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ABSTRACT

A great deal of interest has been paid to induction machine control over the last years. However, most
previous works have focused on the speed/flux/torque regulation supposing the machine magnetic cir-
cuit to be linear and ignoring the machine power conversion equipments. The point is that speed regu-
lation cannot be ensured in optimal efficiency conditions, for a wide range of speed-set-point and load
torque, unless the magnetic circuit nonlinearity is explicitly accounted for in the motor model. On the
other hand, the negligence of the power conversion equipments makes it impossible to deal properly
with the harmonic pollution issue due to ‘motor — power supply grid’ interaction. This paper presents
a theoretical framework for a global control strategy of the induction machine and related power equip-
ments. The proposed strategy involves a multi-loop nonlinear adaptive controller designed to meet the
three main control objectives, i.e. tight speed regulation for a wide range speed-reference variation, flux
optimization for energy consumption and power factor correction (PFC). Tools from the averaging theory
are resorted to formally describe the control performances.

1. Introduction

Induction motors are featured by their interesting power/mass
ratio, relatively low cost and simple maintenance (as they include
no mechanical commutator). It is widely agreed that these ma-
chines have promising perspectives in the industrial actuator field.
This has motivated an intensive research activity on induction ma-
chine control especially over the last fifteen years. The complexity
of this problem is threefold:

- The multivariable and nonlinear nature of the machine
dynamics.

- The multiform interaction with its environment: supply grid,
power converters, varying load, etc.

- The multiplicity of control objectives: speed regulation, energy
consumption optimization, power factor correction, fault detec-
tion and diagnostic, etc.

Most previous works have focused only on speed/flux regula-
tion (with constant flux reference) following several control strat-
egies ranging from simple techniques, e.g. field-oriented control
[11,14], to more sophisticated nonlinear approaches, e.g. feedback
linearization [1], direct torque control [21,4] or sliding mode
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control [19]. A common point of these works is that the control de-
sign relies on a relatively simple machine model, next called stan-
dard model, assuming a linear representation of the magnetic
circuit (which of course is not true in real machines). Accordingly,
most previous control solutions involved flux regulation around
constant values (Fig. 1). Specifically, the constant flux reference is
equal to its nominal value generally located at the elbow of the ma-
chine magnetic characteristic [12,2]. Then, energetic efficiency is
actually maximal provided that the machine operates all time in
the neighborhood of its nominal point. But, this is not the case in
most practical applications because the machine load is generally
varying [8]. Indeed, in presence of small loads, the operation point
is below the nominal value causing useless energy stored in stator
inductances which reduces the machine efficiency. In the case of
overloaded machine, this operates in the saturation zone of its
magnetic characteristic but, then, the standard model is no longer
valid and, consequently, the control performances are no longer
guaranteed. To overcome the above shortcomings, it is necessary
in speed control to let the flux reference be dependent on both
the speed reference and torque-load, i.e. the flux reference must
be state-dependent. Examples of speed/flux controllers involving
state-dependent flux reference (Fig. 2) have been developed in
[15]. The proposed controllers include optimal flux generators
the design of which relies on a machine model that takes into ac-
count the nonlinearity of the magnetic characteristic.

However, even in the preceding works the control problem has
been relatively simplified because the motor is viewed there as a



Nomenclature

¢,d design parameters

fe voltage network frequency (Hz)

igq, isy  d- and g-axis stator currents

ie rectifier input current

k control action of the DC link voltage regulator
R stator resistance

Ly, 2C  passive components of input converter

S PWM input signal controlling converter IGBT’s
T; machine load torque

Usy, Usp O-and p-axis stator voltages
Vdcref reference value of rectifier output voltage v,

Vi Lyapunov functions (i=1...6)
X the estimate error of x
X1 average rectifier input current, i.e. x; = i,
X average rectifier output voltage x; = V4.
X4 average o-axis stator current (x4 = fw)
Xg average o-axis rotor flux (xg = ¢ry)
y squared DC Link voltage y = x2 = 73,
Z input current tracking error z; = x; — kv,
Z3 rotor speed tracking error zz = Q. — Q
Z5,Z¢ interns errors
bry» brp 0~ and p-axis rotor flux B
Dres average rotor flux reference @, = F(Is)
Qs rotor speed reference (rd/s)

combined rotor and load viscous friction
Is stator current norm (A)

isy, isp o~ and p-axis stator currents

] combined rotor and load inertia

R; rotor resistance

Lseq leakage equivalent inductance

p number of pole pairs

Te electromagnetic torque

Ui_13 duty ratios

Ve rectifier output voltage

Ve (t) AC line voltage

X the estimate of x

X average values over cutting periods of x
X; average input current reference xj = kv,
X3 rotor speed (x3 = Q)

X5 average f-axis stator current (xs = fsﬁ)
X7 average f-axis rotor flux (x; = ¢rp)

