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We use adjoint-based gradients to analyze the sensitivity of turbulent wake past a

D-shaped cylinder at Re = 13000. We assess the ability of a much smaller control

cylinder in altering the shedding frequency, as predicted by the eigenfrequency of

the most unstable global mode to the mean flow. This allows performing beforehand

identification of the sensitive regions, i.e., without computing the actually controlled

states. Our results obtained in the frame of 2-D, unsteady Reynolds-averaged Navier–

Stokes compare favorably with experimental data reported by Parezanović and Cadot

[J. Fluid Mech. 693, 115 (2012)] and suggest that the control cylinder acts primarily

through a local modification of the mean flow profiles. C© 2012 American Institute of

Physics. [http://dx.doi.org/10.1063/1.4724211]

The seminal analysis of Strykowski and Sreenivasan1 provides experimental evidence that a

small control cylinder suitably positioned in the wake of a main cylinder can alter vortex shedding

at Reynolds numbers closely above the instability threshold, either by suppressing the shedding, or

by decreasing its frequency. For various diameter ratios of the two cylinders, the authors measured

the influence of the control cylinder in terms of sensitivity maps showing the regions around the

main cylinder where shedding was most affected. This finding was revisited by Hill2 in the limit

of small cylinder ratios, i.e., for control cylinders much smaller than the main cylinder. Hill took

advantage of the adjoint method to estimate the sensitivity of the natural shedding mode, i.e., the

global instability mode correlated to the uncontrolled shedding activity. He modeled the effect of

the control cylinder by a supply of momentum to the flow equal and opposite to the anticipated drag,

and thereby retrieved the structure of the experimental sensitivity maps beforehand, without ever

having calculated the actual controlled states. For such flow dominated by an instability mechanism,

the approach offers an attractive alternative to bottleneck “trial and error” procedures in so far as it

allows exhaustive coverage of large parameter spaces (position and diameter of the cylinder) at very

low computational costs.

Although the early theoretical concepts have risen for more than 50 years, the development

of predictive tools capable of gaining valuable information regarding the most sensitive regions of

laminar flows for open-loop control based on the underlying physics is a recent achievement.3–7 The

present research is an attempt at pushing forward the development of the method in the context of

turbulent flows, for which successful experimental implementation of the control cylinder technique

is also reported.8 It puts emphasis on the role of the time-averaged mean flow in turbulent wakes at

Reynolds numbers of order 104, hence dominated by the shedding of large-scale vortices. The line

of thought is as follows:

1. We perform a global linear stability analysis of the mean flow, as in Refs. 9–13. By doing so,

we identify the natural shedding mode, whose eigenfrequency turns to be a good predictor of

the nonlinear shedding frequency,

2. We generalize Hill’s analysis and assess the sensitivity of the shedding mode with respect to

a small control cylinder. By doing so, we identify specific regions where the control cylinder

yields either an increase or a decrease of the eigenfrequency.
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3. The relevance of the approach for our case is assessed by the close agreement between

the obtained sensitivity map and experimental results reported recently in the literature by

Parezanović and Cadot.14

Two-dimensional (2-D) numerical simulations are undertaken in the frame of unsteady

Reynolds-averaged Navier–Stokes (RANS), whose ability in predicting the basic mean flow features

and turbulence statistics of those flow cases considered herein is carefully assessed in Refs. 15 and

16. A good agreement is evidenced with regards to existing experimental and numerical data, which

can be ascribed to the fact that unlike inherently unsteady turbulent flows, there is a clear separation

between the large-scale vortices shed in the wake and the small-scale Kelvin–Helmholtz-like insta-

bility developing in the shear layers and further yielding the production of turbulence by selective

amplification of the background noise. In practice, large-scales are thus resolved by time-integration

while small-scales are modeled to provide closure for the averaged Reynolds stresses. We use the

standard form of the one-equation Spalart–Allmaras turbulence model.17 The flow motion is thus

described by the 2-D velocity field u = (u, v)T of components u and v in the streamwise x and

transverse y directions, the pressure p, and the turbulence field variable ν̃ physically related to the

eddy viscosity, denoted the Spalart–Allmaras (SA) variable. We write here the governing equations

in terms of the state vector q = (u, p, ν̃)T as

B∂t q + Mq + N(q, q) = 0 , (1)

where M and B are two linear differential operators and N contains all remaining nonlinear terms.

