case, resonances are spread all over the half plane {Re(s) < δ}, in sharp contrast with the finite area non-compact case where resonances are known to be confined in a strip. Among the known results (and conjectures) on the density and location of resonances we mention the following two facts which are relevant for this paper. Let N X (r) be the counting function defined by N X (r) := #{s ∈ R X : |s| ≤ r}. From the work of Guillopé and Zworski, we know that there exists C X > 0 such that for all r ≥ 1, we have

C -1 X r 2 ≤ N X (r) ≤ C X r 2 .
On the other hand, let M X (σ, T ) be defined by

M X (σ, T ) := #{s ∈ R X : σ ≤ Re(s) ≤ δ and |Im(s) -T | ≤ 1}.
From the work of Guillopé-Lin-Zworski [START_REF] Guillopé | The Selberg zeta function for convex co-compact Schottky groups[END_REF], we know that one can find C σ > 0 such that for all T ≥ 1, we have

M X (σ, T ) ≤ C σ T δ .
It is conjectured in Jakobson-Naud [START_REF] Jakobson | On the critical line of convex co-compact hyperbolic surfaces[END_REF] that for all σ > δ/2 and all T large enough, M X (σ, T ) = o(1), in other words that there exists an "essential" spectral gap up to {Re(s) = δ/2} which plays the role of the critical line in infinite volume.

In this paper, motivated by number theoretic works, we will restrict ourselves to the interesting case when Γ is a convex co-compact subgroup of P SL 2 (Z), and will assume throughout the paper that Γ is non-elementary i.e. is not generated by a single hyperbolic element. I should be noticed that since Γ is a free group, there is no need to distinguish Γ as a subgroup of P SL 2 (Z) or viewed as a matrix subgroup of SL 2 (Z). 1 As mentioned above, a natural question is to describe the resonances of "congruence" surfaces Γ(q) with respect to q. For simplicity, we will restrict ourselves in this paper to the case when q is a prime number. From the work of Gamburd [START_REF] Gamburd | On the spectral gap for infinite index "congruence" subgroups of SL 2 (Z)[END_REF], it is known that for all q large enough, the projection map

Φ q : Γ → SL 2 (F q ) γ → γ mod q ,
is a surjection. Therefore we have

[Γ : Γ(q)] = |SL 2 (F q )| = q(q 2 -1) ≍ q 3
Since all the subgroups Γ(q) have a finite index in Γ, they have all the same dimension δ Γ(q) = δ Γ . Our first result is the following. For simplicity, we denote the counting function N Γ(q) (r) by N q (r).

Theorem 1.1. There exist constants C 0 > 0 and T 0 > 0 such that for all ǫ > 0 and all q ≥ q 0 (ǫ) and T ≥ T 0 , we have

N q (T (log q) ǫ ) ≥ C 0 T 2 q 3 .
This result shows abundance of resonances in discs with slow radius growth as q → ∞. This lower bound is not surprising in view of the geometric bounds obtained by Borthwick in [START_REF] Borthwick | Sharp geometric upper bounds on resonances for surfaces with hyperbolic ends[END_REF]. Notice that this bound is "almost optimal" in term of q, indeed, in §2, we show that

N q (T ) ≤ Cq 3 log(q)T 2 ,
uniformly for all T ≥ 1. It may be possible (with some more geometric work) to derive Theorem 1.1 directly from the lower bound in [START_REF] Borthwick | Sharp geometric upper bounds on resonances for surfaces with hyperbolic ends[END_REF]. However, in this paper, we use a fairly different (and more algebraic) route which is justified by our next statement. We denote by R q the resonance spectrum of the surface X q = Γ(q)\H 2 . In their work on almost primes [START_REF] Bourgain | Generalization of Selberg's 3/16 theorem and affine sieve[END_REF], Bourgain-Gamburd-Sarnak (and also Gamburd [START_REF] Gamburd | On the spectral gap for infinite index "congruence" subgroups of SL 2 (Z)[END_REF]) obtained the following "spectral gap" result for the family Γ(q):

• If δ > 1/2 then there exists ǫ 0 > 0, independent of q such that for all q we have R q ∩ {Re(s) > δǫ 0 } = {δ}. • Moreover, if δ > 5/6 then R q ∩[5/6, δ] is independent of q (notice that in this case there are only eigenvalues). • If δ ≤ 1/2, then there exists ǫ 0 > 0, independent of q such that for all q we have

R q ∩ Re(s) > δ -ǫ 0 min 1, 1 log(1 + |Im(s)|) = {δ}.
These uniform spectral gaps are obtained thanks to the work of Bourgain-Gamburd [START_REF] Bourgain | Uniform expansion bounds for Cayley graphs of SL 2 (F p )[END_REF] on Cayley graphs of SL 2 (F q ) which are proved to be expanders for all finitely generated, non elementary set of generators. While in the case δ > 1/2 they can use the full strength of Lax-Phillips spectral theory, in the case δ ≤ 1/2, one has to face genuine resonances and use some transfer operators techniques from [START_REF] Naud | Expanding maps on Cantor sets and analytic continuation of zeta functions[END_REF]. In view of the conjecture of [START_REF] Jakobson | On the critical line of convex co-compact hyperbolic surfaces[END_REF], it is natural to expect the following "uniform essential spectral gap property".

Conjecture 1.2. For all σ > δ 2 , R q ∩ {Re(s) ≥ σ} is finite and independent of q.

This conjecture seems to be out of reach (in the finite volume case, this is Selberg's eigenvalue conjecture), but we can prove the following.

Theorem 1.3. Assume that σ > δ 2 , then there exist m 0 (σ), such that we have for all T ≥ 1 and q large, σ) , where for i = 1, 2, τ i (σ) < 0 on ( δ 2 , δ], and τ i is strictly convex and decreasing on ( δ 2 , δ]. This statement is a strengthening of the main result in [START_REF] Naud | Density and location of resonances for convex co-compact hyperbolic surfaces[END_REF], extended to all congruence subgroups. Not only we have a gain over the crude bound O(T δ ) but simultaneously a gain over the O(q 3 ) bound, as long as we count resonances in {Re(s) ≥ σ > δ 2 }. Notice that it can be rephrased (for fixed T ) as a bound of the type

M q (σ, T ) := #{s ∈ R q : σ ≤ Re(s) ≤ δ and |Im(s) -T | ≤ 1} ≤ m 0 T δ+τ 1 (σ) q 3+τ 2 (
O Vol(N q ) 1+ τ 2 (σ) 3 ,
where N q is the Nielsen region in Γ(q)\H 2 (the convex core of the surface).