Vref reference value of y, i.e. y,s = vﬁmf

Z DC Link voltage error z; = Y = Vref

Z4 rotor flux norm error z, = @fef — @2

$rds ¢rq d- and g-axis rotor flux

P, average rotor flux norm @, = |/x2 + x2
Q machine rotor angular velocity

We power supply net pulsation

a =R azZRSL;EqR" =, bo=E; b =%c

by=v2E by="4C 5=T@) e=1/o

separated system directly controlled by acting on the stator volt-
ages. As a matter of fact, in practical applications, the motor is
physically controlled through a (three-phase) DC/AC PWM switch
inverter. Furthermore, the inverter is connected to a power supply
net through a AC/DC PWM rectifier (Fig. 3). Ignoring the latter
amounts to suppose that the DC-link voltage (i.e. the AC/DC recti-
fier output voltage) is perfectly regulated. The point is that perfect
regulation of such voltage cannot be ensured ignoring the rectifier
load which is nothing other than the set ‘DC/AC inverter—Motor’.
Moreover, the Rectifier-Inverter—-Motor association strongly inter-
acts with the AC power supply net (Fig. 3). Accordingly, the power
flow is in fact bidirectional: the circulation sense depends on the
load variation. Then, undesirable current harmonics are likely to
be generated in the AC line, due to the strongly nonlinear nature
of the association ‘converter-inverter-motor’. This harmonic
pollution has several damaging effects on the quality of power
distribution along the AC line, e.g. electromagnetic compatibility
issues, voltage distortion, reactive power increase, larger power
losses, increased voltage drops, etc. In this respect, standards such
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Fig. 1. Control strategy involving constant flux reference (the controller is obtained
from the standard model).
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Fig. 2. Control strategy involving state-dependent optimal flux (SDOF) reference.

as IEEE519-1992 and IEC 61000-3-2/IEC 6100-3-4 indicate the cur-
rent harmonic limits to be complied with, in terms of power factor
correction [9,18]. Of course, the power factor can be improved
using additional protection equipments (transformers, condensers,
etc.) and/or over-dimensioning the converter and net elements.
However, this solution is costly and may not be sufficient.

An attempt to simultaneously deal with speed/flux control and
PFC requirement has been done [16]. But, the flux optimization
requirement was not coped with there.

In the light of the above remarks, it becomes clear that a conve-
nient control strategy is one that consists in dealing with the con-
trol problem for the whole association ‘rectifier-inverter-motor’,
seeking simultaneous achievement of all relevant control objec-
tives, i.e. tight speed regulation for wide set-point variation range,
flux optimization despite large load change, satisfactory power
factor correction (PFC), fault detection and diagnostic, etc. Such a
global control strategy has still to be developed (Fig. 4). This study
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Fig. 3. The whole system under study: induction motor and associated AC/DC/AC converters.
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Fig. 4. Global control strategy (the dotted parts not covered in the present paper).

contributes to this purpose by proposing a theoretical framework
for the system modeling, multi-objective control design and con-
trol performance analysis. Presently, the focus is made on three
control objectives, i.e. wide range speed regulation, flux reference
optimization and PFC. For space limitation, the issues of state
observation and fault detection/diagnostic are not discussed in
the present paper (Fig. 4). The first issue has already been coped
with in [3] where a flux observer was developed based on the same
model as presently. The second issue has been dealt with in many
places, see, e.g. [20].

The control aspects dealt with in the present paper present the
following features:

System modeling. The induction machine is represented by an
experimentally validated model that accounts for the nonlin-
earity of the magnetic characteristic [13,22]. The power con-
verters (AC/DC converter, the DC/AC inverter) are described
by their respective averaged instantaneous models. There, sig-
nal averaging is resorted to cope with the binary nature of the
converter switch control signals.
Control design. An adaptive multivariable controller is designed,
using nonlinear techniques, e.g. backstepping control. It con-
sists of three main components:
(i) A nonlinear bi-variable regulator is designed for the AC/DC
rectifier so that the coupling between the power supply net
and the rectifier operates with a unitary power factor and

the connection between the rectifier and the inverter oper-
ates with a constant DC-link voltage, despite changes of the
operation conditions.

An adaptive nonlinear bi-variable regulator is developed to
make the motor velocity track its varying reference value
and the rotor flux norm track to its optimal state-depen-
dent reference. Parameter adaptation is resorted to cope
with parameter uncertainty that characterizes especially
the mechanicals parameters (load torque, rotor inertia,
and friction coefficient).

An online flux reference generator is constructed that pro-
vides the speed/flux regulator with the optimal flux refer-
ence trajectory. Optimality amounts to minimize the
necessary motor torque reducing thus the stator current
consumption. Based on the above motor model, the optimal
flux reference generator is analytically expressed in func-
tion of state variables, especially the stator currents.
Control performance analysis. The performances of the whole
nonlinear adaptive controller are formally analyzed making
adequate use of relevant tools from Lyapunov stability and
averaging theory [6]. It will be demonstrated that all control
objectives are achieved with a good accuracy. More specifically,
the motor speed and rotor flux norm both track perfectly their
references. Furthermore, the steady-state tracking errors asso-
ciated with the rectifier input current and output voltage are
shown to be harmonic signals with amplitudes depending,

(i)

(iii)



among others, on the supply net frequency. The larger the net
frequency is, the smaller the tracking error amplitudes. There-
fore, if the net frequency is large enough the PFC requirement
will actually be guaranteed up to a harmonic error of insignifi-
cant amplitude. This formally establishes the existence of the
so-called ripples (usually observed in similar practical applica-
tions) and proves why this phenomenon is generally
insignificant.

The paper is organized as follows: in Section 2, the whole asso-
ciation including the AC/DC/AC power conversion and induction
motor is modeled taking into account magnetic saturation; the
multi-objective controller is designed and analyzed in Section 3;
the control performances are illustrated through numerical simu-
lations in Section 4.