For the sake of brevity, the detailed equations, as well as all relevant information about the turbulence

modeling constants and functions, are supplied as supplementary material.18 Our focus is on flows

that can be treated as fully turbulent, which removes the need for a trip-term, i.e., an additional

source term in the right-hand side of the transport equation for ν̃ meant to force the transition at

a prescribed location. The numerics rely on the incompressible, finite-elements solver presented

in Ref. 19 in which the turbulence model has been implemented via user-defined functions. For

time discretization, we use a first-order time scheme based on characteristics methods. For spatial

discretization, we use Arnold–Brezzi–Fortin MINI–elements (piecewise linear continuous finite

elements with three degrees of freedom at each triangle edge for pressure, same element enriched

with a cubic bubble function at the barycenter of each triangle for both velocity components and

the SA variable). The time-averaged mean flow, denoted in the following by an overbar, is obtained

from a random initial condition, first advanced in time until coherent vortex shedding shows up,

then averaged on the fly until the relative variation in the mean energy per grid point is less than

10−8. In practice, this takes roughly 3 flow-through times and subsequently 300 shedding cycles,

independently of the flow configuration discussed in the following.

For validation purposes of our numerical solver, we consider first the widely benchmarked

turbulent flow past a square cylinder at the Reynolds number Re = U∞ D/ν = 22000, where U∞

is the inflow velocity, D is the cylinder diameter, and ν is the kinematic viscosity. Typical time-

step employed is #t = 0.1, which allows sampling ∼80 time-steps over a shedding period and

converging force coefficients in terms of mean and root mean square (rms) values.16 The size of the

computational domain is that recommended by Rodi,15 along with strong clustering close to the walls

to capture the near-wall turbulent regions. Symmetric conditions are applied at the upper and lower

boundaries, no-slip conditions at the wall, and advective conditions at the outlet. A unit streamwise

velocity is imposed at the inlet, where turbulence is forced prescribing the ratio of the eddy to the

kinematic viscosity. Varying the value of this ratio was found to have little influence on the numerical

results. Our reference simulation is for a mesh M1 built from 144258 triangles, hence resulting in

723570 degrees of freedom. Results reported in Table I compare well to 2-D RANS numerical data

available from the literature. A similar agreement exists with three-dimensional (3-D) data reported

from experiments and from spanwise-averaged large-eddy simulations (LES) performed with span

H = 4D, hence suggesting that the 2-D flow assumption holds true. Grid independence has been

checked comparing to a higher resolution simulation with mesh M2 built from 381406 triangles

(1910790 degrees of freedom), all numerical values being found to change by less by 4%.
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TABLE I. Synoptic table of representative mean and fluctuating quantities for flow past a square cylinder. l̄R : mean recircu-

lation length measured from the rear surface, C̄D : mean drag coefficient, CD′ and CL′ : rms of drag and lift coefficients, St:

Strouhal number.

Contribution Model l̄R C̄D CD′ CL′ St

Lyn et al.20 3-D Exp. 0.88 2.1 . . . . . . 0.132

Lee21 3-D Exp. . . . 2.05 0.16–0.23 . . . . . .