In the particular case δ > 1 2 it gives a density theorem for the number of eigenvalues of the Laplacian ∆ q in [δ(1δ), 1/4] which to our knowledge does not follow from previous works:

#(Sp(∆ q ) ∩ [δ(1 -δ), 1/4]) = O Vol(N q ) 1-ǫ Γ
for some ǫ Γ > 0 depending only on Γ. This resonance behavior in the strip {δ/2 < Re(s) ≤ δ} is in sharp contrast with Theorem 1.1, which shows a drastically different behavior in the half-plane {Re(s) ≤ δ/2}. We point out that the functions τ i (σ) have an "explicit" formula in terms of topological pressure. We do not expect this formula to produce a uniform spectral gap for σ close to δ, although we use some of the ideas of [START_REF] Bourgain | Generalization of Selberg's 3/16 theorem and affine sieve[END_REF][START_REF] Gamburd | On the spectral gap for infinite index "congruence" subgroups of SL 2 (Z)[END_REF] in our proof.

Let us describe the organization of the paper. The main tool in both results is to use "congruence" transfer operators which were already defined in [START_REF] Bourgain | Generalization of Selberg's 3/16 theorem and affine sieve[END_REF]. In section §2 we recall how convex co-compact subgroups of P SL 2 (Z) can be viewed as Schottky groups. We then define the so-called congruence transfer operator on a suitable space of Holomorphic functions and show that its Fredholm determinant is related to the Selberg's zeta function of X q . An upper bound on the growth of this determinant is then proved, using some singular values estimates. Combining this result with the Trace formula leads to Theorem 1.1, see §3. To prove Theorem 1.3, a different kind of approach is required. In §4, we use some (modifications of) ideas from [START_REF] Naud | Density and location of resonances for convex co-compact hyperbolic surfaces[END_REF], where we estimate the number of resonances by using a regularized Hilbert-Schmidt determinant related to iterates of the transfer operator. A key part of the proof comes from a variant on the lower bound on the girth of Cayley graphs of SL 2 (F q ) which is proved in [START_REF] Gamburd | On the spectral gap for infinite index "congruence" subgroups of SL 2 (Z)[END_REF] and a separation mechanism based on the disconnected topology of the limit set.
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Congruence transfer operators and Selberg's zeta functions

2.1. The Schottky picture. We use the notations of §1. Let H 2 denote the Poincaré upper half-plane H 2 = {x + iy ∈ C : y > 0} endowed with its standard metric of constant curvature -1

ds 2 = dx 2 + dy 2 y 2 .
The group of isometries of H 2 is PSL 2 (R) through the action of 2 × 2 matrices viewed as Möbius transforms

z → az + b cz + d , ad -bc = 1.
Below we recall the definition of Fuchsian Schottky groups which will be used to define transfer operators. A Fuchsian Schottky group is a free subgroup of PSL 2 (R) built as follows. Let D 1 , . . . , D p , D p+1 , . . . , D 2p be 2p Euclidean open discs in C orthogonal to the line R ≃ ∂H 2 . We assume that for all i = j, D i ∩ D j = ∅. Let γ 1 , . . . , γ p ∈ PSL 2 (R) be p isometries such that for all i = 1, . . . , p, we have

γ i (D i ) = C \ D p+i ,
where C := C ∪ {∞} stands for the Riemann sphere.

Let Γ be the free group generated by γ i , γ -1 i for i = 1, . . . , p, then Γ is a convex co-compact group, i.e. it is finitely generated and has no nontrivial parabolic element. The converse is true: up to an isometry, all convex co-compact hyperbolic surfaces can be uniformized by a group as above, see [START_REF] Button | All Fuchsian Schottky groups are classical Schottky groups[END_REF]. In the particular case when Γ is a convex co-compact subgroup of P SL 2 (Z), then by using the same argument as in [START_REF] Button | All Fuchsian Schottky groups are classical Schottky groups[END_REF], one can find a set of generators as above.

2.2. Topological pressure and Bowen's formula. For all j we set I j := D j ∩ R and define the Bowen-Series map B :

∪ 2p j=1 I j → R ∪ {∞} by B(x) := γ j (x) if x ∈ I j .
The maximal B-invariant compact subset of ∪ 2p j=1 I j is precisely the limit set Λ(Γ), and B is uniformly expanding on Λ(Γ). The topological pressure P (x), x ∈ R, is the thermodynamical quantity given by the limit (the sums runs over n-periodic points of the map B)

(1) e P (x) = lim n→∞ B n w=w |(B n ) ′ (w)| -x 1/n .
The fact that this limit exists and defines a real-analytic decreasing strictly convex function x → P (x) follows from classical thermodynamical formalism, see for example [START_REF] Parry | Zeta functions and the periodic orbit structure of hyperbolic dynamics[END_REF] for a basic reference, see also [START_REF] Naud | Density and location of resonances for convex co-compact hyperbolic surfaces[END_REF], for a justification of strict convexity based on the fact that Γ is non elementary. Moreover, it has a unique zero on the real line which is exactly the dimension δ(Γ), this is a celebrated result of Bowen [START_REF] Bowen | Hausdorff dimension of quasicircles[END_REF]. In particular, we have P (x) < 0 iff x > δ, which is something to keep in mind in the rest of the paper, especially in the last section.

2.3.

Determinants and Selberg's zeta functions. In the sequel, we will denote by G the group SL 2 (F q ). Let Γ be a convex co-compact subgroup of P SL 2 (Z) as above and let γ 1 , . . . , γ p be a set of Schottky generators as above. For simplicity we denote by γ p+i := γ -1 i for i = 1, . . . , p. For each map γ i , we fix a 2 × 2 matrix representation in SL 2 (Z) also denoted by γ i . Let

F : ∪ 2p i=1 D i × G → C be a C-valued function, then the congruence transfer operator applied to F is defined for all z ∈ D i , g ∈ G L s (F )(z, g) := j =i (γ ′ j (z)) s F (γ j z, Φ q (γ j )g),
where Φ q : SL 2 (Z) → G is the reduction mod q. For obvious simplicity, we will omit Φ q in the notations for the right factor. We need some additional notations. Considering a finite sequence α with

α = (α 1 , . . . , α n ) ∈ {1, . . . , 2p} n , we set γ α := γ α 1 • . . . • γ αn .
We then denote by W n the set of admissible sequences of length n by

W n := {α ∈ {1, . . . , 2p} n : ∀ i = 1, . . . , n -1, α i+1 = α i + p mod 2p} .
The set W n is simply the set of reduced words of length n. For all j = 1, . . . , 2p, we define W j n by