2. Modeling of the ‘converter-motor’ association

The controlled system, illustrated by Fig. 3, includes an AC/DC
rectifier, on one hand, and a combination ‘inverter-induction mo-
tor’, on the other hand. The rectifier interfaces the ‘inverter-induc-
tion motor’ set to the power supply net. The inverter is a DC/AC
converter operating (like the AC/DC rectifier) according to the well
known Pulse Wide Modulation (PWM) principle.

2.1. AC/DC rectifier modeling

The AC/DC rectifier is an H-bridge boost converter consisting of
four IGBT’s with anti-parallel diodes for bidirectional power flow
mode. This is expected to accomplish two main tasks: (i) providing
a constant DC link voltage and (ii) ensuring an almost unitary
power factor connection (PFC) to the power supply grid. Applying
Kirchhoff’s laws, the rectifier can be described by the following set
of differential equations:

di. ve 1
afi—ﬂsvdc (13.)
dl)dc 1 . 1.

= —Slp — =1 1b
dt —2C7° 2Cc° (1b)
where i, is the current in inductor L;; v4 denotes the voltage in
capacitor 2C; i; designates the input current inverter,
ve = V2.E. cos(wet) is the sinusoidal net voltage (with known con-

stants E, w,) and s is the switch binary value:

1
S =
U

The above (instantaneous) model describes accurately the phys-
ical inverter. Then, it is based upon when constructing converter
simulators. However, it is not suitable for control design due to
the binary nature of the control input s. As a matter of fact, most
existing nonlinear control approaches apply to systems with con-
tinuous control inputs. Therefore, control design for the converter
will be performed using the following average version of the model
(1a) and (1b) [5,17]:

if SisON and S is OFF

1c
if Sis OFF and S' is ON (19

dx; ve 1

E:E—Elhxz (23)
dX2 1 1-

Efiulxl —ils (2b)
where:

X1 =1, Xy =7Dg, U =S5 (2¢)

are the average values over cutting periods of i., g and s,
respectively.

Remark 1. In converter modeling the dead time between the two
switches in one leg is ignored for this study and not considered. In
other hand the standard three legs rectifiers are most used in
industry. But, in traction and, more generally in the case of single-
phase supply, H-bridge rectifiers are more suitable and most used.

2.2. Inverter-motor modeling

As mentioned in Section 1, the achievement of speed regulation
and flux optimization in presence of wide range load variation
necessitates that the control design is based on a model that takes
into consideration the nonlinear nature of the machine magnetic
circuit. Fortunately, examples of such models do exist and have
been proved to be useful in control design, e.g. [15,13,22]. The
model proposed in the last reference is presently preferred as, on
the one hand, this model is established in the fixed «g-frame
and, on the other, it was experimentally validated. The experimen-
tal validation, performed on a 7.5 KW machine, has confirmed the
nonlinear nature of the corresponding magnetic characteristic
(Fig. 5). The model developed in [22,13] is defined by the following
physical equations:

‘(ij—f = —§Q + JB (Prodsp — brplsr) — % G3)
% = —Qalsy + Opyy + A3pQPry + A3 Vsy (3b)
% = —0Oalsy — A3pQy, + Oy + A3 Vg (39)
d((ftm = O1lsy — Loegdpry — PR (3d)
djt’/* = Qyiy — Liogdibyy + PQ2ubry (3¢)

where the various notations are defined as follows:

e § is a varying parameter depending on the machine magnetic
state as shown by Fig. 6; this dependence has been given a poly-
nomial approximation:

S=T(®) Y gy +q, &+ +q, @ (3f)

where the involved coefficients have been identified (based on
spline approximation) using the experimental magnetic charac-
teristic of Fig. 5.

0.9

Rotor flux current (Wb)

0 L . .
0 5 10 15 20

Magnetic current (A)

Fig. 5. Magnetic characteristic experimentally built up in [13] for a 7.5 KW
induction motor: rotor flux norm @, (Wb) versus magnetic current I, (A).
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e @, denotes the amplitude of the (instantaneous) rotor flux,
denoted ¢,. Consequently, one has:

(I), =\ ¢?1 + ¢?/f (Bg)

where ¢,,, ¢, denote the rotor flux of-components.

e (is,, Is) are the of-components of the stator current and stator
voltage, respectively.

e Q represents the motor speed.

e R, R, denote the stator and rotor resistances.

o f.], T, are respectively the friction coefficient, rotor inertia and
load torque; all three parameters are unknown.

e p is the number of pole pairs.

e L, is the equivalent inductance of both stator and rotor leakage
brought to the stator side.

e a; =Rr, a3 = (Rs + Ry)/Lseq, a3 = 1/Lseq.

The numerical values of the model parameters are given by Ta-
ble 1. As already mentioned, the numerical values correspond to an
induction motor of 7.5 kW.