Rodi et al.22 a 3-D LES 0.82 2.2 0.14 1.01 0.13

Minguez et al.23 a 3-D LES 0.77 2.2 . . . . . . 0.141

Rodi et al.22 b 2-D RANS, 2-layer k-ω 0.75 2.004 . . . . . . 0.143

Iaccarino et al.16 2-D RANS, v2-f 0.95 2.22 0.056 1.83 0.141

Present 2-D RANS, SA 0.95 2.26 0.37 1.13 0.139

aLES by Porquie, Breuer and Rodi referred to as UKAHY1 in Rodi et al.22

bRANS by Bosch reported in Rodi et al.22

From now on, we examine the flow past a D-shaped cylinder, for which experimental sensitivity

results have been documented recently by Parezanović and Cadot.14 The cylinder is made of a semi-

circular leading edge of diameter D continuing into a rectangular aft section, for a combined length

of 2D. The Reynolds number is Re = U∞ D/ν = 13000, and we compute the time-averaged mean

flow repeating the above procedure, including the grid independence tests. All results documented

in the following issue from the same mesh M1 built from 182668 triangles (916268 degrees of

freedom). In Fig. 1(a), we show a snapshot of vorticity contours evidencing the onset of vortex

shedding, found to occur at a frequency Stnl = 0.23 consistent with the value Stexp = 0.22 measured

experimentally for a cylinder of span H = 16D (Ref. 14). In Fig. 1(b), we show the mean vorticity,

which turns to be almost perfectly antisymmetric with respect to the centerline. Two shear layers

displaying vorticity of opposite signs initiated at the front stagnation point first separate on account

of an adverse pressure gradient, reattach on the flat wall and ultimately separate at the sharp trailing

edge, hence delimiting a symmetric recirculation bubble of length l̄R = 0.56. In the inner bubble,

negative values of the streamwise velocity reach approximately 40% of the free-stream velocity.

Note that the recirculation length measured experimentally at mid-span is larger (l̄R = 0.8), which

could be related to the fact that the near-wake exhibits three-dimensionality, including oblique vortex

shedding and vortex dislocations, as reported by Parezanović and Cadot.14

We perform a global stability analysis of the turbulent mean flow, and investigate the amplifica-

tion of small-amplitude superimposed disturbances classically expanded into time-harmonic global

eigenmodes q̂ of linear growth rate σ and eigenfrequency ω, hence reading

q̂(x, y)eσ t+iωt = q̂(x, y)eλt . (2)

FIG. 1. 2-D RANS results of flow past a D-shaped cylinder at Re = 13000. (a) Snapshot of vorticity contours. (b) Contours

of mean vorticity.
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FIG. 2. Stability analysis of the turbulent mean flow: real part of the streamwise velocity component for the (a) shedding

mode and (b) adjoint shedding mode computed linearizing the RANS equations.

The mean flow is viewed here as being rigorously a steady solution of the governing Eq. (1),

forced by a source term F̄ = −N(q, q) generated by the large-scale fluctuations associated to

vortex-shedding. Following Barkley,9 we assume that this forcing can be taken constant to a first

approximation, so that the perturbation ultimately satisfies the unsteady RANS equations linearized

about the mean flow quantities. This implies especially that all linear results to follow must be

properly interpreted as applying in the case where the forcing term F̄ is itself unperturbed at

the order of the perturbation. As detailed in the supplementary material, we linearize the RANS

equations, including the equation for the SA variable,24 and compute the eigenpair {λ, q̂} using the

Krylov-iterative solver described in Ref. 19. All boundary conditions are linearized about the mean

flow solution, except at the outlet where we apply a stress-free condition. The leading eigenmode,

further denoted as the shedding mode, is depicted in Fig. 2(a) by the real part of its streamwise

velocity component. It is almost perfectly antisymmetric, with large magnitudes in the shear layers

and in the near-wake (x < 4), and propagates downstream, as indicated by the real and imaginary

parts in spatial quadrature (not shown here). Its eigenfrequency f = ω/2π = 0.25 turns to be a

fairly good predictor of the nonlinear Strouhal number. We note yet that the match is not exact:

according to Sipp and Lebedev,25 this may be due to the fact that a strong resonance occurs with

the harmonics of the global mode, which may also explain why the mean flow is presently linearly

unstable, the departure from criticality (σ = 0.16) being comparable to the shift in the eigenfrequency

