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Abstract

This paper presents a model for the market making of options on a liquid stock. The
stock price follows a generic stochastic volatility model under the real-world probability
measure P. Market participants price options on this stock under a risk-neutral pricing
measure Q, and they may misspecify the parameters controlling the dynamics of the
volatility process. We first consider that there is a risk-neutral agent who is willing
to make markets in an option on the stock, with the aim of maximizing the expected
terminal wealth at maturity. Using standard tools in optimal stochastic control, we
provide analytical expressions for the optimal bid and ask quotes of the market maker.
We then assume that the agent is risk-averse, and perturb the linear utility function
by adding a variance term. In this setting, analytic approximations of the optimal bid
and ask quotes are obtained. In the case where the stock price process follows a Heston
model, Monte Carlo simulations are used to compare the optimal strategy to a ”zero-
intelligence” strategy, and to highlight the effects of some parameters’ misspecification
on the performance of the strategy.
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1 Introduction

Market makers act on the market by providing liquidity on specific securities. Their role
consists in continuously setting bid and ask quotes on instruments of their own choosing.
Market makers play a fundamental role, in that they provide liquidity to other market par-
ticipants, typically to impatient agents who are willing to cross the bid-ask spread. The
profit made by a market making strategy comes from the alternation of buy and sell orders,
and its targeted gain per trade should depend on the accumulated inventory, a market risk
potentially causing significant losses.
In the recent literature, several works focus on the problem of market making on stocks
through the use of a stochastic optimization method. Inspired by the seminal paper [11], [1]
addresses the problem of high frequency market making of a stock. In this model frame-
work, the stock price is modelled as a Wiener process at the intraday timescale, and the
market maker seeks the optimal quotes in order to maximize an exponential utility function.
More recently, [8] deals with the problem of optimally using limit orders when liquidating a
portfolio. In [9], a similar approach is used to deal with the problem of market making with
inventory risk. In [3] [4], the approach proposed in [1] is generalized to the case where the
process modelling the stock price has a drift term and the volatility is stochastic.
The issue of model ambiguity has been addressed in [2] or [15], to account for the fact that
the dynamics followed by the stock price and/or the arrival rate of market orders may be
misspecified. The conclusion is that, as the uncertainty increases, the market maker has to
adapt her quotes in order to reduce her inventory.
In this paper, we address the problem of market making in options. Despite its impor-
tance, this subject has received little theoretical attention. The only reference we are aware
of is [18], where a mean-variance framework is proposed for optimal market making in options
in the case of a complete market. In our framework, the volatility of the stock is stochastic,
and our goal is to determine the optimal market making strategy on options in the setting
of a generic stochastic volatility model.
The paper is organized as follows: In Section 2, we specify the joint dynamics of the spot
and its instantaneous volatility under both the historical and pricing measures. Section ??
presents various realistic models for the order flow and market impact function. In Section
4, the market maker is risk neutral and aims to maximize the expectation of her wealth
at the maturity date of the option, whereas Section 5 tackles the more challenging case
of a risk-adverse market maker in a mean-variance framework. Finally, Section 6 presents
a numerical study of the performance of the optimal strategy, and of the effects of model
misspecification.

2 Model setup

Consider a financial market living on a stochastic basis (Ω,F ,F,P), where the filtration F =
{Ft, t ∈ R+} satisfies the usual conditions, and where P denotes the real-world probability
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measure. Under P , the spot process S has the following dynamics:

dSt
St

= µdt+ σ(yt)dW
(1)
t , (2.1)

dyt = aR(yt)dt+ bR(yt)dW
(2)
t , (2.2)

where W (1) and W (2) are two (P ,F) Wiener processes such that d
〈
W (1),W (2)

〉
t

= ρRdt.
The functions aR, bR satisfy sufficient conditions to ensure the existence of a strong solution
to (2.2) satisfying, ∀T > 0:

EP
(∫ T

0

σ(yt)
2dt

)
< +∞,

EP
(∫ T

0

(
a2
R(yt) + b2

R(yt)
)
dt

)
< +∞.

Suppose that a european option with maturity T and payoff function h(ST ) is traded in the
option market. Let the quantity CP be defined as:

CP(t, St, yt) = EP (h(ST )|Ft) . (2.3)

Although CP is not the option price - since P is not the pricing measure - introducing this
notion will prove useful.

Market participants price options under the probability measure Q. To make the model
as general as possible, we shall allow, as discussed e.g. in [12], for misspecifications of the
parameters characterizing the volatility dynamics.

Let r denote the risk-free rate. Under the pricing measure Q, the process S evolves as
follows:

dSt
St

= rdt+ σ(yt)dW
∗,(1)
t , (2.4)

dyt = aI(yt)dt+ bI(yt)dW
∗,(2)
t , (2.5)

where W ∗,(1) and W ∗,(2) are two (Q,F) Brownian motions such that d
〈
W ∗,(1),W ∗,(2)

〉
t

=
ρIdt. Again, the equation (2.5) is supposed to have a unique strong solution satisfying
∀T > 0:

EQ
(∫ T

0

σ(yt)
2dt

)
< +∞,

EQ
(∫ T

0

(
a2
R(yt) + b2

R(yt)
)
dt

)
< +∞.

The consensus, and therefore, observed option price CQ is then given by

CQ(t, St, yt) = e−r(T−t)EQ(h(ST )|Ft). (2.6)
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A market maker is an agent who publishes bid and ask quotes around the option mid-price
CQ, meets market orders when they match his quotes, while trading continuously in the
stock for delta-hedging purposes. At a given time t, this market maker sets an ask price Ca

t

and a bid price Cb
t such that:

Ca
t = CQ(t, St, yt) + δ+

t ,

Cb
t = CQ(t, St, yt)− δ−t ,

where δ−t , δ
+
t > 0. The way the parameters δ+

t , δ
−
t influence the probability of being hit by

a market order and therefore, the inventory, is made precise in Section 3.

Below are some notations which will be used in the rest of the paper:

• q1,t denotes the option inventory held by the market maker at time t.

• q2,t is the stock inventory held by the market maker at time t.

• Xt is the market value of the cash and stock position held by the market maker at
time t.

• CQ(t, St, yt) is the mid-price of the option at time t.

• ∆t = ∆(t, St, yt) is the option’s delta at time t.

• Wt denotes the wealth of the market maker at time t.

In order to ease notations, X will be also called the cash process. Thanks to the infinite
liquidity assumption made on the stock, this abuse of notations is legitimate.
The arrival of market orders matching the quotes of the market maker are modeled by two
independent Poisson processes: N+ for buy orders consuming the ask quotes, and N− for sell
orders consuming the bid quotes. Therefore, the dynamics of the process q1 can be described
as follows:

dq1,t = dN−t − dN+
t . (2.7)

Due to the continuously adjusted inventory in stock, there holds q2,t = −q1,t∆t, and therefore:

dq2,t = −∆tdq1,t − q1,td∆t − d 〈q1,∆〉t = −∆tdN
−
t + ∆tdN

+
t − q1,td∆t. (2.8)

The cash process X evolves according to the arrival of market orders as well as continuous
trading in the stock, and has the following dynamics:

dXt = (CQ(t, St, yt) + δ+
t )dN+

t − (CQ(t, St, Yt)− δ−t )dN−t + q2,tdSt, (2.9)

so that the wealth of the market maker at time t is given by

Wt = Xt + q1,tCQ(t, St, yt). (2.10)

The market maker’s strategy is to provide liquidity in order to maximize the expected utility
of the terminal wealth. In order to formulate the optimization problem, a crucial step is to
choose a model for the intensities of the processes N+ and N−.
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3 Intensity of arrivals of market orders

Recent researches have studied the market order flow in order to estimate the probability
of execution of limit orders. In [16], the authors point out that the execution probability of
limit orders is affected by the liquidity on the opposite side of the order book, and also the
bid-ask spread. [13] uses survival analysis in order to estimate the conditional distribution
of limit-order execution times as a function of different variables such as the limit price,
the order size, and current market conditions (volatility, bid-ask spread). In particular, the
authors proved empirically the seemingly natural fact that, the larger the distance between
the mid-quote price and the limit price, the longer the expected time-to-execution.
For the sake of simplicity, we will assume that the probability of execution of a limit order
depends only on its distance to the mid-price, in such a way that the instantaneous intensities
λ+
t and λ−t can be expressed as decreasing functions of δ+

t and δ−t respectively. More precisely,
the following hypothesis will be enforced throughout the rest of this paper:
∀δ+, δ− ≥ 0,

λ+(δ+) =
A(

B + (δ+)
1
β

)γ , λ−(δ−) =
A(

B + (δ−)
1
β

)γ ,
where A,B > 0, γ > 1, β is a positive parameter characterizing the market impact function,
and λ+(δ+) (resp. λ−(δ−)) denotes, with a slight abuse of notation, the intensity of N+

(resp. N−) conditional on δ+
t = δ+ (resp. δ−t = δ−).

A heuristic derivation of this functional form is provided in Appendix 8.1.

4 Optimization problem for a risk-neutral market maker

Generally speaking, the market maker seeks to maximize the expected utility of the terminal
wealth at maturity T , and the optimal distances (δ+

L,∗,t, δ
−
L,∗,t) solve the following problem:

(δ+
L,∗,t, δ

−
L,∗,t) = ArgSup{δ+t ,δ−t }E

P(U(XT + q1,Th(ST ))|St = s, yt = y, q1,t = q1, Xt = x).

where U is the utility function. In this section, the market maker is risk-neutral, hence the
utility function U is linear:

U(T, ST , yT , q1,T , XT ) = XT + q1,Th(ST ), (4.1)

where

XT =

∫ T

0

(CQ(t, St, yt) + δ+
t )dN+

t −
∫ T

0

(CQ(t, St, Yt)− δ−t )dN−t +

∫ T

0

q2,tdSt.

In this section, the problem associated with the linear utility function is addressed. The cases
corresponding to β = 1

2
(square root market impact) and β = 1 (linear market impact) are

studied separately, and the optimal bid and ask quotes are provided analytically in each case.
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In order to solve the optimization problem, a stochastic control approach is used. The value
function of the market maker can be defined in the following way:

u(t, s, y, q1, x) = Sup{(δ+t ,δ−t )∈A}E
P(XT + q1,Th(ST ))|St = s, yt = y, q1,t = q1, Xt = x),

where A = R+ × R+ denotes the set of admissible values for the controls.