The couple (vs,, v,;) denote the stator voltage in af-coordinate
(Park’s transformation of the three-phase stator voltages). The in-
verter is featured by the fact that the stator «- and p-voltage can
be controlled independently. To this end, these voltages are ex-
pressed in function of the corresponding control action (see e.g.
[10]):

Usp = Vaclls (4a)
VUsy = UVgcl (4b)
Table 1
Numerical values of considered motor characteristics.
Characteristic Symbol Value Unit
Nominal power Py 7.5 KW
Nominal voltage Usn 380 \%
Nominal flux Dy 0.56 Wb
Stator resistance Rs 0.63 Q
Rotor resistance R, 0.52 Q
Inertia moment J 0.22 kg m?
Friction coefficient f 0.001 Nmsrd!
Number of pole pairs p 2
Leakage equivalent inductance Lseq 7 mH

where (u5, us) represent the average o- and f-axis components (in
Park’s transformation) of the three-phase duty ratio system
(s1, S2, 83). The latter are defined by (1c) replacing there S and S
by Si and S; (i =1, 2, 3). Now, let us introduce the state variables:

X3 = §7 X4 = iscu X5 = is/hXG = &my X7 = &r/f (4C)

where x denotes the average value over cutting periods of x. Then,
the power absorbed by the DC/AC inverter takes the well known
expression Py = X,i;. On the other hand, the power released by
the inverter is given by P, = X2 (U2X4 + UsXs). Invoking the power
balance one has P, = P, which yields:

is = (UpX4 + UsXs) (4d)

Substituting (4a)-(4c) in (3a)-(3g) gives the following state-
space representation of the association ‘inverter-motor’:

dxs  f p T,

- _]X3 +j(x6x5 — X7X4) — T (5a)
dx

d_t4 = —(X4 + 0Xp + A3PX3X7 + A3UzX) (5b)
dx

d—ts = —UyX5 — A3PX3Xp + 0X7 + (3l3X; (5¢)
dx,

d_tG = 11X4 — Leq0Xg — PX3X7 (5d)
dx

d_t7 = A1X5 — Lgeq0X7 + PX3Xs (5e)
B, = /X2 + X2 (5f)
6=T(®)=qo+q Pr+ -+ P (58)

where @, and § denote the average values over cutting periods of @,
and o respectively. The equations obtained up to now are brought
together to form the state-space model of the whole system includ-
ing the AC/DC/AC converters combined with the induction motor:

dx;, ve 1

Efﬁ—aulxz (6a)

dx 1 1

d—;:ﬁuﬁ(] —?(uﬁq +U3X5) (Gb)

dx T

d_t3 = —§x3 +§(x5x5 — X7X4) — TL (6¢)

dX4 -

a - —AX4 + 0Xp + A3PX3X7 + A3lXp (6d)

dx _

d—ts = —UyX5 — A3PX3X6 + 0X7 + A3U3Xy (6e)

dx, ~

d—tﬁ = a1X4 — LeoqdXs — PX3X7 (6f)
X _

d_t7 = A1X5 — Leq0X7 + PX3Xs (6g)

D=/ (%2 +x2) (6h)

0=T(0)=qo+q P+ +qu P (6i)

Recall that the load torque Ty, the rotor inertia J and the friction
coefficient f are all unknown parameters.

3. Controller design
3.1. Control objective

Based on the whole system model (6a)-(6i), we aim at develop-
ing a controller that would be able to achieve the following objec-
tives, despite the uncertainty that prevails on the mechanical
parameters (f, J, T;):

(i) Speed regulation: the machine speed 2 must track, as clo-

sely as possible, a given time-varying reference signal Q.



(ii) Flux optimization: the rotor flux norm @, must track as
accurately as possible a state-dependent flux reference
@ p =F (I) where I denotes the stator current norm and
the function F(.) has yet to be determined so that @, = &,
entails a minimal stator current consumption.

(iii) PFC requirement: the rectifier input current i, must be sinu-
soidal and in phase or opposed phase with the AC supply
voltage ve..

As there are three control inputs at hand, namely u,, u, and
us, we will seek an additional control objective:

(iv) Controlling the continuous voltage v, making it track a
given reference signal v,q.s. The latter is generally set to a
constant value equal to the nominal voltage entering the
inverter.

3.2. AC/DC rectifier control design

3.2.1. Controlling rectifier input current to meet PFC

The PFC objective means that the input current rectifier should
be sinusoidal and in phase (or opposite phase) with the AC supply
voltage. We therefore seek a regulator that enforces the current x;
to track a reference signal x; of the form:

X, =k v (7

At this point k is any real parameter that is allowed to be
time-varying. Typically, k is positive when the induction machine
absorbs energy and negative when the machine restores energy
(generation mode). Introduce the current tracking error:

Z1 =X1 —X’{ (8)

In view of (6a), the above error undergoes the following
equation:
. ve 1 .
Z1 =———1U1Xa — X] 9
1= T e N 9)
To get a stabilizing control law for this first-order system, con-
sider the quadratic Lyapunov function V; = 0.5z3. It can be easily
checked that the time-derivative V; is a negative definite function
of z; if the control input is chosen to be:

" _ Li(aizs + (2e/L1) — %y)
X2

(10)

with ¢; > 0 a design parameter. The properties of such control law
are summarized in the following proposition.

Proposition 1. Consider the system, next called current- or inner-
loop, composed of the current Eq. (6a) and the control law (10) where
¢1 > 0 is arbitrarily chosen by the user. If the reference x; = k v. and
its first time derivative are available then one has the following
properties:

(1) The current loop undergoes the equation z; = —c,z; where
Z1 = X1 — Xj. As ¢y is positive this equation is globally exponen-
tially stable, i.e. z; vanishes exponentially, whatever the initial
conditions.

(2) If in addition k converges (to a finite value), then the PFC
requirement is asymptotically fulfilled in average, i.e. the (aver-
age) input current x; tends (exponentially fast) to its reference
kve as t — oc.

3.2.2. DC link voltage regulation

The aim is now to design a tuning law for the ratio k in (7) so
that the rectifier output voltage x, = 4. is regulated around a gi-
ven reference value vg.s. As mentioned above, vqq.s is generally

(not mandatory) chosen to be constant equal to the nominal inver-
ter input voltage amplitude (i.e. nominal stator voltage).

a. Relationship between k and x;.