W j n := {α ∈ W n : α n = j}. If α ∈ W j n , then γ α maps D j into D α 1 +p .
Using this set of notations, we have the formula for z ∈ D j ,

L N s (F )(z, g) = α∈W j N (γ ′ α (z)) s F (γ α z, γ α g).
We now have to specify the function space on which the transfer operators L s will act. Let H 2 q denote the vector space of (complex-valued) functions

F on ∪ 2p i=1 D i × G such that for all g ∈ G, z → F (z, g
) is holomorphic on each disc D j and such that the following norm

F 2 q := g∈G ∪ 2p i=1 D i |F (z, g)| 2 dm(z),
is finite (dm stands for Lebesgue measure on C). This function space may be viewed as a (vector valued) variant of the classical Bergman spaces, and is a natural Hilbert space. Since each branch γ i acts by contraction on ∪ j =i D j , the transfer operators are compact, trace class operators. This fact is well known and dates back to Ruelle [START_REF] Ruelle | Zeta-functions for expanding maps and Anosov flows[END_REF], see also Bandtlow-Jenkinson [START_REF] Bandtlow | On the Ruelle eigenvalue sequence[END_REF] for an in-depth analysis of spectral properties of transfer operators on Holomorphic function spaces. Before we carry on our analysis, it is necessary to recall a few basic facts on transfer operators acting on H 2 q . We start by some distortion estimates. • (Uniform hyperbolicity). One can find C > 0 and 0 < θ < θ < 1 such that for all n, j and α ∈ W j n , for all z ∈ D j we have (2)

C -1 θ n ≤ |γ ′ α (z)| ≤ Cθ n . • (Bounded distortion).
There exists M 1 > 0 such that for all n, j and all α ∈ W j n , for all

z 1 , z 2 ∈ D j (3) e -|z 1 -z 2 |M 1 ≤ |γ ′ α (z 1 )| |γ ′ α (z 2 )| ≤ e |z 1 -z 2 |M 1 .
We refer the reader to [START_REF] Naud | Density and location of resonances for convex co-compact hyperbolic surfaces[END_REF] for details on proofs and references. We will also need the following fact which is proved in [START_REF] Naud | Density and location of resonances for convex co-compact hyperbolic surfaces[END_REF].

Lemma 2.1. For all σ 0 , M in R with 0 ≤ σ 0 < M, one can find C 0 > 0 such that for all n large enough and M ≥ σ ≥ σ 0 , we have

(4) 2p j=1   α∈W j n sup I j (γ ′ α ) σ   ≤ C 0 e nP (σ 0 ) .
With these preliminaries in hand one can prove the following estimate.

Proposition 2.2. There exist a constant C > 0, independent of q such that for all N ∈ N, we have

L N s H 2 q ≤
Ce C|s| e N P (Re(s)) . A straightforward and important consequence is that the spectral radius of L s : H 2 q → H 2 q is bounded by e P (Re(s)) . We postpone the proof of this Proposition to the appendix and move on to the central subject of this §.

We recall that the Selberg zeta function Z Γ (s) is defined as the analytic continuation to C of the infinite product:

Z Γ (s) := k∈N C∈P 1 -e -(s+k)ℓ(C) , Re(s) > δ
where P is the set of prime closed geodesics on Γ\H 2 , and if C ∈ P, ℓ(C) is the length. Our first observation is the following. Proposition 2.3. Using the above notation, we have for all s ∈ C and q ≥ 2, det(I -L s ) = Z Γ(q) (s).

Proof. We prove this identity by analytic continuation. First some trace computations are required. let D g denote the dirac mass at g ∈ G, i.e.

D g (h) = 1 if h = g 0 elsewhere.
For all j = 1, . . . , 2p, we write D j := D(c j , r j ) and we denote by e ℓ k the function defined for z ∈ D j by

e ℓ k (z) = 0 if j = ℓ k+1 π 1 r j z-c j r j k if j = ℓ.
It is easy to check that the family

e ℓ k ⊗ D g ℓ=1,...,2p k∈N, g∈G is a Hilbert basis of H 2 q . Writing Tr(L N s ) = k,ℓ,g L N s (e ℓ k ⊗ D g ), e ℓ k ⊗ D g H 2 q ,
we obtain after several applications of Fubini

Tr(L N s ) = k,ℓ,g α∈W ℓ N α 1 =p+ℓ D g (γ α g) D ℓ (γ ′ α (z)) s e ℓ k (γ α z)e ℓ k (z)dm(z), = |G| 2p ℓ=1 α∈W ℓ N ,α 1 =p+ℓ γα≡Id mod q k∈N D ℓ (γ ′ α (z)) s e ℓ k (γ α z)e ℓ k (z)dm(z).
We recall that by the mapping property of Schottky groups, there exists ǫ 0 > 0 such that for all N and all α ∈ W ℓ N , dist(γ α (D ℓ ), ∂D p+α 1 ) ≥ ǫ 0 . This uniform contraction property guarantees uniform convergence of

k e ℓ k (γ α z)e ℓ k (z) on D ℓ × D ℓ , allowing us to write k∈N D ℓ (γ ′ α (z)) s e ℓ k (γ α z)e ℓ k (z)dm(z) = D ℓ (γ ′ α (z)) s B D ℓ (γ α z, z)dm(z),
where B D ℓ (w, z) is the Bergman reproducing kernel of the disc D ℓ , given by the explicit formula

B D ℓ (w, z) = r 2 ℓ π [r 2 ℓ -(w -c ℓ )(z -c ℓ )] 2 .
A standard computation involving Stokes's and Cauchy formula (see for example Borthwick [START_REF] Borthwick | Spectral theory of infinite-area hyperbolic surfaces[END_REF], P. 306) then shows that

D ℓ (γ ′ α (z)) s B D ℓ (γ α z, z)dm(z) = (γ ′ α (x α )) s 1 -γ ′ α (x α )
, where x α is the unique fixed point of γ α : D ℓ → D ℓ . Moreover, Cα) , where C α is the closed geodesic represented by the conjugacy class of γ α ∈ Γ. There is a one-to-one correspondence between prime periodic orbits of the Bowen-Series map B and prime conjugacy classes in Γ (see Borthwick [START_REF] Borthwick | Spectral theory of infinite-area hyperbolic surfaces[END_REF], P. 303), therefore each prime conjugacy class in Γ (and iterates) appears in the above sum over all periodic orbits of B. However, for all γ ∈ Γ(q) its conjugacy class in Γ splits into [Γ(q) : Γ] = |G| conjugacy classes in Γ(q), with same geodesic length. Let us explain this fact. Let H be a normal subgroup of a group G, and let x ∈ H. Then it is a basic and general observation that the conjugacy class of x in G splits into possibly several conjugacy classes in H which are in one-to one correspondence with the cosets of