Introducing the differential operators L1,L2

L1 = µSt
∂

∂S
+

1

2
σ2(yt)S

2
t

∂2

∂S2
+ aR(yt)

∂

∂y
+

1

2
b2
R(yt)

∂2

∂y2
+ ρRbR(yt)σ(yt)St

∂2

∂S∂y
,

L2 =
∂

∂x
q2,tµSt +

1

2

∂2

∂x2
q2

2,tσ(yt)
2S2

t +
∂2

∂x∂S
q2,tσ

2(yt)S
2
t +

∂2

∂x∂y
q2,tσ(yt)StbR(yt)ρR,

we let u0 be the solution of the Hamilton-Jacobi-Bellman (HJB) equation:

(∂t + L1 + L2)u0 + sup{(δ+,δ−)∈A}
(
J+
(
δ+
)

+ J−
(
δ−
))

= 0, (4.2)

where the functions J+ and J− are defined as follows:

J+(δ+) = λ+(δ+)
(
u0(t, s, y, q1 − 1, x+ (CQ + δ+))− u0(t, s, y, q1, x)

)
,

J−(δ−) = λ−(δ−)
(
u0(t, s, y, q1 + 1, x− (CQ − δ−))− u0(t, s, y, q1, x)

)
,

and u0 satisfies the terminal condition

u0(T, s, y, q1, x) = x+ q1h(s).

A deep result in [17] implies that, if u0 is smooth, finite and has polynomial growth at
infinity, then the value function u is equal to u0. Hence, our approach will be to solve the
HJB equation, and prove that it satisfies the finiteness, smoothness and growth conditions
of [17].

4.1 The case β = 1
2 (square root market impact)

The intensities of arrivals of market orders are as follows:

λ+(δ+) = A

(B+(δ+)2)
γ and λ−(δ−) = A

(B+(δ−)2)
γ ,

where A,B ≥ 0 and γ > 1.

4.1.1 Analytic solution

Proposition 4.1. Let M0(t, s, y) = CQ(t, s, y)−CP(t, s, y) +µEPt,s,y

(∫ T
t

∆(u, Su, yu)Sudu
)

.

The optimal controls (δ+
L,∗,t, δ

−
L,∗,t) of the market maker at time t are given by:

δ+
L,∗,t =

√
γ2M2

0 (t, s, y) +B(2γ − 1)− γM0(t, s, y)

2γ − 1
, (4.3)
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δ−L,∗,t =

√
γ2M2

0 (t, s, y) +B(2γ − 1) + γM0(t, s, y)

2γ − 1
. (4.4)

Moreover, the value function is given by:

u0(t, s, y, q1, x) = x+ θ0(t, s, y) + q1

(
CP(t, s, y)− µEPt,s,y

(∫ T

t

∆(u, Su, yu)Sudu

))
, (4.5)

where

θ0(t, s, y) = Et,s,y

(∫ T

t

J0(u, Su, yu)du

)
and:

J0(t, s, y) = λ+(δ+
L,∗,t)

(√
γ2M2

0 +B(2γ − 1) +M0(γ − 1)

2γ − 1

)

+ λ−(δ−L,∗,t)

(√
γ2M2

0 +B(2γ − 1) +M0(1− γ)

2γ − 1

)
.

Proof. Since the utility function is linear, the solution is sought under the form:

u(t, s, y, q1, x) = x+ θ0(t, s, y) + q1θ1(t, s, y). (4.6)

Let then f+
0 = J+. Using (4.6), the function f+

0 can be rewritten as:

f+
0 (δ+) = λ+(δ+)(δ+ +M0(t, s, y)),

where M0(t, s, y) = CQ(t, s, y)− θ1(t, s, y).
In order to determine δ+

L,∗,t = ArgMax{x>0}f
+
0 (x), the derivative of f+

0 is computed:

(f+
0 )′(δ+) =

λ+(δ+)

B + (δ+)2

((
δ+
)2

(1− 2γ)− 2γM0 (t, s, y) δ+ +B
)
.

The function (f+
0 )′ vanishes at the points x+

1 and x+
2 :

x+
1 =

−γM0 −
√
γ2M2

0 +B(2γ − 1)

2γ − 1
, x+

2 =
−γM0 +

√
γ2M2

0 +B(2γ − 1)

2γ − 1
.

Since γ ≥ 1 and B > 0, there holds:

γ|M0| ≤
√
γ2M2

0 +B(2γ − 1),

which implies that x+
1 < 0 and x+

2 > 0.
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Recall here that 1 − 2γ < 0. Therefore, f+
0 reaches its maximum on R+ at x+

2 . It follows
that:

δ+
L,∗,t =

√
γ2M2

0 +B(2γ − 1)− γM0

2γ − 1

and:

f+
0 (δ+

L,∗,t) = λ+(δ+
L,∗,t)

(√
γ2M2

0 +B(2γ − 1) +M0(γ − 1)

2γ − 1

)
. (4.7)

Let now f−0 = J−. As above, f−0 can be rewritten as:

f−0 (δ−) = λ−(δ−)(δ− −M0(t, s, y)).

and its derivative is given by:

(f−0 )′(δ−) =
λ−(δ−)

B + (δ−)2

(
(1− 2γ) (δ−)2 + 2γM0δ

− +B
)
.

The function (f−0 )′ vanishes at the two points:

x−1 =
γM0 −

√
γ2M2

0 +B(2γ − 1)

2γ − 1
, x−2 =

γM0 +
√
γ2M2

0 +B(2γ − 1)

2γ − 1
,

and, using the same reasoning as before, it can be proved that x−1 < 0 and x−2 > 0. Hence,
there holds:

δ−L,∗,t =
γM0 +

√
γ2M2

0 +B(2γ − 1)

2γ − 1
.

and

f−0 (δ−L,∗,t) = λ−(δ−L,∗,t)

(√
γ2M2

0 +B(2γ − 1) +M0(1− γ)

2γ − 1

)
. (4.8)

Finally, using (4.7) and (4.8), J0(t, s, y) = f+
0 (δ+

L,∗,t) + f−0 (δ−L,∗,t) can be written as follows:

J0(t, s, y) = λ+(δ+
L,∗,t)

(√
γ2M2

0 +B(2γ − 1) +M0(γ − 1)

2γ − 1

)

+ λ−(δ−L,∗,t)

(√
γ2M2

0 +B(2γ − 1) +M0(1− γ)

2γ − 1

)
.

and it is straightforward to see that J0 is independent of q1.

Equation (4.2) becomes:

(∂t + L1 + L2)u+ J0(t, s, y) = 0.
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This equation is solved by separately cancelling its constant and linear part in terms of q1,
leading to the following equations:

(0) : (∂t + L1)θ0 + J0(t, s, y) = 0,

(1) : (∂t + L1)θ1 −∆tµSt = 0.

The function θ1, satisfying the terminal condition θ1(T, s, y) = h(s), is given by the the
Feynman-Kac formula

θ1(t, s, y) = EPt,s,y(h(ST ))− µEPt,s,y(
∫ T

t

∆uSudu).

The quantity M0(t, s, y) can now be computed:

M0(t, s, y) = CQ(t, s, y)− CP(t, s, y) + µEPt,s,y(

∫ T

t

∆uSudu).

As for θ0, given the terminal condition θ0(T, s, y) = 0, it is given using Feynman-Kac formula,
by:

θ0(t, s, y) = Et,s,y

(∫ T

t

J0(u, Su, yu)du

)
.

As a conclusion, u0(t, s, y, q1, x) = x + θ0(t, s, y) + q1

(
CP(t, s, y)− µEPt,s,y(

∫ T
t

∆uSudu)
)

is

the solution of the HJB equation (4.2). Finally, proceeding as for Theorem 3.5.2 in [17], we
prove that the verification theorem holds (see Appendix 8.4 for details), so that u0 is indeed
equal to the value function.

4.1.2 Interpretation of the strategy

The quantity CP(t, s, y) represents the expected payoff of the option under the historical
probability measure P . In addition, the quantity:

µEPt,s,y

(∫ T

t

∆(u, Su, yu)Sudu

)
≡ EPt,s,y

(∫ T

t

∆(u, Su, yu)dSu

)
represents the cost of delta-hedging the option when there is a trend in the dynamics of the
underlying. Thus, the indifference price for the option under the probability measure P is

CP(t, s, y)− µEPt,s,y
(∫ T

t
∆(u, Su, yu)Sudu

)
, and the quantity:

M0(t, s, y) = CQ(t, s, y)−
(
CP(t, s, y)− µEPt,s,y

(∫ T

t

∆(u, Su, yu)Sudu

))
is naturally interpreted as the difference between the option price under the risk-neutral
probability Q and its indifference price under the historic probability P .
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Let the functions f, g be defined by:

f(x) =
γx+

√
γ2x2 +B(2γ − 1)

2γ − 1
, g(x) =

√
γ2x2 +B(2γ − 1)− γx

2γ − 1
.

By simple differentiation, it can be shown:

∂δ−L,∗,t
∂M0

≡ f ′(M0) =
γ

2γ − 1

√
γ2M2

0 +B(2γ − 1) + γM0√
γ2M2

0 +B(2γ − 1)
≥ 0,

∂δ+
L,∗,t

∂M0

≡ g′(M0) =
γ

2γ − 1

γM0 −
√
γ2M2

0 +B(2γ − 1)√
γ2M2

0 +B(2γ − 1)
≤ 0.

It follows that the bid distance δ−L,∗,t = f(M0) is an increasing function of M0 while the ask

distance δ+
L,∗,t = g(M0) is a decreasing function of M0. Indeed, if M0 increases, it becomes

more rational for the market maker to sell the option. Thus, she decreases both her bid
quote (δ−L,∗,t increases) and her ask quote (δ+

L,∗,t decreases). In this way, the ask quote is
more likely, and the bid quote, less likely to be executed.
Following the same reasoning, if M0 decreases, it becomes more profitable to buy the option.
Thus, the market maker increases both her bid quote (δ−L,∗,t decreases) and her ask quote

(δ+
L,∗,t increases).

In the particular case where M0 = 0, the market price of the option is equal to its indifference
price under P . In this case δ−L,∗,t = δ+

L,∗,t = B√
2γ−1

. This means that the bid quote Cb
t and

the ask quote Ca
t are symmetric around the mid-price CQ, and the market maker makes no

directional bets.

It is also interesting to study the impact of the parameters on the bid-ask spread. Re-

call that the bid-ask spread SL,∗,t is simply δ−L,∗,t + δ+
L,∗,t, so that SL,∗,t = 2

√
γ2M2

0 +B(2γ−1)

2γ−1
.