The first step in designing such a loop is to establish the relation
between the ratio k (control input) and the output voltage x,. This
is the subject of the following proposition.

Proposition 2. Consider the power rectifier described by (6a) and
(6b) together with the control law (10). Under the same assumptions
as in Proposition 1, the output voltage x, varies, in response to the
tuning ratio k, according to the equation:

dy 1

1
2
E*fkve-&-EZWe-&-X(X,f) (11)

with y = x% and
1
KX, ) = = E X2 (UaXg + UsXs) (12)

Proof. The power absorbed by the AC/DC rectifier is given by the
well known expression Pgysorbea = X17.. On the other hand, the
power released by the rectifier (toward the load including the
capacity and the inverter) is given by Pjeeqsed = U1X1X2. Power bal-
ance entails Pgpsorbed = Preleasea OT, €quivalently:

X1 Ve = U1X1X2 (13)

Also, from (7) and (8) one immediately gets that x; = kv, + z;
which together with (13) yields u;x, = (kv? +210e)/X2. This,
together with (6b), gives:

dX2 1 2 1
Eifxz(kve + 21 Ue) —X(U2X4 +U3X5) (14)

Now, deriving y = x2 with respect to time and using (14) yields
the relation (11) and ends the proof. O

b. Squared DC-link voltage regulation.

The ratio k stands up as a control signal in the first-order system
defined by (11). As said before, the reference signal y . = vf,m,f (of
the squared DC-link voltage x, = vq4c) is generally given as a con-
stant value, namely the nominal value of the inverter input voltage.
Then, it follows from (11) that the tracking error z; =y — y,.r
undergoes the following equation:

7 = %E2k + %E2k cos(2wet) + @zl COS(@et) + %(X, ) — Vres

(15)

where we have used the fact that ,(t) = v2.E.cos(w,t) and
22(t) = E*(1 + cos(2w.t)). To get a stabilizing control law for the
system (15), consider the following quadratic Lyapunov function:
1,
V, = EZZ (16)
It is easily checked that the time-derivative V, can be made
negative definite in the state z, by letting:

KE® + kE* cos(2mwet) + V2Ez €oS(wet)

=C (=22 = Y(X,£)) + C Jres (17a)

where ¢, > 0 is a design parameter. The point is that such equation
involves a periodic singularity due to the mutual neutralization of



the first two terms on the left side of (17a). To get off this singularity

and, besides, to avoid an excessive control chattering, we just ignore

the two terms in cos(-) on the left side of (17a). Therefore, we con-

sider the following approximate and simple solution:
C C.

k= ?(—CZZZ — XX 0) + ?}’ref (17b)

Bearing in mind the fact that the first derivative of the control

ratio k must be available (Proposition 1), the following filtered ver-
sion of the above solution is considered:

. c C.
kb dk=d 5 (~c222 = 106,0) +d i (18)

At this point, the regulator parameters, d and c;, are any posi-
tive real constants. The forthcoming development (especially the
proof of theorem 2) will make it clear how these parameters
should be chosen for the control objectives to be achieved. For
now, we summarize our main findings in the following
proposition:

Proposition 3. Consider the control system consisting of the AC/DC
rectifier described by (6a) and (6b) together with the control law
defined by (10) and (18). Using Proposition 1 (Part 1), it follows that
the resulting closed-loop undergoes, in the (zy, z», k)-coordinates, the
following equation where zy = X1 — X and z; =y — Yyf!

Zy = AZy + f(Z1,0) + gL(x, 1) + hyy (19a)
where
Zi=[z1 z kI' (19b)
f(Z1,t) = [0 (bok cos(2wet) + byzy cos(wet)) 0] € IR? (19¢)
—Cq 0 0
A= 0 0 by |; g=[01 bs]’; h=[0 -1 —b3]" (19d)
0 -b —d
F dc E d
bo = blz?cz; bzz\/if; bgz—ﬁc (19)

Proof. The filtering (18) makes k and its derivative k both avail-
able. Then, Part 1 of Proposition 1 ensures that z; = —c,z;. This,
together with (15) and (18), gives the state-space equation
(19a). O

3.3. Rotor flux reference optimization

Most existing induction machine speed controllers involve a
flux regulation loop (Fig. 1). Furthermore, this loop is generally de-
signed based upon a machine standard model (ignoring the ma-
chine magnetic saturation). Then, for coherency, the flux
reference signal is generally given a constant value coinciding with
the machine nominal flux value [11,14,1,21,19].

Of course, such controllers are unable to achieve optimal ma-
chine performances (power efficiency, power factor, maximal tor-
que, etc.) in presence of small loads. In [15], new controllers
were proposed involving a state-dependent optimal flux reference.
Optimality was achieved in the sense of stator current consump-
tion, using models that account for the magnetic circuit saturation.
Presently, a similar flux reference optimality is sought but, unlike
the previous references, the machine mechanical parameters and
load torque are subject to uncertainty and the control strategy ac-
counts for the presence of power conversion elements (Fig. 4).

In this subsection, the aim is to find a relationship between the
rotor flux norm and the stator current norm. In this respect, let us
recall that the norms of electrical quantities are invariant under
frame Park change. Then, it makes sense, for simplicity reasons,
to perform all this section computations in the Park oriented d—q
reference frame. Indeed, within this reference frame, the flux
g-component is (or can be considered to be) null and all state
variables are constant in steady-state. Then, the machine electro-
magnetic torque T, is expressed as follows:

Te = praisg = pPrisg (20)
On the other hand, Eq. (3d) becomes in the Park oriented d-q

reference frame:

do .