γ ′ α (x α ) = e -ℓ(
G/HC G (x),
where C G (x) is the centralizer of x in G. Since Γ is a free group, it is obvious in our case that whenever x = Id,

C G (x) = {x k : k ∈ Z},
and therefore G/HC G (x) = G/H.
Going back to our trace computations, we have formally obtained

det(I -L s ) = exp - ∞ N =1 1 N Tr(L N s ) = exp   - C∈P(Γ(q)) ∞ j=1 1 j ∞ k=0 e -j(s+k)ℓ(C)   = Z Γ(q) (s),
where P(Γ(q)) is the set of primitive conjugacy classes in Γ(q). To justify convergence, first observe that we have

Tr(L N s ) = ℓ γα(D ℓ )⊂D ℓ γα≡Id mod q (γ ′ α (x α )) s 1 -γ ′ α (x α )
, which is roughly bounded by ( 5)

|Tr(L N s )| ≤ B N w=w (B N ) ′ (w) -Re(s) 1 -[(B N ) ′ (w)] -1 ,
and the pressure formula (1) together with Bowen's result show uniform convergence of the series

N ≥1 1 N Tr(L N s )
on half-planes {Re(s) ≥ σ 0 > δ}, uniformly in q. Moreover, by using Proposition 2.2, we know that the spectral radius of L s is bounded (uniformy in q) by e P (Re(s)) , therefore we do have

det(I -L s ) = exp - ∞ N =1 1 N Tr(L N s )
for all Re(s) > δ. Since the infinite product formula for the Selberg's zeta function holds for all Re(s) > δ, we have the desired conclusion by analytic continuation.

The above formula is critical in our analysis : a result of Patterson and Perry [START_REF] Patterson | The divisor of Selberg's zeta function for Kleinian groups[END_REF] says that resonances (apart from topological zeros located at negative integers) are the same (with multiplicity) as zeros of the Selberg zeta function. Therefore resonances on Γ(q)\H 2 are the same as non-trivial zeros of det(I -L s ), with multiplicities. Such a correspondence is also pointed out in [START_REF] Bourgain | Generalization of Selberg's 3/16 theorem and affine sieve[END_REF], but comes after a rather roundabout argument based on different calculations of Laplace transforms of counting functions.

2.4.

Proof of the basic upper bound. The goal of this section is to prove the following bound.

Proposition 2.4. There exists a constant C Γ such that for all q large and all s ∈ C, we have the bound

log | det(I -L s )| ≤ C Γ q 3 log(q)(1 + |s| 2 ).
The proof will follow from a careful estimate of singular values of the operators L s : H 2 q → H 2 q . We need first to recall some material on singular values and Weyl inequalities, our basic reference is the book of Simon [START_REF] Simon | Trace ideals and their applications[END_REF]. Let H 1 , H 2 be two Hilbert spaces. Consider T : H 1 → H 2 a compact operator. The singular value sequence µ 0 (T ) ≥ µ 1 (T ) ≥ . . . µ k (T ) is defined as the eigenvalue sequence of √ T * T :

H 1 → H 1 .
We will need to use the following fact. 

. Let T = [T i,j ] 1≤i,j≤m : H 1 ⊕ . . . ⊕ H m → H 1 ⊕ . . . ⊕ H m
be a compact operator where each T i,j : H j → H i . Then we have for all k ≥ 0,

µ k (T ) ≤ #{(i, j) : T i,j = 0}. max i,j   ℓ≥[k/m] T i,j e j ℓ H i   .
Proof. We set H = H 1 ⊕ . . . ⊕ H m . We define a natural basis (e k ℓ ) ℓ,k of H by setting for all k = 1, . . . , m e k ℓ := (0, . . . , 0, e k ℓ k , 0, . . . , 0).

From the min-max principle for the eigenvalues of compact self-adjoint operators it follows that

µ k (T ) = min codim(V )=k max v∈V, v =1 T v H ,
where the min is taken along all subspaces V ⊂ H with codimension k.

Choosing V = Span{e k ℓ : ℓ ≥ N, k = 1, . . . , m} we have µ mN (T ) ≤ max v∈V, v =1 T v H . Writing v = 1≤k≤m, ℓ≥N v, e k ℓ H e k ℓ ,
we obtain by the triangle inequality and Cauchy-Schwarz

µ mN (T ) ≤ 1≤k≤m, ℓ≥N T e k ℓ H .
Let P j : H → H be defined by P j (x 1 , . . . , x m ) := (0, . . . , 0, x j j , 0, . . . , 0), so that we can write T = i,j P i T P j .

We have obviously

T e k ℓ H ≤ i,j P i T P j e k ℓ H , hence µ mN (T ) ≤ i,j ℓ≥N P i T P j e j ℓ H = i,j ℓ≥N T i,j e j ℓ H i ≤ #{(i, j) : T i,j = 0} max i,j ℓ≥N T i,j e j ℓ H i .
The proof ends by writing

µ k (T ) ≤ µ m[k/m] (T )
and applying the above formula.

We can now move on to the proof of Proposition 2.4. Viewing H 2 q as

H 2 q = g∈G H 2 g (Ω),
where Ω = ∪ 2p j=1 D j , the formula

L s (F )(z, g) := j =i (γ ′ j (z)) s F (γ j z, γ j g),
shows that in the matrix representation of L s , there are at most 2p non-zero operator entries per row. Using the explicit basis (e ℓ k ) for

H 2 (Ω), it is enough to estimate (γ ′ j ) s e ℓ k • γ j H 2 (D i ) , where γ j (D i ) ⊂ D ℓ . Using the fact that dist(γ j (D i ), ∂D ℓ ) ≥ ǫ 0 ,
we obtain the bound (for some adequate constants C > 0 and 0

< ρ 0 < 1 ) (γ ′ j ) s e ℓ k • γ j H 2 (D i ) ≤ Ce C|s| ρ k 0 .
Applying Lemma 2.5, we have reached

µ k (L s ) ≤ 2p|G|Ce C|s| j≥[k/|G|] ρ j 0 ≤ C|G|e C|s| ρ k |G| 0 .
We can now use Weyl inequalities (see [START_REF] Simon | Trace ideals and their applications[END_REF] Theorem 1.15) to write

log | det(I -L s )| ≤ ∞ k=0 log(1 + µ k (L s )) ≤ N log(1 + C|G|e C|s| ) + C|G|e C|s| k>N ρ k |G| 0 .
Setting

N = C|G||s| | log ρ 0 | , we end up with log | det(I -L s )| ≤ C ′ (|G||s| 2 + |s||G| log |G| + 1),
for some suitable constant C ′ . The proof is done since |G| ≍ q 3 . Corollary 2.6. There exists a constant C > 0 such that for all q large enough, we have N q (r) ≤ Cq 3 log(q)(1 + r 2 ).