Differentiating with respect to the variable γ yields:

∂SL,∗,t
∂γ

= − 2 (B (2γ − 1) + γM2
0 )

(2γ − 1)2
√
γ2M2

0 +B (2γ − 1)
< 0.

This means that the bid-ask spread SL,∗,t is a decreasing function of the parameter γ. Indeed
when γ increases, the intensity of arrivals of market orders decreases and the probability of
execution of a quote at a distance δ from the mid-price decreases. Consequently, the market
maker contracts her bid-ask spread and places her quotes closer to the mid price. Moreover,
the spread SL,∗,t increases with the parameter B, and does not depend on A. It can also
be noticed that SL,∗,t is an increasing function of |M0|, which means that the market maker
widens her spread when the gap between the indifference price and the market price becomes
significant.

4.2 The case β = 1 (linear market impact)

The intensities of arrivals of market orders are now given by:

λ+(δ+) = A
(B+δ+)γ

and λ−(δ−) = A
(B+δ−)γ

.
The optimization problem is solved similarly to the previous case.
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4.2.1 Analytic solution

Proposition 4.2. Let S = B
γ

, and M0(t, s, y) = CQ(t, s, y)−CP(t, s, y)+µEPt,s,y

(∫ T
t

∆uSudu
)

.

The optimal controls (δ+
L,∗, δ

−
L,∗) are:

δ+
L,∗,t =

(
B − γM0(t, s, y)

γ − 1

)+

, (4.9)

δ−L,∗,t =

(
B + γM0(t, s, y)

γ − 1

)+

, (4.10)

and the value function is:

u0(t, s, y, q1, x) = x+ θ0(t, s, y) + q1

(
CP(t, s, y)− µEPt,s,y

(∫ T

t

∆uSudu

))
, (4.11)

where

θ0(t, s, y) = Et,s,y

(∫ T

t

J0(u, Su, yu)du

)
and:

J0(t, s, y) =


A(γ−1)γ−1

γγ(B−M0(t,s,y))γ−1 + A
(B−C)γ

(−M0(t, s, y)) if M0(t, s, y) ∈]−∞,−S],
A(γ−1)γ−1

γγ(B−M0(t,s,y))γ−1 − A(1−γ)γ−1

(−γ)γ(B+M0(t,s,y))γ−1 if M0(t, s, y) ∈ [−S,S],

− A(1−γ)γ−1

(−γ)γ(B+M0(t,s,y))γ−1 + A
Bγ

(M0(t, s, y)) if M0(t, s, y) ∈ [S,+∞[.

The proof of Proposition 4.2 is essentially identical to that of Proposition 4.1. For the
sake of completeness, it is given in Appendix (8.2).

4.2.2 Interpretation of the strategy

Similarly to the approach used in 4.2, the following derivatives are computed:

∂δ+
L,∗,t

∂M0

= − γ

γ − 1
1{M0≤S} ≤ 0,

∂δ−L,∗,t
∂M0

=
γ

γ − 1
1{M0≥−S} ≥ 0.

The results are qualitatively identical to the case β = 1
2
, that is, the distance δ+

L,∗,t of the
ask-quote to the mid-price is a decreasing function of the mispricing term M0, and the dis-
tance δ−L,∗,t of the bid quote to the mid-price is an increasing function of the mispricing term
M0.

11



Now, the expression for the spread SL,∗,t = δ+
L,∗,t + δ−L,∗,t is:

SL,∗,t =


B−γM0(t,s,y)

γ−1
if M0(t, s, y) ≤ −S,

2B
γ−1

if M0(t, s, y) ∈ [−S,S],
B+γM0(t,s,y)

γ−1
if M0(t, s, y) ≥ S,

so that

∂SL,∗,t
∂γ

=


M0(t,s,y)−B

(γ−1)2
if M0(t, s, y) ≤ −S,

− 2B
(γ−1)2

if M0(t, s, y) ∈ [−S,S],

−M0(t,s,y)+B
(γ−1)2

if M0(t, s, y) ≥ S.

Again, SL,∗,t is a decreasing function of the parameter γ, as in the case β = 1
2
.

5 Optimization problem for a risk-averse market maker

In order to risk-manage her strategy, the market maker may want to solve a different opti-
mization problem for the optimal distances

(
δ−t,∗, δ

+
t,∗
)
. Typically, a mean-variance approach

would seek to maximize the expected wealth at maturity while keeping its variance under
control.
In this section, the variance of final wealth is going to be approximated in such a way that
the HJB equation retain its analytical tractability.
Under the assumption that δ+, δ− � CQ, we can write:

XT ∼
∫ T

t

CQ(u, Su, yu)dN
+
u −

∫ T

t

CQ(u, Su, Yu)dN
−
u +

∫ T

0

q2,udSu.

so that the conditional variance at time t of XT is:

V (XT |Ft) ∼ EP
(∫ T

t

C2
Q(u, Su, yu)

(
λ+
u + λ−u

)
du+

∫ T

t

q2
1,u∆

2
uσ

2(yu)S
2
udu|Ft

)
.

Moreover, there holds (using similar notations)

V (q1,Th(ST )|Ft) ∼ EP
(∫ T

t

EP
(
h2(ST )|Fu

) (
λ+
u + λ−u

)
du|Ft

)
,

and:

Cov(XT , q1,Th(ST )|Ft) ∼ −EP
(∫ T

t

CQ(u, Su, yu)CP(u, Su, yu)
(
λ+
u + λ−u

)
du|Ft

)
.

As a consequence, V ar (XT + q1,Th(ST )|Ft) can be approximated byEP
(∫ T

t

(
q2

1,uVu + Zu
)
du|Ft

)
where

Zt =
(
C2
Q + EP

(
h2(ST )|Ft

)
− 2CQCP

) (
λ+
L,t + λ−L,t

)
, (5.1)

Vt = ∆2
tσ

2(yt)S
2
t . (5.2)
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A final approximation consists in replacing the quantities λ+
u and λ−u , which depend on δ+

u

and δ−u , by λ+
L,u = λ+(δ+

L,∗,u) and λ−L,u = λ−(δ−L,∗,u).
The stochastic control problem we consider is now introduced. The value function uε of the
market maker is defined as follows:

uε(t, s, y, q1, x) = Sup{(δ−t ,δ
+
t )∈A}E

P
t,s,y,q1,x

(Hε(t, T, ST , yT , q1,T , XT )) ,

with Hε given by:

Hε(t, T, ST , yT , q1,T , XT ) = XT + q1,Th(ST )− ε
∫ T

t

(
q2

1,uVu + Zu
)
du.

Let uε0 be the solution of the following HJB equation:

(∂t + L)uε0 + sup{(δ−,δ+)∈A}J
ε(δ−, δ+) = ε

(
q2

1V + Z
)
, (5.3)

where as in Section 4 L = L1 + L2 and J ε = J−,ε + J+,ε with

J+,ε(δ+) = λ+(δ+)
(
uε0(t, s, y, q1 − 1, x+ (CQ + δ+))− uε0(t, s, y, q1, x)

)
,

J−,ε(δ−) = λ−(δ−)
(
uε0(t, s, y, q1 + 1, x− (CQ − δ−))− uε0(t, s, y, q1, x)

)
.

Also note that in the RHS of Equation (5.3), we have denoted by V, Z the function of the
state variables defiend by (5.1)(5.2).
Again, if uε0 is smooth, finite and has polynomial growth, it coincides with the value function
uε.
The optimal spreads (δ+

∗,t, δ
−
∗,t) solve the optimal control problem:

(δ+
∗,t, δ

−
∗,t) = Argsup{δ+t ,δ−t }E

P (Hε(t, T, ST , yT , q1,T , XT )|St = s, yt = y, q1,t = q1, Xt = x) ,

and the cases β = 1
2

and β = 1 are now studied.

5.1 The case β = 1
2 (square-root market impact)

5.1.1 Analytic approximation

We state and prove the

Proposition 5.1. The optimal controls (δ+
∗,t, δ

−
∗,t) can be approximated at the first order in

the penalization parameter ε by (δ̂−∗,t, δ̂
+
∗,t) defined as

δ̂+
∗,t =

−γM+ +
√
γ2(M+)2 +B(2γ − 1)

2γ − 1
, (5.4)

δ̂−∗,t =
γM− +

√
γ2(M−)2 +B(2γ − 1)

2γ − 1
, (5.5)
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where the quantities M+(t, s, y, q1) and M−(t, s, y, q1) are given by

M+(t, s, y, q1) = M0(t, s, y) + εM1(t, s, y, q1),

M−(t, s, y, q1) = M0(t, s, y) + εM2(t, s, y, q1),

and

M1(t, s, y, q1) = −θ3(t, s, y) + (1− 2q1)θ4(t, s, y),

M2(t, s, y, q1) = −θ3(t, s, y)− (1 + 2q1)θ4(t, s, y),

with

θ4(t, s, y) = −EPt,s,y
(∫ T

t

Vudu

)
,

θ3(t, s, y) = −2EPt,s,y

(∫ T

t

θ4(u, su, yu)
(
λ+(δ+

L,∗,u)− λ
−(δ−L,∗,u)

)
du

)
.

Moreover, there holds

|δ+
∗,t − δ̂+

∗,t| = O
(
ε2
)
,

|δ−∗,t − δ̂−∗,t| = O
(
ε2
)
.

Proof. Let uε0 be the solution of the HJB equation (5.3). Under the assumption that ε ∼ 0,
a singular perturbation technique can be performed with respect to the parameter ε:

uε0(t, s, y, q1, x) = x+
+∞∑
k=0

εkvk(t, s, y, q1). (5.6)

If ε = 0, then the utility is obviously linear. This implies that u0
0(t, s, y, q1, x) = x +

v0(t, s, y, q1) = u0(t, s, y, q1, x) where u0 is the function defined in (4.5). Therefore, it is
assumed that v0 has the following form:

v0(t, s, y, q1) = θ0(t, s, y) + q1θ1(t, s, y).

Since the utility function contains a constraint on the square of the option inventory q1, v1

is assumed to have the following form:

v1(t, s, y, q1) = θ2(t, s, y) + q1θ3(t, s, y) + q2
1θ4(t, s, y).

In order to solve the HJB equation, the jump terms J+,ε and J−,ε have to be calculated.