T; = O1lgg — Lseqéq)r
and that the steady-state current iz can be given the following
expression:

(21a)

. L
isg = 25, (21b)
a;
In (20), (21a) and (21b), is¢ and is; denote the d- and g-compo-
nents of the stator current. Also, the stator current norm expres-
sion simplifies to:

P=i+i, (22)

Then, using (20)-(22), one gets the following expression of the
electromagnetic torque:

2
Te = pdy |2 — (L% 5@,) (23)

Fig. 7 shows the curves representing the electromagnetic torque
T. versus the flux @,, for various values of the stator current I. It is
clearly seen that for a given torque there are many operation
points that only differ by the value of the flux @, and the current
I;. For instance, a torque T, = 20 Nm can be produced, for the ma-
chine of Table 1, with:

o A flux @&, = 0.50 Wb and a current I; = 8.5 A.

o A flux @, = 0.37 Wb and a current I; = 10 A.
o A flux @, =0.21 Wb and a current I; = 16 A.

60

50 - g

40 - R
Is=10 A

30 ]

Electromagnetic torque (Nm)

\
-

0.3 0.4 0.5 0.6 0.7 0.8
Rotor flux norm (Wb)

Fig. 7. Electromagnetic torque T, (Nm) in function of rotor flux &,, for different
stator currents norm .



From an energetic viewpoint, the best operation point is one
that involves the least current consumption. Let T.; (i=1,...,r)
be a sufficiently large sample of relevant torque values. It is readily
seen from Fig. 7 that for any T,;, there is a unique couple (@, )
that involves the least possible stator current. A set of couples
(@44, I5;) has thus been obtained using (23) and interpolated to get
a polynomial function F(-) such that &, = F(I;). The polynomial

interpolation thus constructed is denoted:
F(I) = hol? + hy 1177 + -+ I ho (24)

Such polynomial function is referred to optimal current-flux
(OCF) characteristic and is illustrated by Fig. 8. Recall that optimal-
ity is understood in the sense of minimal absorbed stator current I
for a given torque T..

Remark 2. The polynomial interpolation yielding the function F(-)
has been obtained the Matlab functions POLYDER, POLYVAL,
SPLINE, and POLYFIT.

3.4. Speed and flux adaptive control design and analysis

In this section, a speed and flux adaptive regulator is designed
for the saturated induction machine described by (6c¢)-(6i). The
speed reference Q. is any bounded and derivable function of time
and its two first derivatives are available and bounded. These
requirements can always be met by filtering the reference through
second-order linear filters. The flux reference 5,ef is obtained on-
line from the average value of the stator current so that, if
@, = e (with &, = |/x2 +x2), the machine will operate in opti-
mal conditions (i.e. with minimal absorbed stator current). In the
light of Section 3.3, it follows that such optimality will be guaran-
teed if the flux reference is computed online as follows:

5ref = F(Is) = hn]? + hn—J?il +e 4+ hljs + hO (25)

In fact, the relation (25) is nothing other than (24) replacing
there the variables by their average values (because the system
model (6a)-(6i) involves average variables).

The adaptive speed/flux controller design will now be per-
formed in two steps using the backstepping technique [7]. First,
introduce the tracking errors:

23 = Qref — X3

2= Ty~ 08+

(26a)
(26b)
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roror flux norm reference (Wb)
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0 . . . .
0 10 20 30 40 50

Stator current norm (A)

Fig. 8. Optimal current-flux characteristic obtained from the polynomial interpo-
lation of the experimental points (@7 , I;E) for the induction machine with
physical characteristics of Table 1. b

Step 1 It follows from (5a), (5d), and (5e) that the errors z; and z4
undergo the differential equations:

. . T
2y = Qu —]3<x6x5 o)+ +§x3 27)
2'4 = ZE,EfEref — ZXGXG — 2X7).(7
= Zarefaref - 2X5(01X4 - Lsquxﬁ - PX3X7) - 27‘7(‘117(5
— Lyeq0X7 + PX3Xs)

= 2y Prop — 207 (XoXg + X7Xs5) + 2Leeqd (X3 + x2) (28a)

24 = 25,45,4 —2a, (X5X4 + X7X5) + 2Lseq5(5fef — Z4) (28b)

In (27) and (28), the quantities p(xexs —X;X4) and
2a; (XeX4 + X7Xs5) stand up as virtual control signals. Let us tempo-
rarily suppose these to be the actual control signals and consider
the Lyapunov function candidate:

1
Vs = 5 (Z2+22) (29)

It can be easily checked that the time derivative of (29) can be
made negative definite function of (z3, z4), i.e.