Proof. This estimate follows straightforwardly from Jensen's formula (see the end of §4, Proposition 4.7 for details ) but a lower bound is required. Indeed, using the bound (5), we observe that

log |Z Γ(q) (1)| ≥ - ∞ N =1 1 N B N w=w (B N ) ′ (w) -1 1 -[(B N ) ′ (w)] -1 > -∞
which is a lower bound independent of q. Applying the classical Jensen's identity on the disc D(1, r), where r is carefully chosen in function of r, we end up with the above bound.

Nielsen volume and trace formula, proof of the first theorem

In this section, we use the global upper bound proved in the previous section to produce a lower bound, thanks to the leading singularity of the trace formula. Before we state the trace formula, we need to point out a fact. The Nielsen volume of a geometrically finite surface X is defined as the hyperbolic area of the Nielsen region N, the geodesically convex hull of closed geodesics on the surface. In the convex co-compact case, the Nielsen region is a compact surface with geodesic boundary. From the Gauss-Bonnet formula, we know (see for example [START_REF] Borthwick | Spectral theory of infinite-area hyperbolic surfaces[END_REF] Theorem 2.15) that Vol(N) = -2πχ(N), where χ(N) = χ(X) is the Euler-Poincaré characteristic. Going back to our surfaces X q = Γ(q)\H 2 , there is a natural covering Γ(q)\H 2 → Γ\H 2 , with degree [Γ(q) : Γ] = |G|. It is a standard fact of algebraic topology that χ(X q ) = |G|χ(X) which translates into the formula

Vol(N q ) = |G|Vol(N) ≍ q 3 .
The Wave-trace formula stated below is due to Guillopé and Zworski [START_REF] Guillopé | The wave trace for Riemann surfaces[END_REF]. We denote by P q the set of primitive closed geodesics on the surface X = Γ(q)\H 2 , and if γ ∈ P q , l(γ) is the length. In the following, N q still denotes the Nielsen region. Let ϕ ∈ C ∞ 0 ((0, +∞)) i.e. a smooth function, compactly supported in R * + . We have the identity:

(6) s∈Rq ϕ(i(s -1 2 )) = - Vol(N q ) 4π +∞ 0 cosh(t/2) sinh 2 (t/2) ϕ(t)dt. + γ∈Pq k≥1 l(γ) 2 sinh(kl(γ)/2) ϕ(kl(γ)),
where ϕ is the usual Fourier transform

ϕ(ξ) = R ϕ(x)e -ixξ dx.
To prove Theorem 1.1, we choose a test function ϕ 0 ∈ C ∞ 0 (0, 1) such that ϕ 0 ≥ 0 and ϕ 0 = 1. For all T > 0 we set ϕ T (x) := T ϕ 0 (T x), where T will be a large parameter. Since the length spectrum of X q is a subset of the length spectrum of X = Γ\H 2 (without multiplicities), we can definitely find a uniform ǫ 0 > 0 such that for all γ ∈ P q , l(γ) ≥ ǫ 0 . In the sequel, we take T large enough so that T -1 < ǫ 0 . The above trace formula gives

s∈Rq ϕ T (i(s -1 2 )) = - Vol(N q ) 4π +∞ 0 cosh(t/2) sinh 2 (t/2) ϕ T (t)dt.
In view of the preceding remarks, this yields for all q large and T as above

s∈Rq ϕ T (i(s -1 2 )) ≥ Cq 3 T 2 ,
where C > 0 is a uniform constant. Using the fact that ϕ T (ξ) = ϕ 0 (ξ/T ) and repeated integrations by parts, we have the estimate

| ϕ T (z)| ≤ C N e Im(z)/T (1 + |z/T |) N ,
for all N ≥ 0. We write

s∈Rq ϕ T (i(s -1 2 )) ≤ |s|≤R | ϕ T (i(s -1 2 ))| + |s|>R | ϕ T (i(s -1 2 ))| ≤ AN q (R) + C N |s|>R 1 1 + |s-1/2| T N ,
where A > 0 does not depend on q, T, R. Since we have obviously

|s -1/2| ≥ |s| -1/2,
and T is taken large, we can write

|s|>R 1 1 + |s-1/2| T N ≤ ∞ R dN q (t) (t/T ) N .
A Stieltjes integration by parts yields

∞ R dN q (t) (t/T ) N ≤ N q (R) (R/T ) N + N ∞ R/T N q (xT )dx x N +1 ≤ C 1 (q 3 log q)R 2 R T -N + C N (q 3 log q)T 2 R T 2-N
, where we have used the upper bound from Corollary 2.6.

Setting R = T (log q) ǫ , with ǫ > 0 and T large (but fixed), we have obtained

Cq 3 T 2 ≤ AN q (R) + C ′ N q 3 T 2 (log q) 1+(2-N )ǫ , where C ′
N is a (possibly large) constant depending only on N. Taking N so large that 1 + (2 -N)ǫ < 0, we get that for all q large enough,

C ′ N (log q) 1+(2-N )ǫ ≤ C 2 ,
which yields

A -1 C 2 T 2 q 3 ≤ N q (T (log q) ǫ ),
and the proof is done.

4. The refined upper bound and proof of the second theorem 4.1. Refined function space H 2 q (h). Let 0 < h and set Λ(h) := Λ(Γ) + (-h, +h), then for all h small enough, Λ(h) is a bounded subset of R whose connected components have length at most Ch where C > 0 is independent of h, see [START_REF] Borthwick | Spectral theory of infinite-area hyperbolic surfaces[END_REF] Lemma 15.12. Let {I ℓ (h), ℓ = 1, . . . , N(h)} denote these connected components. The existence of a finite Patterson-Sullivan measure µ supported on Λ(Γ) shows that (see [START_REF] Borthwick | Spectral theory of infinite-area hyperbolic surfaces[END_REF] 

P. 312, first displayed equation) the number N(h) of connected components is O h -δ . Given 1 ≤ ℓ ≤ N(h), let D ℓ (h) be the unique euclidean open disc in C or- thogonal to R such that D ℓ (h) ∩ R = I ℓ (h).
We consider

H 2 q (h) := N (h) ℓ=1 H 2 (D ℓ (h) × G). Set Ω(h) := ∪ N (h)
ℓ=1 D ℓ (h), then the norm on H 2 q (h) is given by

F 2 q,h := g∈G Ω(h) |F (z, g)| 2 dm(z).
The parameter h will play the role of a scale parameter whose size will be adjusted according to the spectral parameter s. An important fact in the sequel is the following estimate taken from [START_REF] Naud | Density and location of resonances for convex co-compact hyperbolic surfaces[END_REF].