Let f+ = J+,ε. The function f+ writes

f+(δ+) = λ+(δ+)(u(t, s, y, q1 − 1, x+ (c+ δ+))− u(t, s, y, q1, x)),

= λ+(δ+)
(
δ+ +M0(t, s, y) + εM1(t, s, y, q1) + ε2R+(t, s, y, q1)

)
,
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where:

M1(t, s, y, q1) = v1(t, s, y, q1 − 1)− v1(t, s, y, q1),

= −θ3(t, s, y) + (1− 2q1)θ4(t, s, y),

and:

R+(t, s, y, q1) =
+∞∑
k=2

εk−2 (vk (t, s, y, q1 − 1)− vk (t, s, y, q1)) .

LetM+(t, s, y, q1) = M0(t, s, y)+εM1(t, s, y, q1). In order to determine δ+
∗,t = ArgSup{x≥0}f

+(x),
the derivative (f+)′ is computed:

(f+)′(δ+) =
λ+(δ+)

B + (δ+)2

((
δ+
)2

(1− 2γ)− 2γ
(
M+ (t, s, y) + ε2R+(t, s, y, q1)

)
δ+ +B

)
.

The function (f+)′ has two zeros x+
1 and x+

2 :

x+
1 =

−γ (M+ + ε2R+)−
√
γ2 (M+ + ε2R+)2 +B(2γ − 1)

2γ − 1
< 0,

x+
2 =

−γ (M+ + ε2R+) +
√
γ2 (M+ + ε2R+)2 +B(2γ − 1)

2γ − 1
> 0.

Hence, δ+
∗,t = x+

2 , and a Taylor expansion yields:

δ+
∗,t =

−γM+ +
√
γ2(M+)2 +B(2γ − 1)

2γ − 1
+O

(
ε2
)

or else

δ+
∗,t = δ+

L,∗,t + ε

(
− γ

2γ − 1
M1 +

γ2M0M1√
γ2M2

0 +B(2γ − 1)

)
+O

(
ε2
)
.

It will be useful to write f+(δ+
∗,t) as the sum of f+

0 (δ+
L,∗,t) plus a perturbation term: noticing

that f+(x) = f+
0 (x)+ελ+(x)M1(t, s, y, q1)+O(ε2) and using a Taylor expansion, the following

obtains:

f+(δ+
∗,t) = f+(δ+

L,∗,t) + (f+)′(δ+
L,∗,t)(δ

+
∗,t − δ+

L,∗,t) +O
(
(δ+
∗,t − δ+

L,∗,t)
2
)
,

= f+
0 (δ+

L,∗,t) + ελ+(δ+
L,∗,t)M1 + ε

(
− γ

2γ − 1
M1 +

γ2M0M1√
γ2M2

0 +B(2γ − 1)

)
(f+)′(δ+

L,∗,t) +O
(
ε2
)
.

Using that (f+)′(x) = (f+
0 )′(x) +O(ε) and (f+

0 )′(δ+
L,∗,t) = 0, there holds:

f+(δ+
∗,t) = f+

0 (δ+
L,∗,t) + ελ+(δ+

L,∗,t)M1 +O
(
ε2
)
.
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Similarly, let now f− = J−,ε. Using the form of the value function suggested in (5.6), the
function f− can be written as

f−(δ−) = λ−(δ−)(u(t, s, y, q1 + 1, x− (c− δ−))− u(t, s, y, q1, x)),

= λ−(δ−)
(
δ− −

(
M0(t, s, y) + εM2(t, s, y, q1) + ε2R−(t, s, y, q1)

))
where

M2(t, s, y, q1) = − (v1(t, s, y, q1 + 1)− v1(t, s, y, q1)) ,

= −θ3(t, s, y)− (1 + 2q1)θ4(t, s, y),

and

R−(t, s, y, q1) = −
+∞∑
k=2

εk−2 (vk (t, s, y, q1 + 1)− vk (t, s, y, q1)) .

The quantity M−(t, s, y, q1) = M0(t, s, y) + εM2(t, s, y, q1) is introduced to simplify the no-
tations. Standard computations yield that

(f−)′(δ−) =
λ−(δ−)

B + (δ−)2

(
(1− 2γ) (δ−)2 + 2γ

(
M− + ε2R−

)
δ− +B

)
.

Thus, (f−)′ vanishes at the points

x−1 =
γ (M− + ε2R−)−

√
γ2 (M− + ε2R−)2 +B(2γ − 1)

2γ − 1
,

x−2 =
γ (M− + ε2R−) +

√
γ2 (M− + ε2R−)2 +B(2γ − 1)

2γ − 1
.

Since x−1 < 0, x−2 > 0 and γ > 1, then δ−∗,t = ArgSup{x≥0}f
−(x) = x−2 . It follows that:

δ−∗,t =
γM− +

√
γ2(M−)2 +B(2γ − 1)

2γ − 1
+O

(
ε2
)
.

Using again a Taylor expansion with respect to ε, the last relation yields:

δ−∗,t = δ−L,∗,t + ε

(
γ

2γ − 1
M2 +

γ2M0M2√
γ2M2

0 +B(2γ − 1)

)
+O

(
ε2
)
.

The quantity f−(δ−∗,t) can be written as the sum of f−0 (δ−L,∗,t) plus a perturbation term.
Indeed, since:

f−(x) = f−0 (x)− ελ−(x)M2(t, s, y, q1) +O
(
ε2
)
,
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it follows that

f−(δ−∗,t) = f−(δ−L,∗,t) + (f−)′(δ−L,∗,t)(δ
−
∗,t − δ−L,∗,t) +O

(
(δ−∗,t − δ−L,∗,t)

2
)
,

= f−0 (δ−L,∗,t)− ελ
−(δ−L,∗,t)M2 + ε

(
γ

2γ − 1
M2 +

γ2M0M2√
γ2M2

0 +B(2γ − 1)

)
(f−)′(δ−L,∗,t) +O

(
ε2
)
.

Recalling that (f−)′(x) = (f−0 )′(x) + O(ε) and (f−0 )′(δ−L,∗,t) = 0, the previous equation be-
comes:

f−(δ−∗,t) = f−0 (δ−L,∗,t)− ελ
−(δ−L,∗,t)M2 +O

(
ε2
)
.

Using the above approximations for f+(δ+
∗,t) and f−(δ−∗,t), the quantity J ε(δ−∗,t, δ

+
∗,t) ≡ f−(δ−∗,t)+

f+(δ+
∗,t) can be written as

J ε(δ−∗,t, δ
+
∗,t) = f+

0 (δ+
L,∗,t) + εM1λ

+(δ+
L,∗,t) + f−0 (δ−L,∗,t)− εM2λ

−(δ−L,∗,t) +O
(
ε2
)
,

= J0(δ−L,∗,t, δ
+
L,∗,t) + ε

(
M1λ

+(δ+
L,∗,t)−M2λ

−(δ−L,∗,t)
)

+O
(
ε2
)
.

Rearranging the expression for J ε(δ−∗,t, δ
+
∗,t) in powers of ε yields

J ε(δ−∗,t, δ
+
∗,t) = J0(t, s, y) + εJ1(t, s, y, q1) +O

(
ε2
)
,

where J1(t, s, y, q1) = J1,0(t, s, y) + q1J1,1(t, s, y) and

J1,0(t, s, y) = λ+(δ+
L,∗,t)(−θ3 + θ4)− λ−(δ−L,∗,t)(−θ3 − θ4),

J1,1(t, s, y) = −2θ4

(
λ+(δ+

L,∗,t)− λ
−(δ−L,∗,t)

)
.

The HJB equation (5.3) is now rewritten in increasing powers of ε. The zeroth order term
leads to the equation:

(∂t + L1 + L2)(x+ θ0 + q1θ1) + J0(t, s, y) = 0

with the final conditions

θ0(T, s, y) = 0, θ1(T, s, y) = h(s).

The functions θ0, θ1 are then easily calculated:

θ1(t, s, y) = CP(t, s, y)− µEPt,s,y
(∫ T

t

∆(u, Su, yu)Sudu

)
,

θ0(t, s, y) = Et,s,y

(∫ T

t

J0(u, Su, yu)du

)
.

The first order term yields the following equation:

(∂t + L)(θ2 + q1θ3 + q2
1θ4) + J1(t, s, y) = q2V + Z,
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and the terms of this equation are now sorted by their orders in q1. The second order term
in q1 provides the following equation for θ4:

(∂t + L1)θ4(t, s, y) = V.

Using the final condition θ4(T, s, y) = 0, it can be deduced that:

θ4(t, s, y) = −EPt,s,y
(∫ T

t

Vudu

)
.

The function θ3 is calculated using the first order term in q1:

(∂t + L1)θ3(t, s, y) + J1,1(t, s, y) = 0,

and since it also satisfies the final condition θ3(T, s, y) = 0, it follows that:

θ3(t, s, y) = EPt,s,y

(∫ T

t

J1,1(u, su, yu)du

)
.

Finally, the function θ2 solves:

(∂t + L1)θ2(t, s, y) + J1,0(t, s, y) = Z

subject to the final condition θ2(T, s, y) = 0. Using again the Feynman-Kac formula, the
following is obtained:

θ2(t, s, y) = EPt,s,y

(∫ T

t

(J1,0 − T ) (u, su, yu)du

)
.

As before, a verification theorem can be used, once it is proven that uε0 is smooth, finite and
satisfies a polynomial growth condition.

5.1.2 Interpretation of the strategy

The effect of the mispricing term M0 on the optimal bid and ask distances remains the same
as in the case without inventory constraints (ε = 0), since

∂δ̂+
∗,t

∂M0

=
∂δ̂+
∗,t

∂M+

∂M+

∂M0

= g′(M+) < 0,

∂δ̂−∗,t
∂M0

=
∂δ̂−∗,t
∂M−

∂M−

∂M0

= f ′(M−) > 0.

The new feature here is the dependence of the distances δ̂−∗,t and δ̂+
∗,t on the inventory q1.

In order to study this dependence, the partial derivatives of δ̂−∗,t and δ̂+
∗,t with respect to the

variable q1 are computed:

∂δ̂+
∗,t

∂q1

= −2εθ4(t, s, y)
γ

2γ − 1
g′(M+) < 0,

∂δ̂−∗,t
∂q1

= −2εθ4(t, s, y)
γ

2γ − 1
f ′(M−) > 0,
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It can be deduced from the expressions above that, when the option inventory q1 increases,
the market maker posts more aggressive ask quotes and more conservative bid quotes in or-
der to reduce her inventory. Thus, the market maker, being risk-averse, adjusts her quoting
policy in order not to accumulate a large inventory, thereby avoiding being too exposed to
market moves.