Vi = —c322 — cuz? (30)

by letting p(xexs — X7X4) = (t; and 2a; (XeXs + X7X5) = V1 with:

Hq d:ef](CBZB +Qref)+TL +f(Qf€f_Z3) (31a)
and
Vi Y azy + 20, Brop + 2Leqd (B — 24) (31b)

where c3 and c4 are any positive design parameters. Since J,T; and f
are unknown, the first equation in (31) is replaced by its certainty
equivalence from, yielding the following adaptive control laws:

,ul d:€f j(CBZB + Qref) + /TL +f(9ref - ZB)
V1 o C4Z4 + Zarefaref + 2L59q5(5?ef —24)

(32a)
(32b)

and jA, T, and f are estimates (yet to be determined) of J,T; and f,
respectively. As the quantities p(xeXs — X7X4) and 2a;(XgX4 + X7Xs)
are not the actual control signals, they cannot be let equal to y,
and vy, respectively. Nevertheless, we retain the expressions of y,
and v; as the first stabilizing functions and introduce the new
errors:

Z5 = Uy —p(X5X5 — X7X4) (33)
Zg = V1 — 204 (X5X4 —+ X7X5) (34)

Then, using the notations (29)-(34), the dynamics of the errors
z3 and z4, initially described by (27)-(30), can be rewritten as
follows:

. . 1 T
SPRRETAR VA
z3 = Qr 1 j(C323+Qref)+TL+fX3—Zs +E+[X3

J J ]
. J : T, f 1
Z3 = —C3Z3 +5(C3Z3 + Qrer) + — +7X3 + 2 35
3 C3Z3 ](Caa f) ] ]Xa ] 5 (35a)
24 = —C424 + Z5 (35b)
where
J=J-J, T,=T,-T, and f=f-f (350)



Similarly, the time-derivative of V3 can be expressed in function
of the new errors as follows:

V3 = —C3Z§ — C4Z‘21 + Z4Z¢

+23B(6323 +Qref)+%+§x3 +}25 (36)

Step 2: The second design step consists in choosing the actual
control signals, u, and wu3, so that all errors
(z3, z4, zs, zg) converge to zero. To this end, it must be
made clear how these errors depend on the actual control
signals (u,, us). First, focusing on zs, it follows from (33)
that:

= [l1 — P(XsX5 + X6X5 — X7X4 — X7X4) (37)

Using (5a)-(5e), (35¢) and (31), one gets from (37):

Zs = [j(caia + Qref) —j<C323 + Qref) - —fxa +f5<3]
— p(XXs5 — 5‘7"4) — p(XgXs — X75<4)
25 = (c] - )| ~caz3 +§(6323 + Q) + L : +§x3 +} z5

4 T Qref + F Qrer — P(Q1Xa — LoeqdXs — PX3X7)X5 — (A1Xs

— Lseq5X7 +PX3X6)X4) - j(CBZB + Qfef) + TL +fX3]

— PXg(—0aXs — A3PX3Xg + 0X7 + A3UsX>) + PX; (—02Xa

+ 0Xg + A3PX3X7 + G3lizX;) (38)

For convenience, the above equation is given the following com-
pact form:

:/'t2+C3]]__f

Zs + PasX; (X7Up — XgUs)
- [j(C3Z3 + Qref) + TL +ch3] (39)

with

<C3] f) [ (€323 + Qref) i} +

,uz = [_CBZB <C3j_f> +_/]\Qref +f9ref] +P2‘13X3(Xf2; + X%)
+ D(Lseqd + @2) (X6Xs — X7X4) + D2X3(X7X5 + X6X4) (40)

Similarly, it follows from (34) that, zg undergoes the following
differential equation:

ZG = \.)1 — 201(7’(5){4 +XGX4 + X7X5 + X75(5) (41)
Using (5a)-(5e) and (32b), it follows from (41):
Z6 = C4Z4 + 25refaref + Zafef + 2Lseq5<25ref5ref - 24)
+ 21‘594 < ref —

— 21X (—02X4 + X6 + A3PX3X7 + a3lizX2)

) — 201Xy (01X4 - Lsquxﬁ - pX3X7)

—2a1xs (019(5 - Lseq5X7 +PX3XG)
— 2a1%7(—02Xs5 — A3PX3Xg + 0X7 + A3U3X>) (42)

where the derivative of 6 is obtained from (6i):

- do o _ b (7 6 +"ix7) (43)
do, dt  dp, \ &, P,
Eq. (34) is in turn given the following compact form:

Zs = V2 — 20103Xz (XelUz + X7Ui3) (44a)

with
Vo = C424 + 26refaref + 25?4 + 2Lseq5<25ref6ref - Z4>
+ 2Lseq5<5fef ~z

— 2a1X6 (—a2Xq + X + A3PX3X7)

) — 2a1X4 (01X — Lgoq0Xs — PX3X7)

-2m (alxs - Lseq5X7 + anxs)xs

— 2ax7(—ayXs — A3PX3X6 + 0X7) (44b)
V2= (cq - ZLquS)(—C4Z4 +26) + 25refaref + Zafef

+4Lseq5¢)ref‘pref + 2Lseq0 < ref Z4> + 2a1X3p(X7X4

_ X5X5) — 2015<5$ef — Z4> + 2a; (Lsqu + az)(X4X5

+X5%7) — 2(a1)* (X3 + x2) (44c)

To analyze the stability of the error system, composed of equa-
tions (35a), (35b), (39) and (44a), consider the following aug-
mented Lyapunov function candidate:

1 2 1 1 12 1T2 1 f?
23+224+225+26+2]+—T+2] (45)

Its time-derivative along the trajectory of the state vector

(23, 24, 25, Zg) is

V4=

Vi = 2373 + ZaZa + 2525 + 2625 +]]] +f]i + TL]TL (46)
Using (36), (39) and (44a), Eq. (46) gives:
Vi=12 [—6323 +j— <C323 + Ong) + ] +§x3 +; z5
+ 24]—Caz4 + Z5)
+2s(cs] - f)( (cszs + Qg) +5F ] +§X3> + 254,
+ €325 + pasXa (X7Uy — XgU3)] + Z6 (V2 — 2a1X203(X7 U3
+Xsll2)) + 25 —C325§ —§25 + 25§ +§j+ % i +§f
—Zs [j(CBZB + Qref) + %L +ch3] (473)