Lemma 4.1. There exists n 0 such that for all n ≥ n 0 , for all α ∈ W j n and all ℓ ∈ E j (h), there exists an index ℓ ′ such that

γ α (D ℓ (h)) ⊂ D ℓ ′ (h) with dist(γ α (D ℓ (h)), ∂D ℓ ′ (h)) ≥ 1 2 h.
The above Lemma guarantees that the transfer operator considered previously is well defined for all n large enough (independently of h, q):

L n s : H 2 q (h) → H 2 q (h).
The basic norm estimate is the following. Proposition 4.2. Set σ = Re(s), where s is the spectral parameter. There exist a constant C σ > 0, independent of q, h such that for all n large and

L n s H 2 q (h) ≤ C σ e Cσh|Im(s)| h -δ e nP (σ) .
The proof is postponed to the appendix. This estimate essentially shows that the spectral radius of L n s can be bounded uniformly on all spaces H 2 q (h) in term of the topological pressure. Moreover, by following verbatim the trace computations of §2, we see that the determinants (and hence the full spectrum of L n s ) det(I -zL n s ) do not depend on the scale parameter h (traces depend only on periodic points of the Bowen-Series map). To count resonances on R q , we will use the following family of Hilbert-Schmidt determinants

ζ n (s) := det 2 (I -L n s ). Remark that if s ∈ R q , then
by Proposition 2.3, the operator

L s : H 2 (q) → H 2 (q)
must have 1 as an eigenvalue, and so does L n s , but clearly H 2 (q) ֒→ H 2 q (h) for all h small, therefore ζ n (s) = 0. On the other hand, ζ n (s) might have some extra zeros which are not resonances, but that's a minor issue since we are interested on upper bounds on the density. 4.2. Two observations and a consequence. In this subsection, we prove to lemmas which are to be used in the proof of the main estimate in a crucial way. However, since they only play a role at the very end of the proof, the reader can skip them at first glance. Lemma 4.3. There exists ǫ 1 (Γ) > 0 such that for all j = 1, . . . , 2p, all α, β ∈ W j n with γ α ≡ γ β mod q, we have n < ǫ 1 log q ⇒ α = β.

Proof. This is a slight variation on the "girth lower bound" proved in [START_REF] Gamburd | On the spectral gap for infinite index "congruence" subgroups of SL 2 (Z)[END_REF] for Cayley graphs of SL 2 (F q ) with respect to arbitrary generators of Γ. Let . be the usual enclidean norm on R 2 and if M is a 2 × 2 real matrix, set

M = sup X ≤1 MX ,
which is an algebra norm. Given j ∈ {1, . . . , 2p}, assume that we have two words α, β ∈ W j n with γ α ≡ γ β mod q and γ α = γ β .

Consider the matrix γ α γ -1 β , then we do have

γ α γ -1 β ≡ 1 0 0 1 mod q, but γ α γ -1 β = 1 0 0 1 .
Therefore one of the two off-diagonal entries of γ α γ -1 β is a non-zero multiple of q, which forces

γ α γ -1 β ≥ q.
Since . is an algebra norm, we have q ≤ max j=1,...,2p

Γ j 2n
and the proof is done with

ǫ 1 = max j=1,...,2p Γ j -2
.

We will also need to use the following fact.

Lemma 4.4. There exist constants C > 0 and 0 < θ < 1 such that for all j = 1, . . . , 2p, for all z ∈ D j and all words α

= β ∈ W j n , |γ α (z) -γ β (z)| ≥ Cθ r(α,β) , where r(α, β) = max{0 ≤ i ≤ n : ∀k ≤ i, α k = β k }. Proof. Let α = β ∈ W j n and pick z ∈ D j . Since α = β we have r(α, β) ≤ n -1. Let us write |γ α (z) -γ β (z)| = | γ(w 1 ) -γ(w 2 )| where γ(w) = γ α 1 • γ α 2 • . . . γ αr (w) = γ β 1 • γ β 2 • . . . γ βr (w),
and w 1 = γ α r+1 • . . . • γ αn (z), w 2 = γ β r+1 • . . . • γ βn (z). Since γ is a Möbius transform, we can use the standard formula

| γ(w 1 ) -γ(w 2 )| 2 = | γ ′ (w 1 )|| γ ′ (w 2 )||w 1 -w 2 | 2 .
Recall that for all k = 1, . . . , 2p, for all i = k γ k (D i ) ⊂ D p+k , where p + k is understood mod 2p. Therefore α r+1 = β r+1 implies that w 1 and w 2 belong to two different discs

w 1 ∈ D p+α r+1 = D p+β r+1 ∋ w 2 .
Therefore we have

|w 1 -w 2 | ≥ min k =ℓ dist(D k , D ℓ ) > 0.
Using the lower bound for the derivatives from (2), we end up with

|γ α (z) -γ β (z)| ≥ min k =ℓ dist(D k , D ℓ )C -1 θ r(α,β) ,
and the proof is done.

Both of these estimates are of independent interest but we will actually combine them as follows.

Corollary 4.5. Let C > 0 be a constant. There exists ǫ 0 > 0 depending only on C, Γ such that for all j = 1, . . . , 2p, for all z ∈ D j and all α, β ∈ W j n with n ≤ ǫ 0 (log q + log h -1 ), we have

γ α ≡ γ β mod q and |γ α (z) -γ β (z)| ≤ Ch ⇒ α = β.
Proof. Let n ≤ ǫ 0 (log q + log h -1 ) where ǫ 0 will be adjusted later on. Assume that we have two words α = β ∈ W j n such that γ α ≡ γ β mod q and |γ α (z)γ β (z)| ≤ Ch.

By Lemma 4.4, we get that

Cθ n-1 ≤ |γ α (z) -γ β (z)| ≤ Ch, which shows that log(h -1 ) ≤ n log(θ -1 ) + C,
where C is another constant (depending on the previous ones). Assuming ǫ 0 log(θ

-1 ) < 1, we get n ≤ ǫ 0 1 -ǫ 0 log(θ -1 ) log q + C ′ .
It is now clear that if ǫ 0 is taken small enough, we have for large q n < ǫ 1 log q, hence contradicting Lemma 4.3.

4.3.