The bid-ask spread of the market maker is S∗,t = δ̂−∗,t + δ̂+
∗,t. Using a Taylor expansion, S∗,t

can be approximated as follows:

S∗,t = 2

√
γ2M2

0 +B(2γ − 1)

2γ − 1
+ ε

γ

2γ − 1

[
(M2 −M1) +

M0γ√
γ2M2

0 +B(2γ − 1)
(M1 +M2)

]

= SL,∗,t + ε
γ

2γ − 1

[
−2θ4 + 2

M0γ√
γ2M2

0 +B(2γ − 1)
(−θ3 − 2q1θ4)

]
.

The term (M2−M1) is a positive quantity that increases the bid-ask spread. Indeed, having
a constraint on the variance of her final wealth, the risk-averse market maker requires a
bigger margin in order to compensate the risk. Therefore, the bid-ask spread is widened.
The next term depends on q1 and M0, its effect on S∗,t is not straightforward to interpret.

It is easier to see the effects of q1 directly on δ̂−∗,t and δ̂+
∗,t.

5.2 The case β = 1 (linear market impact)

5.2.1 Analytic approximation

Proposition 5.2. The optimal controls (δ+
∗,t, δ

−
∗,t) of the market maker can be approximated

at the first order in ε by (δ̂−∗,t, δ̂
+
∗,t) defined as

δ̂+
∗,t =

{
B−γM+(t,s,y,q1)

γ−1
if M+(t, s, y) ≤ S,

0 if M+(t, s, y) ≥ S,
(5.7)

δ̂−∗,t =

{
0 if M−(t, s, y) ≤ −S,

B+γM−(t,s,y,q1)
γ−1

if M−(t, s, y) ≥ −S (5.8)

and the approximation error is of order 2 in ε:

|δ̂+
∗,t − δ+

∗,t| = O
(
ε2
)
,

|δ̂−∗,t − δ−∗,t| = O
(
ε2
)
.

The proof, similar to that of Proposition 5.1, is omitted.
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5.2.2 Interpretation of the strategy

The effect of the mispricing term M0 on the optimal bid and ask distances remains the same
as in the case without inventory constraints (ε = 0), indeed:

∂δ̂+
∗,t

∂M0

= − γ

γ − 1
1{M+≤S} ≤ 0,

∂δ̂−∗,t
∂M0

=
γ

γ − 1
1{M−≥−S} ≥ 0.

The proxies δ̂−∗,t and δ̂+
∗,t of the optimal distances depend on the inventory q1. Their first

derivatives with respect to the variable q1 can be computed explicitly:

∂δ̂+
∗,t

∂q1

= 2εθ4(t, s, y)
γ

γ − 1
1{M+≤S} ≤ 0,

∂δ̂−∗,t
∂q1

= −2εθ4(t, s, y)
γ

γ − 1
1{M−≥−S} ≥ 0.

The first derivatives highlights the effect of the option inventory q1 on the distances δ̂−∗,t and

δ̂+
∗,t. Indeed, if q1 increases, the market maker lowers her bid and ask quotes, seeking to cut

down her option inventory.

6 Numerical Simulations

In this section, Monte Carlo simulations are performed in order to test the performance of
the market making strategies previously characterized. It is supposed in this section that
the spot process follows a Heston model under P :

dSt
St

= µdt+
√
ytdW

(1)
t

dyt = kR(θR − yt)dt+ ηR
√
ytdW

(2)
t

where d
〈
W (1),W (2)

〉
t

= ρRdt.

Market participant evaluate options using Q, under which the spot process S has the
following dynamics:

dSt
St

= rdt+
√
ytdW

∗,(1)
t

dyt = kI(θI − yt)dt+ ηI
√
ytdW

∗,(2)
t

where d
〈
W ∗,(1),W ∗,(2)

〉
t

= ρIdt.
The functions aR, bR and σ are:

aR(yt) = kR (θR − yt) ,
bR(yt) = ηR

√
yt,

σ(yt) =
√
yt,
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The term CQ(t, s, y) is the option price in the Heston model (see [10]). The term CP =
EP((ST −K)+|Ft) can be computed explicitly as explained in Appendix (??).

The first part of the numerical study is devoted to the comparison between the optimal strat-
egy and a zero-intelligence strategy, in the case of a linear utility function. In the second
part, the effect of the misspecification of the parameters is studied.

The numerical simulations are specified as follows: the traded option has a maturity equal
to 3 Months (T = 0.25) and a strike equal to 100 (K = 100). We simulate 1000 Monte
Carlo paths of the spot and instantaneous variance (St, vt){0≤t≤T} starting from S0 = 100
and v0 = 0.04. It is assumed that there are 6 trading hours per day, and that the market
maker refreshes the quotes every 5 minutes. This means that there are 12 × 6 = 72 points
per day. Since there are approximately 64 business days in a 3 months period, this amounts
to 64 × 72 = 4608 points per simulated path. At each point, the quantities CQ(t, s, y) and
CP(t, s, y) are computed using a Fast Fourier Transform method. This simulation task is
numerically consuming and was performed using the computing cluster1 at École Centrale
Paris.

For each simulated path, the optimal market making strategy is used from the inception
date (t = 0) until the maturity date of the option (t = T ).

6.1 Comparison with a zero-intelligence agent

The implied volatility Σt(K,T ) of the call option is defined as usual by CQ(t, St, yt) =
PBS (t, St,Σt(K,T )), where PBS denotes the Black-Scholes call price formula. In addition,

let ϑBS = ∂PBS(t,St,Σt(K,T ))
∂Σt

be the Black-Scholes vega of the option. In this subsection, we

suppose that there is an agent who places equidistant bid and ask quotes denoted by Cb
ZI,t

and Ca
ZI,t respectively:

Ca
ZI,t = CQ(t, St, yt) + δZI,t,

Cb
ZI,t = CQ(t, St, yt)− δZI,t,

where δZI,t = 0.005 × ϑBS. In other words, the ”zero-intelligence” agent attempts to earn
0.005ϑBS for each trade.

The assumption here is that (kR, θR, ηR, ρR) = (kI , θI , ηI , ρI) = (4, 0.04, 0.5,−0.4) (no mis-
specification). Besides, the historical drift µ and risk-free rate r are both zero. The results
of the numerical simulations are summarized below:

1http://www.mesocentre.ecp.fr
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Figure 1: Statistics for β = 0.5
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Figure 2: Statistics for β = 1

Cases Median Mean Std Skewness Kurtosis
β = 1

2
and with optimal quotes 23.00 38.42 58.66 0.98 0.63

β = 1
2

and with zero-intelligence 1.00 0.80 19.05 -0.14 -0.02
β = 1 and with optimal quotes 29.00 72.94 114.14 1.52 1.94
β = 1 and with zero-intelligence 1.00 1.13 19.90 -0.07 0.00

Table 1: Statistics on final option inventory q1,T
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Cases Median Mean Std Skewness Kurtosis
β = 1

2
and with optimal quotes 356.89 379.64 176.13 0.72 9.38

β = 1
2

and with zero-intelligence 21.34 25.01 116.44 0.82 11.05
β = 1 and with optimal quotes 144.54 154.90 187.97 0.75 12.24
β = 1 and with zero-intelligence 17.60 23.32 121.75 0.86 11.51

Table 2: Statistics on final wealth WT

The numerical simulations show that the strategy using the optimal quotes performs better
than the zero-intelligence strategy.

6.2 Effect of the misspecification of parameters

In this section, the effect of parameter misspecification in the case of a linear utility function
is addressed.

6.2.1 Misspecification of the parameter ρ

Monte Carlo simulations are performed using the following parameters: (µ, kR, θR, ηR, ρR) =
(0, 4, 0.04, 0.5,−0.4) and (r, kI , θI , ηI , ρI) = (0, 4, 0.04, 0.5,−0.9). The statistics of 1000 sim-
ulations are given below:
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Figure 4: Statistics for β = 1

Cases Median Mean Std Skewness Kurtosis
β = 1

2
and ρR = ρI 23.00 38.41 58.66 0.97 0.62

β = 1
2

and ρR 6= ρI 42.50 57.30 165.14 0.19 -1.16
β = 1 and ρR = ρI 29.00 72.942 114.13 1.51 1.93
β = 1 and ρR 6= ρI 105.50 112.38 699.43 -0.049 -1.48

Table 3: Statistics on final option inventory q1,T

In order to interpret these results, it is convenient to use [5], where an approximation of the
implied volatility for the Heston model is derived:

Σ(K,T ) =
√
y0

(
1 +

1

4

ρη

y0

log(
K

S0

) +

(
1

24
− 5

48
ρ2

)
η2

y2
0

log(
K

S0

)2 +O

(
log(

K

S0

)3

))
.(6.1)

The approximation (6.1), valid for small maturities and log-moneyness, points out the effect
of the parameter ρ on the option price when T ∼ 0. Indeed, at the first order in log(K

St
), the

implied volatility Σt(K,T ) is an increasing function of ρ if K > St and a decreasing function

if K < St. Consequently, in each simulation, the evolution of the moneyness
(

log(K
St

)
)

of

the option determines the quantity CP(t, s, y)−CQ(t, s, y) and influences the aggressiveness
of the quotes on either the bid or the ask side. It can be noticed that the distribution of the
option inventory q1(T ) at the maturity date T is more spread out in the case where ρR 6= ρI .

Cases Median Mean Std Skewness Kurtosis
β = 1

2
and ρR = ρI 356.89 379.63 176.13 0.72 9.38

β = 1
2

and ρR 6= ρI 331.58 584.06 772.01 1.29 2.01
β = 1 and ρR = ρI 144.54 154.90 187.97 0.74 12.24
β = 1 and ρR 6= ρI 102.22 1485.31 3780.57 1.20 1.26

Table 4: Statistics on final wealth WT .
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The statistics show that the final wealth in the case where ρR = −0.4 and ρI = −0.9 is on
average higher than in the case where ρR = ρI = −0.4. Indeed, the quoting policy of the
market maker is adapted in order to benefit from the misspecification of the parameter ρ.

6.2.2 Misspecification of the parameter θ

Monte Carlo simulations are performed using the following parameters: (µ, kR, θR, ηR, ρR) =
(0, 4, 0.04, 0.5,−0.4) and (r, kI , θI , ηI , ρI) = (0, 4, 0.0625, 0.5,−0.4).
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Cases Median Mean Std Skewness Kurtosis
β = 1

2
and θR = θI 23.00 38.42 58.66 0.98 0.63

β = 1
2

and θR 6= θI -90.50 -73.81 68.76 1.22 1.45
β = 1 and θR = θI 29.00 72.94 114.14 1.52 1.94
β = 1 and θR 6= θI -693.00 -636.17 204.57 1.51 2.52

Table 5: Statistics on final option inventory q1,T .