(ω − 2π Stnl = 0.15). Caution should be used in interpreting these trends since the above study was

meant for flow cases close to the bifurcation point, but the argument was already found consistent

with the selection of the shedding frequency based on mean-flow stability in turbulent flow past

an axisymmetric blunt-based body.11 We compute similarly the adjoint shedding mode q̂†, i.e.,

the Lagrange multiplier for the shedding mode, solution of an adjoint eigenvalue problem whose

detailed equations are supplied in the supplementary material. The streamwise component depicted in

Fig. 2(b) exhibits large magnitudes within the recirculating area, the maximum value being reached

close to the separating streamline, but also in the developing boundary layers and upstream of the

body, as a result of the nonnormality of the evolution operator.26

We now move on to the sensitivity analysis and compute the eigenfrequency variation caused

by a small control cylinder of diameter d ≪ D, positioned at (xc, yc). Following Hill, we model the

presence of the cylinder by a supply of pure momentum equal and opposite to the anticipated drag,

hence reading

δ f (x, y) = −
1

2
dCd‖u‖u δ(x − xc, y − yc) , (3)

where Cd is a drag coefficient depending on the Reynolds number based on the local velocity and

the diameter of the control cylinder. Since the presence of the shedding mode at any arbitrarily small

amplitude creates a modulation of the drag vector of same amplitude, the force splits into two distinct
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FIG. 3. Map of the eigenfrequency variation caused by the introduction of a small control cylinder of diameter d = 0.04.

(a) Adjoint-based prediction for the contribution δω| f̄ induced by the mean component of drag. (b) Same as (a) for the

contribution δω| f̂ induced by the harmonic component of drag. (c) Same as (a) for the total variation δω = δω| f̄ + δω| f̂ .

(d) Comparison with the experimental value 2πδStexp of Parezanović and Cadot14 displayed in the lower half of the plot

(courtesy of these authors).

components: a steady component δ f̄ forcing the mean flow equations and obtained substituting ū

instead of u in (3), and a harmonic component δ f̂ forcing the stability problem under the form of a

feedback force-velocity coupling4 and obtained in the quasi-static limit linearizing Eq. (3) about ū,

which yields

δ f̂ (x, y) = −
1

2
d

[

Cd‖ū‖û +

(

Cd + Red

∂Cd

∂ Red

)

ū · û

‖ū‖
ū

]

δ(x − xc, y − yc) , (4)

with Red = ‖ū‖d/ν. The quasi-static assumption is expected to hold since the time scale of adjust-

ment of the flow behind the small cylinder is shorter than that behind the large cylinder by at least a

factor of the diameter ratio. We ultimately compute the eigenvalue variation as

δλ = δλ| f̄ + δλ| f̂ =

∫

)

ū† · δ f̄ dxdy +

∫

)

û† · δ f̂ dxdy , (5)

where q̄† is a Lagrange multiplier for the mean flow obtained using the adjoint method as the solution

of an inhomogeneous linear problem, as explained in the supplementary material.

Figure 3 presents the spatial distribution of the eigenfrequency variation δω obtained for a

diameter d = 0.04 retaining the imaginary part of Eq. (5). In order to approximate the coefficient Cd ,

we fitted a fifth-order polynomial to the steady component of drag tabulated by Fornberg27 in the

range Red < 600 relevant to our flow. The first contribution δω| f̄ arising from the mean component

of drag, shown in Fig. 3(a), exhibits both negative and positive variations corresponding respectively

to a decrease and an increase of the shedding frequency. The frequency decreases placing the control

cylinder either inside the shear layers, or upstream of the cylinder, close to the centerline. In contrast,

the frequency increases placing the cylinder either in the mean recirculating bubble, or at both sides
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FIG. 4. (a) Contours of vorticity for the solution ŭ obtained by time-averaging the instantaneous solution over one single

shedding cycle, starting from t = 100. (b) Map of the eigenfrequency variation caused by the introduction of a small control

cylinder of diameter d = 0.04. The reference results obtained using the mean flow ū are reproduced from Fig. 3(c) in the

upper half of the plot, while the results obtained using the approximated mean flow ŭ are displayed in the lower half.