Hilbert-Schmidt norms and pointwise estimate. The main theorem will follow, after a suitable application of Jensen's formula from the next statement which is the main goal of this section. We recall that we will work with the modified zeta function

ζ (n) (s) := det 2 (I -L n s )
, where n = n(q, T ) will be adjusted later on. Proposition 4.6. Fix δ > σ > δ/2. Then there exist constants ǫ 0 > 0, C σ > 0 and η j (σ) > 0, j = 1, 2 such that for all 0 ≤ |Im(s)| ≤ T (with T ≥ 1) and σ ≤ Re(s) ≤ δ, we have for all q large,

log |ζ n(T,q) (s)| ≤ C σ T δ-η 1 (σ) q 3-η 2 (σ) ,
where n(T, q) = [ǫ 0 (log q + log h

-1 )], h = T -1 .
It is necessary to recall at this point a few facts on regularized Hilbert-Schmidt determinants, our reference is [START_REF] Gohberg | Traces and determinants of linear operators[END_REF]. Let H be an abstract separable Hilbert space, and T : H → H a compact operator. The operator T is called Hilbert-Schmidt if A key tool for our purpose is the following inequality 2 (see [START_REF] Gohberg | Traces and determinants of linear operators[END_REF], chapter 4, Theorem 7.4) :

∞ k=0 µ k (T ) 2 < ∞,
(7) |det 2 (I + T )| ≤ e 1 2 T 2 
HS .

We can now give a proof of Proposition 2.4. First we will use the notation for all j = 1, . . . , 2p

Ω j (h) = Ω(h) ∩ D j .
Given ℓ ∈ {1, . . . , N(h)}, let (e ℓ k ) k∈N be a Hilbert basis of H 2 (D ℓ (h)). According to inequality [START_REF] Bourgain | On Zaremba's conjecture[END_REF], we need to estimate the Hilbert-Schmidt norm L n s 2

HS = Tr((L n s ) * L n s ) = g∈G k,ℓ w∈G Ω(h)
|L n s (e ℓ k ⊗ D g )(z, w)| 2 dm(z).

In addition, we have

Ω(h) |L n s (e ℓ k ⊗ D g )(z, w)| 2 dm(z) = 2p j=1 α,β∈W j n D g (γ α w)D g (γ β w) Ω j (h) (γ ′ α ) s (γ ′ β ) s e ℓ k • γ α e ℓ k • γ β dm.
Noticing that g∈G w∈G We have obtained

D g (γ α w)D g (γ β w) = |G| if γ α ≡ γ β [q] 0 otherwise
L n s 2 HS = |G| k,ℓ 2p j=1 α,β∈W j n γα≡γ β [q] Ω j (h) (γ ′ α ) s (γ ′ β ) s e ℓ k • γ α e ℓ k • γ β dm. Since k,ℓ e ℓ k (z 1 )e ℓ k (z 2 )
converges uniformly on compact subsets of Ω(h)×Ω(h) to the Bergman kernel B Ω(h) (z 1 , z 2 ), we can exchange summations to write (8)

L n s 2 HS = |G| 2p j=1 α,β∈W j n γα≡γ β [q] Ω j (h) (γ ′ α (z)) s (γ ′ β (z)) s B Ω(h) (γ α z, γ β z)dm(z).
We stress that since Ω(h) is disconnected, we have B Ω(h) (z, w) = 0 if z and w do not belong to the same connected component. We assume from now on that h = T -1 with |Im(s)| ≤ T and δ 2 < σ ≤ Re(s) ≤ δ. We will choose n := n(q, T ) of the form n(q, T ) = [ǫ 0 (log q + log T )].

We recall that each disc D ℓ (h) has by construction diameter at most Ch, and we choose ǫ 0 (C) so that the conclusion of Corollary 4.5 is true. Therefore, in the above sum, there is no off-diagonal contribution. Indeed, according to Corollary 4.5 there are no words with α = β such that γ α ≡ γ β mod q and |γ α (z)γ β (z)| ≤ Ch provided that n ≤ ǫ 0 (C)(log q + log(h -1 ). As a consequence we have actually (9)

L n(q,T ) s 2 HS = |G| 2p j=1 α∈W j n Ω j (h) |(γ ′ α (z)) s | 2 B Ω(h) (γ α z, γ α z)dm(z).
Using the fact3 that each disc D ℓ (h) has radius at most Ch = CT -1 , and because of the uniform distortion estimate (3), we have for all α ∈ W j n and all z ∈ Ω j (h),

|(γ ′ α (z)) s | ≤ C ′ sup I j (γ ′ α ) Re(s) .
On the other hand, using Lemma 4.1 and the explicit formula for the Bergman Kernel, we see that

|B Ω(h) (γ α z, γ α z)| ≤ C ′′ h -2 , uniformly in n. Since we have m(Ω(h)) = O(h 2-δ ),
we obtain by the inequality (4) that

L n s 2
HS ≤ C σ |G|h -δ e n(q,T )P (2σ) ≤ C ′ σ q 3 T δ e n(q,T )P (2σ) . Now recall that because of Bowen's formula, σ > δ/2 implies that P (2σ) < 0 and the proof is done with

η 1 (σ) = η 2 (σ) = -ǫ 0 P (2σ)
since n(q, T ) ≥ ǫ 0 (log q + log T ) -1.

4.4. Applying Jensen's formula. Using Proposition 2.4, we can prove Theorem 1.3. We will apply the following version of Jensen's formula which can be derived straightforwardly from the classical textbooks, for example [START_REF] Titchmarsh | The theory of functions[END_REF], p.125. Proposition 4.7. Let f be a holomorphic function on the open disc D(w, R), and assume that f (w) = 0. let N f (r) denote the number of zeros of f in the closed disc D(w, r). For all r < r < R, we have

N f ( r) ≤ 1 log(r/ r) 1 2π 2π 0 log |f (w + re iθ )|dθ -log |f (w)| .
The goal is to apply the above formula to ζ n (s) where n is taken according to Proposition 2.4. We need a lower bound. Assume that Re(s) ≥ 1, we get

ζ n (s) = det(I -L n s )e Tr(L n s ) = exp - ∞ N =1 1 N Tr(L nN s ) + Tr(L n s ) .
Using the bound (5) we do have (recall that B is the Bowen-Series map on the boundary).

|Tr(L nN s )| ≤ B nN w=w (B nN ) ′ (w) -1 1 -[(B nN ) ′ (w)] -1 .
On the other hand, formula (1) for the topological pressure gives us (for all ǫ > 0)

log |ζ n (s)| ≥ -C ǫ ∞ N =1
1 N e nN (P (1)+ǫ) -C ǫ e n(P (1)+ǫ) .