Since θR < θI , we have CP(t, St, yt) < CQ(t, St, yt). The market maker posts aggressive ask
quotes and conservative bid quotes. Therefore, she should be more likely to finish with a
short option position, a fact that is confirmed by the simulations.

Cases Median Mean Std Skewness Kurtosis
β = 1

2
and θR = θI 356.89 379.64 176.13 0.72 9.38

β = 1
2

and θR 6= θI 856.03 972.96 504.59 1.26 1.91
β = 1 and θR = θI 144.54 154.90 187.97 0.75 12.24
β = 1 and θR 6= θI 3029.61 3737.93 2834.59 1.18 1.26

Table 6: Statistics on final wealth WT

The final wealth in the case where the parameter θ does not have the same values under P and
Q (θR = 0.04, θI = 0.0625) is in average higher than in the default case (θR = θI = 0.04). The
numerical simulations support the results of the theoretical study and show experimentally
how the optimal strategy enables the market maker to take advantage from the parameter
misspecification.

6.2.3 Misspecification of the parameter η

In this subsection, Monte Carlo simulations are performed using the following parameters:
(µ, kR, θR, ηR, ρR) = (0, 4, 0.04, 0.5,−0.4) and (r, kI , θI , ηI , ρI) = (0, 4, 0.04, 0.7,−0.4). The
statistics of 1000 simulations are given below:
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Figure 8: Statistics for β = 1

It can be seen through the approximation (6.1) that the effect of the parameter η on the
implied volatility Σ(K,T ) of the option depends on its moneyness. Thus, at the first order
in log(K

St
), if ρ < 0, an increase of the parameter η increases the option price if K < St, and

decreases it if K > St. Therefore, the aggressiveness of the quotes of the market maker on
either the bid or the ask side of the order book depends on the path followed by S in each
simulation.
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Cases Median Mean Std Skewness Kurtosis
β = 1

2
and ηR = ηI 23.00 38.42 58.66 0.98 0.63

β = 1
2

and ηR 6= ηI 48.00 57.00 58.72 0.34 -0.83
β = 1 and ηR = ηI 29.00 72.94 114.14 1.52 1.94
β = 1 and ηR 6= ηI 38.50 86.20 105.06 1.13 0.19

Table 7: Statistics on final option inventory q1,T .

Cases Median Mean Std Skewness Kurtosis
β = 1

2
and ηR = ηI 356.89 379.64 176.13 0.72 9.38

β = 1
2

and ηR 6= ηI 251.15 250.49 227.15 0.22 2.98
β = 1 and ηR = ηI 144.54 154.90 187.97 0.75 12.24
β = 1 and ηR 6= ηI 34.57 81.90 269.94 0.44 2.27

Table 8: Statistics on final wealth WT .

The interesting point here is that the final wealth WT in the case ηR 6= ηI has a lower
average and a higher standard deviation than in the case ηR = ηI (for both β = 1

2
and

β = 1). This observation may seem, at first glance, counter-intuitive, since the misspecifica-
tion of a parameter should give the opportunity to benefit from price inefficiency. However,
there is a simple explanation to this result: increasing the parameter η under the pricing
measure also increases the volatility risk of the option. Since this risk is not hedged out,
the variance of the final wealthWT increases, thereby curbing the profit of the market maker.

7 Conclusion

In this paper, we have proposed a framework for the study of option market making. Using
a stochastic control approach, we have derived analytic expressions for optimal bid and ask
quotes in the case of a risk-neutral market maker. The risk-adverse case is also considered, in
a mean-variance framework, and we have used a singular perturbation technique in order to
provide approximations for the optimal quotes. Finally, using Monte Carlo simulations, we
have provided some numerical evidence for our theoretical findings, and studied the impact
of parameters misspecification.
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8 Appendices

8.1 Intensity of arrivals of market orders

In order to determine the form of the functions λ+ and λ−, we need to specify the distribu-
tion function of the size of market orders and also the market impact following the execution
of a market order.

Let fV denote the density distribution of the size of market orders in absolute value of their
cash amount. Several studies proved that this density decays as a power law (see [1]). We
will suppose here that fV can be well fitted by a power law density:

∀x > 0, fV(x) =
γLγ

(L+ x)γ+1
. (8.1)

From a practical point of view, there is a strictly positive lower bound for x which corre-
sponds to the option price xMin. Nevertheless, it is supposed here that the density fV is
positive for 0 ≤ x ≤ xMin.

On the other hand, market impact has been studied by different authors in the econo-
physics literature, and it is widely accepted that the change in price ∆P following a market
order of size V can be written as follows:

∆P = KVβ. (8.2)

There are two values of β which are supported by different researchers: β = 1 which cor-
responds to a linear market impact and β = 1

2
which corresponds to a square root market

impact.

The probability that a bid quote (respectively ask quote) placed at a distance δ− (respectively
δ+) from the mid price gets executed is equal to the probability that a sell market order
(respectively buy market order) triggers a market impact which is higher or equal to δ−

(respectively δ+). Suppose as in [1] that the arrival rate of market orders is constant and
equal to F . Then, for δ ≥ 0:

λ(δ) = F × P (∆P ≥ δ),

= F × P (Vβ ≥ δ

K
),

= F × P

(
V ≥

(
δ

K

) 1
β

)
,

= F

∫ +∞

( δ
K )

1
β

fV(x)dx,

= F
Lγ

(L+
(
δ
K

) 1
β )γ

.
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Therefore, the intensity of order arrivals can be written as λ(δ) = A
(B+δC)γ

whereA = FK
γ
βLγ,

B = LK
1
β and C = 1

β
.

As regards the parameter γ, several empirical studies show that γ > 1, see e.g. [7]
(γ = 1.53), [14] (γ = 1.4) or [6] (γ = 1.5).

8.2 Solution of the HJB equation with linear impact and linear
utility

The utility function U given in (4.1) is linear. Therefore, we make the following Ansatz for
u:

u(t, s, y, q1, x) = x+ θ0(t, s, y) + q1θ1(t, s, y), (8.3)

Let f+
0 = J+, this function represents the jump part due to the execution of the ask quote.

Using (8.3), the function f+
0 can be written explicitly as:

f+
0 (δ+) = λ+(δ+)

(
δ+ +M0(t, s, y)

)
,

where M0(t, s, y) = CQ(t, s, y)− θ1(t, s, y).

In order to determine δ+
L,∗,t = ArgMax{x≥0}f

+
0 (x), the derivative of the function f+

0 is
computed:

(f+
0 )′(δ+) =

λ+(δ+)

B + δ+

(
δ+ (1− γ) +B − γM0 (t, s, y)

)
,

If M0(t, s, y) ≥ B
γ

, then ∀ δ+ ≥ 0, (f+
0 )′(δ+) ≤ 0, and then δ+

L,∗,t = 0.

If M0(t, s, y) ≤ B
γ

, the function (f+
0 )′ changes sign on [0,+∞[ and gets null at x+ =

B−γM0(t,s,y)
γ−1

. Using the sign of (f+
0 )′ on [0, x+] and [x+,+∞[, it can be deduced that δ+

L,∗,t = x+

.
In conclusion, δ+

L,∗,t can be determined as follows:

δ+
L,∗,t =

(
B − γM0(t, s, y)

γ − 1

)+

,

and:

f+
0 (δ+

L,∗,t) =

{
A(γ−1)γ−1

γγ(B−M0(t,s,y))γ−1 if M0(t, s, y) ≤ B
γ

A
Bγ
M0(t, s, y) if M0(t, s, y) ≥ B

γ

(8.4)

The same approach can be applied to the function f−0 = J−. Indeed, using the form of
the value function suggested in (8.3), the function f−0 can be written as follows:

f−0 (δ−) = λ−(δ−)(δ− −M0(t, s, y)).

The derivative of f−0 writes:

(f−0 )′(δ−) =
λ−(δ−)

B + δ−
((1− γ)δ− + (B + γM0(t, s, y))).
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If M0(t, s, y) ≤ −B
γ

, then ∀ δ− ≥ 0, (f−0 )′(δ−) < 0 and therefore δ−L,∗,t = 0. On the other

hand, if M0(t, s, y) ≥ −B
γ

, it can be proved that δ−L,∗,t = x− = B+γM0(t,s,y)
γ−1

.

Consequently, δ−L,∗,t writes:

δ−L,∗,t =

(
B + γM0(t, s, y)

γ − 1

)+

,

and:

f−0 (δ−L,∗,t) =

{
− A(1−γ)γ−1

(−γ)γ(B+M0(t,s,y))γ−1 if M0(t, s, y) ≥ −B
γ

− A
Bγ
M0(t, s, y) if M0(t, s, y) ≤ −B

γ

(8.5)

In order to simplify the notations, the following quantities are introduced: S = B
γ

and

J0(t, s, y) = f+
0 (δ+

L,∗,t) + f−0 (δ−L,∗,t).
The equation (4.2) becomes:

H : (∂t + L1 + L2) (x+ θ0(t, s, y) + q1θ1(t, s, y)) + J0(t, s, y) = 0

The terms of the HJB equation are sorted by powers of q1:

(0) : (∂t + L1)θ0 + J0(t, s, y) = 0,

(1) : (∂t + L1)θ1 − µ∆s = 0,

Using the final conditions and applying the Feynman-Kac formula yields:

θ1(t, s, y) = CP(t, s, y)− µEPt,s,y
(∫ T

t

∆(u, Su, yu)Sudu

)
,

θ0(t, s, y) = Et,s,y

(∫ T

t

J0(u, Su, yu)du

)
.

Based on these results, the quantity M0(t, s, y) can be deduced:

M0(t, s, y) = CQ(t, s, y)− CP(t, s, y) + µEPt,s,y

(∫ T

t

∆(u, Su, yu)Sudu

)
,

and u0(t, s, y, q1, x) = x+ θ0(t, s, y) + q1

(
CP(t, s, y)− µEPt,s,y

(∫ T
t

∆(u, Su, yu)Sudu
))

is the

solution of the HJB equation (4.2).