of the shear layers developing from the upstream stagnation point. The variation δω| f̂ arising from

the harmonic component, shown in Fig. 3(b), is limited to the vicinity of the mean recirculating

bubble. More importantly, it is lower by one order of magnitude and is visible here only owing

to an adjustment of the color look-up table. In return, the total variation δω shown in Fig. 3(c)

is entirely dominated by the mean component. We report in Fig. 3(d) experimental measurements

of the frequency variation 2πδStexp performed recently at the exact same flow conditions.14 The

numerical and experimental results are in good qualitative agreement, as the regions yielding either

an increase or a decrease of the frequency are especially well reproduced by the theory. Note that the

localization and structure of the sensitive regions depend little on the modeling of the drag coefficient

Cd , the difference being only in the magnitude of the achieved variation. Those depicted in Fig. 3(d)

compare well with the experiments since the same color code is used to represent both data sets. Our

predictions however slightly overestimate the effect of the control, which may be explained noticing

that they represent only a linear estimation of the exact eigenfrequency variation, whose calculation

would require repeating the mean flow and stability calculations for each cylinder position using

expression (3) as a body force to the RANS equations. Note that the experimental and theoretical

analyses differ in the sense that the experiments involve only instantaneous measurements of the

unperturbed and perturbed flow, for which neither the natural, nor the controlled mean flow solutions

need to be determined a priori. Despite the fact that our RANS calculations force the motion to

be 2-D, which is not truly representative of the actual experimental flow, as has been mentioned

already, the present agreement provides evidence that the control cylinder does act primarily through

a 2-D local modification of the mean flow profiles. This is consistent with the finding of Parezanović

and Cadot who compared the mean flow structures obtained with and without control cylinder, and

thereby correlated the change in the shedding frequency to a modification of the interaction between

the detached shear layers.14 The validity of our interpretation, however, remains to be discussed for

larger diameter ratios likely to induce non-small departure from the natural mean flow structure.

Finally, we repeat the complete analysis using an approximation ŭ of the mean flow obtained

by time-averaging over one single shedding cycle. Although it contains remnants of the vortex

shedding in its downstream part, the approximation is quite good, as seen from the contours of

vorticity depicted in Fig. 4(a). It turns to be even excellent in view of the sensitivity analysis: the

eigenfrequency variations obtained using ŭ, depicted in the lower half of Fig. 4(b), are almost

identical to those obtained using ū, reproduced from Fig. 3 in the upper half. Moreover, they depend

very weakly on the reference time used to start averaging (not shown here). Although it does not

avoid the fundamental issue of requiring the vortex shedding solution, the approach eliminates the

need to average over a large number of cycles, which may prove important for the foreseeable future

since the cost of the overall computations is roughly that of computing the mean flow. In present
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case, it takes less than 15 h on a regular sequential workstation to obtain the approximated map

shown in Fig. 4(b).

In the long run, we aim at applying the methodology to turbulent flows around ground vehicles.

Current efforts are thus focused on performing the analysis in the frame of LES, which is known

to yield a more accurate representation of those mean flow features (e.g., flow around an Ahmed

body), but demands in return substantial modification of the formalism.

The authors are grateful to F. Gallaire for valuable discussions and provision of computational

facilities at Laboratory of Fluid Mechanics and Instabilities (Ecole Polytechnique Fédérale de

Lausanne, Switzerland), as well as to O. Cadot and V. Parezanović for provision of their experimental
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