Since P (1) < 0, this last lower bound shows clearly that one can find κ > 0 independent of s, n such that for all Re(s) ≥ 1, we have log |ζ n (s)| ≥ -κ.

Going back to the proof of Theorem 1.3, fix now δ 2 < σ 2 < σ 1 < σ 0 < δ. Let R(σ 0 , T ) denote the (closed) rectangle R(σ 0 , T ) := {σ 0 ≤ Re(s) ≤ δ and |Im(s) -T | ≤ 1}.

For r ≥ 1, set M(r) = r -√ r 2 -1 ≍ 1 r , and choose r large enough so that σ 0σ 1 = M(r). Set w = σ 1 + r + iT . Clearly if σ 1σ 2 is small enough, we do have Re(w) ≥ 1. One can also check that we have R(σ 0 , T ) ⊂ D(w, r) ⊂ D(w, r + σ 1σ 2 ).

Applying the above formula to ζ n (s) with n = n(q, T + r + σ 1σ 2 ) on the disc D(w, r + σ 1σ 2 ), we get M q (σ 0 , T ) ≤ N ζn (r) 

≤ 1 log(σ 1 -σ 2 ) 1 2π
M q (σ 0 , T ) ≤ r + σ 1 -σ 2 log(σ 1 -σ 2 ) C σ 1 (T + r + σ 2 -σ 1 ) δ-η 1 (σ 2 ) q 3-η 2 (σ 2 ) + κ log(σ 1 -σ 2 )
.

Since r, σ 0 , σ 1 , σ 2 are fixed, we clearly get the desired conclusion, up to a change of constants.

4.5. Final remarks. Clearly the proof we have used (based on the separation Lemma 4.4) not only simplifies part of the arguments in [START_REF] Naud | Density and location of resonances for convex co-compact hyperbolic surfaces[END_REF] but slightly strengthens the result. Moreover, we believe the technique can be carried over to higher dimensional settings, at least for Schottky groups. On the other hand, it is clear that this trick fails for situations where the limit set is not disconnected, for example for quasi-fuchsian groups. This is where the more sophisticated arguments (based on offdiagonal cancellations) used in [START_REF] Naud | Density and location of resonances for convex co-compact hyperbolic surfaces[END_REF] can be usefull, this will be pursued elsewhere. We also point out that our method should work without great modifications to deal with subgroups of arithmetic co-compact fuchsian groups, and also for Schottky subgroups of SL 2 (Z[i]). The only thing required is an appropriate "logarithmic girth" estimate with respect to the congruence parameter.

5.

Appendix : Basic norm estimates on H 2 q (h) In this section, we prove Proposition 4.2, which gives a crude bound for the operator norm of L N s on spaces H 2 q (h). Let F ∈ H 2 q (h). We first write

L N s (F ) 2 H 2 q (h) =
g∈G Ω(h)

|L N s (F )(z, g)| 2 dm(z) = g∈G j α,β∈W j N Ω j (h) (γ ′ α ) s (γ ′ β ) s F (γ α z, γ α g)F (γ β z, γ β g)dm(z).

We recall that because each disc D ℓ (h) has size at most Ch and thanks to the bounded distortion property, we do have sup This concludes the proof since by Lemma 4, we now have

L N s (F ) 2 H 2
q (h) ≤ Ch -2δ e C|Im(s)|h e 2N P (Re(s)) .

µ k (T ) 2 .

 2 and its Hilbert-Schmidt norm isT 2 HS := Tr(T * T ) = ∞ k=0The regularized determinant det 2 (I + T ) is defined for all Hilbert-Schmidt operators by det 2 (I + T ) := det(I + [(I + T )exp(-T ) -I]), where (I + T )exp(-T ) -I is a trace class operator. If T is itself a trace class operator, then we have actually det 2 (I + T ) = det(I + T )e -Tr(T ) .

2

  It is also possible to work with the usual Fredholm determinants: one has to consider instead ζ n (s) := det(I -L 2n s ) and use the inequality log | det(I -T 2n )| ≤ T 2n T r ≤ T n 2 HS .

2π 0 log

 0 |ζ n (w + (r + σ 1σ 2 )e iθ )|dθ + κ .Using Proposition 2.4 we get

2 H 2 q 2 . 2 × 2 Ω 2 . 2 H 2 q/ 2 . 2 1/ 2 |F (w, γ β g)| 2 1/ 2 ≤ F 2 H 2 q

 222222222222222 z∈D ℓ (h) |(γ ′ α (z)) s | ≤ e C|Im(s)|h sup z∈Ω j (h) |γ ′ α (z)| Re(s) . (h) ≤ e C|Im(s)|h g∈G j α,β sup z∈Ω j (h) |γ ′ α (z)| Re(s) sup z∈Ω j (h) |γ ′ β (z)| Re(s) × Ω j (h) |F (γ α z, γ α g)||F (γ β z, γ β g)|dm(z).By the reproducing property of Bergman kernels, we have for all z ∈ Ω(h),F (z, g) = Ω(h) F (w)B Ω(h) (z, w)dm(w),which allows us to write (thanks to Cauchy-Schwarz inequality and Lemma 4.1)sup z∈Ω j (h) |F (γ α z, g)| ≤ Ch -2 m(Ω(h)) Ω(h) |F (w, g)| 2 dm(w) 1/Therefore we haveΩ j (h) |F (γ α z, γ α g)||F (γ β z, γ β g)|dm(z) ≤ Ch -4 m(Ω(h)) Ω(h) |F (w, γ α g)| 2 dm(w) 1/(h) |F (w, γ β g)| 2 dm(w) 1/Since m(Ω(h)) = O(h 2-δ ), we have obtainedL N s (F ) (h) ≤ Ch -2δ e C|Im(s)|h g∈G j,α,β sup |γ ′ α | Re(s) sup |γ ′ β | Re(s) × Ω(h) |F (w, γ α g)| 2 dm(w) |F (w, γ β g)| 2 dm(w)1Exchanging summations, we can use Cauchy-Schwarz again (and translation invariance of norms with respect to the g variable) to get g∈G |F (w, γ α g)| (h) .

Indeed, if Γ is a free subgroup of SL

(Z), -Id ∈ Γ and therefore the natural projection SL 2 (Z) → P SL 2 (Z) is injective when restricted to Γ.

The size of each disc compensates exactly for the exponential growth of (γ ′ α ) s as Im(s) becomes large, see[START_REF] Naud | Density and location of resonances for convex co-compact hyperbolic surfaces[END_REF], after Lemma 3.4, P.737.