The function u0 coincides with the value function if it is smooth, finite and has a quadratic
growth.
In order to prove the quadratic growth of u0, we start by studying the function θ0:

• If M0(t, s, y) ∈ [−S,S], then:

(
γ + 1

γ
B)−(γ−1) ≤ (B −M0(t, s, y))−(γ−1) ≤ (

γ − 1

γ
B)−(γ−1),

(
γ + 1

γ
B)−(γ−1) ≤ (B +M0(t, s, y))−(γ−1) ≤ (

γ − 1

γ
B)−(γ−1),

Then ∃M > 0 such that |J0(t, s, y)| ≤M .
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• If M0(t, s, y) ≥ S, then:

EPt,s,y (|J0(u, Su, yu)|) ≤
A(γ − 1)γ−1

γγ(B + S)γ−1
+

A

Bγ
EPt,s,y (|M0(u, Su, yu)|) ,

• If M0(t, s, y) ≤ −S then:

EPt,s,y (|J0(u, Su, yu)|) ≤
A(γ − 1)γ−1

γγ(B − S)γ−1
+

A

Bγ
E (|M0(u, Su, yu)|) ,

We assume here that the traded option is a call or a put, so that there exists C ′2 > 0 with
E (|M0(t, s, y)|) ≤ C ′2(1 + s). It follows that there exists C ′′2 > 0, such that |θ0(t, s, y)| ≤
C ′′2 (1 + s). Using Young’s inequality ∀a, b ∈ R, ab ≤ a2+b2

2
, we can find C ′′′2 > 0 such that:

|u0(t, s, y, q1, x)| ≤ C ′′′2

(
1 + x2 + s2 + y2 + q2

1

)
,

which implies that u0 is finite and has a quadratic growth.
Recall here that θ0 is the solution of the equation (∂t + L1)θ0 + J0(t, s, y) = 0 with the final
condition θ0(T, s, y) = 0. Since the function J0 is continuous (J0 is at least C0,0,0), then
θ0 is smooth. Consequently, the function u0 is also smooth and it coincides with the value
function.

8.3 Solution of the HJB equation with linear impact in the mean-
variance framework

Let uε be the solution of the HJB equation (5.3). Under the assumption that ε ∼ 0, a
singular perturbation technique is performed with respect to the parameter ε:

uε(t, s, y, q1, x) = x+
+∞∑
k=0

εkvk(t, s, y, q1),

Given the form of the utility function, the following Ansatz on v0 and v1 is made:

v0(t, s, y, q1) = θ0(t, s, y) + q1θ1(t, s, y),

v1(t, s, y, q1) = θ2(t, s, y) + q1θ3(t, s, y) + q2
1θ4(t, s, y),

In order to solve the HJB equation, the jump terms J+,ε and J−,ε have to be calculated.
Let f+ = J+,ε, the function f+ writes:

f+(δ+) = λ+(δ+)(u(t, s, y, q1 − 1, x+ (c+ δ+))− u(t, s, y, q1, x)),

= λ+(δ+)
(
δ+ +M0(t, s, y) + εM1(t, s, y, q1) + ε2R+(t, s, y, q1)

)
,

Let M+(t, s, y, q1) = M0(t, s, y, q1) + εM1(t, s, y, q1). By differentiating f+, it can be shown
that:

(f+)′(δ+) =
λ+(δ+)

B + δ+

(
δ+ (1− γ) +B − γM+ (t, s, y, q1)− γε2R+(t, s, y, q1)

)
,

In order to determine δ+
∗,t = ArgMax{x≥0}f

+(x), two cases should be distinguished:
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• M+(t, s, y, q1) + ε2R+(t, s, y, q1) ≥ S: in this case, ∀ δ+ ≥ 0, (f+)′(δ+) ≤ 0, then the
function f+ is decreasing on the interval [0,+∞[ and δ+

∗,t = 0.

• M+(t, s, y, q1) + ε2R+(t, s, y, q1) ≤ S: the function (f+)′ changes its sign on [0,+∞[
and vanishes at x+:

x+ =
B − γ (M+(t, s, y, q1) + ε2R+(t, s, y, q1))

γ − 1
.

Since γ > 1 then δ+
∗,t = x+.

In conclusion, δ+
∗,t writes:

δ+
∗,t =

(
B − γ (M+(t, s, y, q1) + ε2R+(t, s, y, q1))

γ − 1

)+

.

Using a Taylor expansion, it follows:

δ+
∗,t = δ+

L,∗,t − ε
γ

γ − 1
M1(t, s, y, q1)1{M++ε2R+≤S} +O

(
ε2
)
.

In order to solve the HJB equation, it is useful to write f+(δ+
∗,t) as the sum of f+

0 (δ+
L,∗,t) plus

a correction that depends on the parameter ε. Indeed, we have:

f+(x) = f+
0 (x) + ελ+(x)M1(t, s, y, q1) +O

(
ε2
)
,

and therefore:

f+(δ+
∗,t) = f+(δ+

L,∗,t) + (f+)′(δ+
L,∗,t)(δ

+
∗,t − δ+

L,∗,t) +O
(
(δ+
∗,t − δ+

L,∗,t)
2
)
,

= f+
0 (δ+

L,∗,t) + ελ+(δ+
L,∗,t)M1 − ε(f+)′(δ+

L,∗,t)
γ

γ − 1
M11{M++ε2R+≤S} +O

(
ε2
)
.

Since (f+)′(x) = (f+
0 )′(x) +O(ε), the last equation becomes:

f+(δ+
∗,t) = f+

0 (δ+
L,∗,t) + εM1

(
λ+(δ+

L,∗,t)−
γ

γ − 1
(f+

0 )′(δ+
L,∗,t)1{M++ε2R+≤S}

)
+O

(
ε2
)
,

It can be recalled at this stage that (f+
0 )′(δ+

L,∗,t) = B−γM0

B
λ+(0)1{M0>S}.

Notice that ifM0 ∈ [min (S,S − εM1 − ε2R+) ,max (S,S − εM1 − ε2R+)], then |B−γM0

B
λ+(0)| =

O(ε). This means:

(f+
0 )′(δ+

L,∗,t) =
B − γM0

B
λ+(0)1{M++ε2R+>S} +O(ε) ,

and then:

f+(δ+
∗,t) = f+

0 (δ+
L,∗,t) + εM1(t, s, y, q1)λ+(δ+

L,∗,t) +O
(
ε2
)
.
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On the other hand, the optimal bid distance δ−∗,t can be determined similarly. Let f− =
J−,ε, then the function f− writes:

f−(δ−) = λ−(δ−)(u(t, s, y, q1 + 1, x− (c− δ−))− u(t, s, y, q1, x)),

= λ−(δ−)
(
δ− −

(
M0(t, s, y) + εM2(t, s, y, q1) + ε2R−(t, s, y, q1)

))
.

Let M−(t, s, y, q1) = M0(t, s, y) + εM2(t, s, y, q1). Differentiating f− yields:

(f−)′(δ−) =
λ−(δ−)

B + δ−
(
δ− (1− γ) +B + γM− (t, s, y, q1) + γε2R−(t, s, y, q1)

)
.

Afterward, it can be seen that ifM−+ε2R− < −S, then δ−∗,t = 0, whereas ifM−+ε2R− ≥ −S,

then (f−)′ changes its sign on [0,+∞[ and gets null in x− = B+γM−(t,s,y,q1)+γε2R−(t,s,y,q1)
γ−1

= δ−∗,t.

So, the quantity δ−∗,t writes:

δ−∗,t =

(
B + γ (M−(t, s, y, q1) + ε2R−(t, s, y, q1))

γ − 1

)+

.

Using again the Taylor expansion, we obtain:

δ−∗,t = δ−L,∗,t + ε
γ

γ − 1
M2(t, s, y, q1)1{M−+ε2R−≥−S} +O

(
ε2
)
.

Once again, we aim to write the quantity f−(δ−∗,t) as the sum of f−0 (δ−L,∗,t) plus a correction
term due to the parameter ε. First, we use the relation:

f−(x) = f−0 (x)− ελ−(x)M2(t, s, y, q1) +O
(
ε2
)
,

and then, based on Taylor’s expansion, we obtain:

f−(δ−∗,t) = f−(δ−L,∗,t) + (f−)′(δ−L,∗,t)(δ
−
∗,t − δ−L,∗,t) +O

(
(δ−∗,t − δ−L,∗,t)

2
)
,

= f−0 (δ−L,∗,t)− ελ
−(δ−L,∗,t)M2 + ε(f−)′(δ−L,∗,t)

γ

γ − 1
M21{M−+ε2R−≥−S} +O

(
ε2
)
.

The relation (f−)′(x) = (f−0 )′(x) +O(ε) implies:

f−(δ−∗,t) = f−0 (δ−L,∗,t) + εM2(t, s, y, q1)

(
−λ−(δ−L,∗,t) +

γ

γ − 1
(f−0 )′(δ−L,∗,t)1{M−+ε2R−≥−S}

)
+O

(
ε2
)
.

We have also (f−0 )′(δ−L,∗,t) =
(
B+γM0

B
λ−(0)

)
1{M0<−S}. Following the same method, it can

be shown that if M0 ∈ [min(−S,−S − εM2 − ε2R−),max(−S,−S − εM2 − ε2R−)], then
|B+γM0

B
λ−(0)| = O(ε). Therefore, it can be deduced that:

(f−0 )′(δ−L,∗,t) =
B + γM0

B
λ−(0)1{M−+ε2R−<−S} +O(ε) .

and:

f−(δ−∗,t) = f−0 (δ−L,∗,t)− εM2(t, s, y, q1)λ−(δ−L,∗,t) +O
(
ε2
)
,
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Now that the terms f+(δ+
∗,t) and f−(δ−∗,t) are computed separately, the term J ε(δ−∗,t, δ

+
∗,t) =

f+(δ+
∗,t) + f−(δ−∗,t) is deduced:

J(δ−∗,t, δ
+
∗,t) = f+

0 (δ+
L,∗,t) + εM1λ

+(δ+
L,∗,t) + f−0 (δ−L,∗,t)− εM2λ

−(δ−L,∗,t) +O
(
ε2
)
,

= J0(δ−L,∗,t, δ
+
L,∗,t) + εM1(t, s, y, q1)λ+(δ+

L,∗,t)− εM2(t, s, y, q1)λ−(δ−L,∗,t) +O
(
ε2
)
,

The terms of J(δ−∗,t, δ
+
∗,t) are classified according to their power in ε:

J(δ−∗,t, δ
+
∗,t) = J0(t, s, y) + εJ1(t, s, y, q1) +O

(
ε2
)
,

where J1(t, s, y, q1) = J1,0(t, s, y) + q1J1,1(t, s, y) and:

J1,0(t, s, y) = λ+(δ+
L,∗,t)(−θ3 + θ4)− λ−(δ−L,∗,t)(−θ3 − θ4),

J1,1(t, s, y) = −2θ4

(
λ+(δ+

L,∗,t)− λ
−(δ−L,∗,t)

)
,

The HJB equation can be separated into several terms according to the order of the parameter
ε. By cancelling the term of order 0 in ε, it can be obtained that:

(∂t + L1 + L2)(x+ θ0 + q1θ1) + J0 = 0,

with the final conditions:

θ0(T, s, y) = 0, θ1(T, s, y) = h(s).

The functions θ0 and θ1 are equivalent to those found in the case of a linear utility function
without inventory constraints, thus:

θ1(t, s, y) = CP(t, s, y)− µEt,s,y
(∫ T

t

∆uSudu

)
θ0(t, s, y) = Et,s,y

(∫ T

t

J0(u, Su, yu)du

)
,

The term of order 1 in ε leads to the following equation:

(∂t + L1 + L2)(θ2 + q1θ3 + q2
1θ4) + J1(t, s, y) = q2

1V + T,

with the final conditions:

θ2(T, s, y) = 0, θ3(T, s, y) = 0, θ4(T, s, y) = 0.

The functions θ2, θ3 and θ4 are:

θ2(t, s, y) = EPt,s,y

(∫ T

t

(J1,0 − T ) (u, su, yu)du

)
,

θ3(t, s, y) = EPt,s,y(

∫ T

t

J1,1(u, su, yu)du),

θ4(t, s, y) = −EPt,s,y(
∫ T

t

Vudu).
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It can be demonstrated, as it was done in the case β = 1
2
, that the function uε is smooth,

finite and has polynomial growth. Besides, uε can be approximated at order 1 in ε by
ũε(t, s, y, q1, x) = x+ v0(t, s, y) + εv1(t, s, y, q1).
Remark:
The optimal ask quote δ+

∗,t can be approximated at order 1 in ε by δ̂+
∗,t:

δ̂+
∗,t =

(
B − γM+(t, s, y, q1)

γ − 1

)+

.

Indeed, if M+(t, s, y) ∈ [Min (S − ε2R+,S) ,Max (S − ε2R+,S)], then |B−γM
+(t,s,y,q1)
γ−1

| =

O(ε2) and consequently:

|δ̂+
∗,t − δ+

∗,t| = O
(
ε2
)
,

Similarly, it can be seen that if M− ∈ [Min (−S,−S − ε2R−) ,Max (−S,−S − ε2R−)], then

|B+γM−

γ−1
| = O(ε2). Thus, the optimal bid quote δ−∗,t can be approximated at order 1 in ε by

δ̂−∗,t :

δ̂−∗,t =

(
B + γM−

γ − 1

)+

,

and the approximation error is at order 2 in ε:

|δ̂−∗,t − δ−∗,t| = O
(
ε2
)

8.4 Verification theorem in the case of linear utility

It is sufficient to prove that u0, the solution to the HJB equation (4.2), is finite, smooth and
has a polynomial growth.
By using the concavity of the square root function, we obtain:

|J0(t, s, y)| ≤ 2A

Bγ

(2γ − 1) |M0|+
√
B(2γ − 1)

2γ − 1
.

Under the simplifying assumption that the traded option is a call or a put, there exists
C1 > 0 such that:

max (CP(t, s, y), CQ(t, s, y)) ≤ C1(1 + St)

and we also have |∆(t, s, y)| ≤ 1. It follows that ∃M1 > 0, ∀u < T , |M0(u, Su, yu)| ≤
M1(1 + Su). Using this result, we can state that:

|Et,s,y (J0(u, Su, yu))| ≤ Et,s,y |J0(u, Su, yu)| ,

≤ 2A

Bγ(2γ − 1)

(
(2γ − 1)

(
M1 +M1Ste

µ(u−t))+
√
B(2γ − 1)

)
,
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and then:

|θ0(t, s, y)| ≤ 2A

Bγ

((
M1 +

√
B

2γ − 1

)
(T − t) +M1St

eµ(T−t) − 1

µ

)
.

Since obviously

|u0(t, s, y, q1, x)| ≤ |x|+ |θ0(t, s, y)|+ |q1|
(
CP(t, s, y) + Ste

µ(T−t)) ,
then ∃C2 > 0 such that

|u0(t, s, y, q1, x)| ≤ C2

(
1 + x2 + s2 + y2 + q2

1

)
,

which proves that u0 is finite and has a quadratic growth.
Moreover, u0 is smooth since it is a combination of smooth functions.
Let us now prove that u0 coincides with the value function. Let then δ = (δ−, δ+) be an
admissible control process, and consider the following processes:

dq1,t = dN−t − dN+
t ,

dXt = (CQ(t, St, yt) + δ+
t )dN+

t − (CQ(t, St, Yt)− δ−t )dN−t + q2,tdSt,

dSt
St

= µdt+ σ(yt)dW
(1)
t ,

dyt = aR(yt)dt+ bR(yt)dW
(2)
t ,

where N− and N+ are Poisson processes with intensities λ− and λ+ respectively, where
∀τ ≥ 0:

λ+
τ = λ+(δ+

τ ), λ−τ = λ−(δ−τ ).

Let tN = T ∧{τ > t, |Sτ − s| ≥ n}∧{|yτ − y| ≥ n}∧
{∣∣N+

τ −N+
t

∣∣ ≥ n
}
∧
{∣∣N−τ −N−t ∣∣ ≥ n

}
.

Since u0 is smooth, we have:

u0(tn, Stn , ytn , q1,tn , Xtn) = u0(t, s, y, q1, x) +

∫ tn

τ=t

(∂t + L1 + L2)u0(τ, sτ , yτ , q1,τ , xτ )dτ

+

∫ tn

τ=t

∂u

∂s
Sτσ(yτ )dW

(1)
τ +

∂u0

∂y
bR(yτ )dW

(2)
τ −

∂u0

∂x
q1,τ∆τSτσ(yτ )dW

(1)
τ

+

∫ tn

τ=t

λ+(δ+)
(
u0(τ, sτ , yτ , q1,τ− − 1, xτ− + CQ + δ+)− u0(τ, sτ , yτ , q1,τ− , xτ−)

)
dτ

+

∫ tn

τ=t

λ−(δ−)
(
u0(τ, sτ , yτ , q1,τ− + 1, xτ− − (CQ − δ−))− u0(τ, sτ , yτ , q1,τ− , xτ−)

)
dτ

+

∫ tn

τ=t

λ+(δ+)
(
u0(τ, sτ , yτ , q1,τ− − 1, xτ− + CQ + δ+)− u0(τ, sτ , yτ , q1,τ− , xτ−)

)
dM+

τ

+

∫ tn

τ=t

λ−(δ−)
(
u(τ, sτ , yτ , q1,τ− + 1, xτ− − (CQ − δ−))− u(τ, sτ , yτ , q1,τ− , xτ−)

)
dM−

τ
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where M+ and M− are the compensated processes associated to N+ and N− respectively.
Using the polynomial growth of u and the fact that the functions λ+ and λ− are bounded,
one can argue as in [17] that the local martingales in the previous equation are martingales.
Thus, by taking expectations on both sides of the last equation, we obtain:

E (u0(tn, Stn , ytn , q1,tn , Xtn)) = u0(t, s, y, q1, x) + E

(∫ tn

τ=t

(∂t + L1 + L2)u0(τ, sτ , yτ , q1,τ , xτ )dτ

)
+ E

(∫ tn

τ=t

λ+(δ+)
(
u0(τ, sτ , yτ , q1,τ− − 1, xτ− + CQ + δ+)− u0(τ, sτ , yτ , q1,τ− , xτ−)

)
dτ

)
+ E

(∫ tn

τ=t

λ−(δ−)
(
u0(τ, sτ , yτ , q1,τ− + 1, xτ− − (CQ − δ−))− u0(τ, sτ , yτ , q1,τ− , xτ−)

)
dτ

)

Using again the polynomial growth of u0, we can deduce that u0 is integrable on [0, tn], and
the dominated convergence theorem yields that

limn→+∞E (u0(tn, Stn , ytn , q1,tn , Xtn)) = E (u0(T, ST , yT , q1,T , XT )) ,

and the equation becomes:

E (u0(T, ST , yT , q1,T , XT )) = u0(t, s, y, q1, x) + E

(∫ T

τ=t

(∂τ + L1 + L2)u0(τ, sτ , yτ , q1,τ , xτ )dτ

)
+ E

(∫ T

τ=t

λ+(δ+)
(
u0(τ, sτ , yτ , q1,τ− − 1, xτ− + CQ + δ+)− u0(τ, sτ , yτ , q1,τ− , xτ−)

)
dτ

)
+ E

(∫ T

τ=t

λ−(δ−)
(
u0(τ, sτ , yτ , q1,τ− + 1, xτ− − (CQ − δ−))− u0(τ, sτ , yτ , q1,τ− , xτ−)

)
dτ

)
.

Recalling that u0 is the solution of the HJB equation (4.2), we have for (δ−t , δ
+
t ) ∈ A:

(∂t + L1 + L2)u0 + λ+(δ+)
(
u0(τ, sτ , yτ , q1,τ− − 1, xτ− + CQ + δ+

t )− u0(τ, sτ , yτ , q1,τ− , xτ−)
)

+ λ−(δ−)
(
u0(τ, sτ , yτ , q1,τ− + 1, xτ− − (CQ − δ−t ))− u0(τ, sτ , yτ , q1,τ− , xτ−)

)
≤ 0,

which means that E (U(T, ST , yT , q1,T , XT )) ≤ u0(t, s, y, q1, x) and then u(t, s, y, q1, x) =
Sup(δ−,δ+)∈AE (U(T, ST , yT , q1,T , XT )) ≤ u0(t, s, y, q1, x).

In addition, since u0 solves (4.2), then for (δ−t , δ
+
t ) = (δ−t,∗, δ

+
t,∗) we have:

E

(
U(T, S

(δ−t,∗,δ
+
t,∗)

T , y
(δ−t,∗,δ

+
t,∗)

T , q
(δ−t,∗,δ

+
t,∗)

1,T , X
(δ−t,∗,δ

+
t,∗)

T )

)
= u0(t, s, y, q1, x),

and then u0(t, s, y, q1, x) ≤ Sup(δ−t ,δ
+
t )∈AE

(
U(T, S

(δ−t ,δ
+
t )

T , y
(δ−t ,δ

+
t )

T , q
(δ−t ,δ

+
t )

1,T , X
(δ−t ,δ

+
t )

T )
)

= u(t, s, y, q1, x).

Finally, we conclude that u0(t, s, y, q1, x) = u(t, s, y, q1, x).
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