Adding c¢sz2 — csz2 + c62z2 — csz2 to the right side of (47a) and
rearranging terms, yields:

1
jjzﬁ + 2375

‘ 75T
+§ [j+ <c3z3 + Qref>z3 1 zs <c3j —f) <c3z3 + Qref> - c3z§]

V4= —C3Z§ — C4Z‘21 — C52§ — CGZé —

+% [ﬁ 23425 <6J—f)] +§ [f+23X3 +25X3 <CJ—]‘) +z§]

+ Zs[ﬂz (€5 +€3)25 + Paaxz(xﬂlz — Xsl3)]
~z [] (ca2s + ur) + Ti+ f:@]

+ 26(24 + V2 + C626 — 201X203(X7U3 + Xgll2)) (47b)
which suggests the following parameter adaptation laws:
To=—ir, J=-74 and f=—j (47¢)
with
h=-cz+z(en+ Q) +a(a] -f)(an+Qy)  47d)
i, =2+ (] - )2 (47e)
iy =2 + 253 (65 ~ ) + 2 (47f)



Substituting the parameter adaptation laws (47c) to TL, jandf
in the right side of (47b) yields:

/ 2 2 2 2 f 2 1
V4 = —C325 — C4Z) — C5Z5 — CgZg — 5 Z5 + —237Z5 + Z5['H2 + (C5

I

+ €3)Z5 + pasXa(X7Uy — XeU3)]
+7s <74(6323 + Queg) + 21, + ifx3) +Z6[V2 + 24 + CoZ6
— 2(11(13X2(X5U2 —+ X7U3)] (48)

where ¢5 and cg are new arbitrary positive real design parameters.
Eq. (48) suggests that the control signals u,, us should be chosen
in order to set to zero the two quantities between curly brackets
(on the right side of (48)). Letting these quantities equal to zero
and solving the resulting second-order linear equation system with
respect to (uy, us), gives the following control law:

=L ﬂl [gﬂ (49)
with:

Up = —(4(C325 + Ques) + I, + AX3) — (C5 + C3)Z5 — [y
Up = —24 —CeZ5 — V2, /4o = PU3X7X2, /11 = —PU3XsXa, (50)
lp = —2(11(13)(5)(2, 3 = —2(11(13X7X2

Note that inversed matrix in (49) is nonsingular in practice
because its determinant is given by D =lpl3 — A1/ =
—2patasx3(x2 + x2) and 4/x% + x2 = ¢, never vanish in practice be-
cause of the machine nonzero remnant flux and the small varia-
tions of x, = v,4. with respect to its high nominal value (600 V).
Finally, supposing the unknown parameters (T, J, f) be constant
values, one gets from (35c¢) and (47c)-(47f), the following parame-
ter adaptive laws:

J=-cZ+z <c323 + Q,ef) +z5 <c3j— f) (cgz3 n Q,ef) (51)
Ti=2+(c] -f)zs (52)
f=23% + 253 (] -F)+2 (53)

The properties of the speed/flux regulator thus designed are de-
scribed in the following proposition:

Theorem 1 (Speed/flux regulator). Consider the closed-loop system
composed of the induction machine described by the model (5),
supposing there the unknown parameters (T, J, f) to be constant,
and the nonlinear adaptive regulator defined by the control law (49),
the parameter update laws (51)-(53) and the flux generator (25).
Then, one has the following properties:

(1) The closed-loop error system undergoes the following equa-
tions, in the (zs, z4, zs, zs) coordinates:

73 = —C373 +}z5 +0 (zg,zs, é,t) (54a)

24 = —CaZ4 + Z5 (54b)

5 = —(Cs +§>25 +s (zg,zs, é,t) (54c)

Z6 = —CeZg — 24 (54d)
These are given the more compact form:

Zy=AZa+ 15(22. 0,) (55)
with:

L=l u 2 x. 0=[ T f]T (56a)

) 1/] 0

0 —c 0 1
A, = , (56b)
0 0 —(s+f/) O
0 -1 0 —cs
b(zz,é,r) - [C3<Zzé,t> 0 c5<zz,é,r) O]T (56¢)
{3 <237257 éi) ﬂ%(QZa + Qref) ‘*‘%‘*‘;(Qref —2z3) (56d)
5(23,2s, évt) ﬂ%[(Qj—f) <C323 +Qref> —ngs]
+ (e -F) P (e -Fx+a] (56¢)

(2) Let the design parameters c3 and cs be sufficiently large in the

sense that c3>zl] and cs >2l]f§. Then, all errors

<z3,z4,zs,zs,f, TL.f) remain bounded and (zs, za, zs, Zs)

vanish asymptotically, whatever the initial conditions.

Proof. Part 1. Eq. (54a) and (54b) are immediately obtained from
(35a) and (35b). Eq. (54c) is obtained substituting the control law
(49) to (uy, us) on the right side of (39). Eq. (54d) is obtained
substituting the control law (49) to (u2, us) on the right side of
(44a). This proves Part 1.

Part 2. Substituting the control law (49) to (uz, usz) on the right
side of (48) yields:

V4 = —C3Z§ — C4Z‘21 — C5Z§ — CGZé —§Z§ +}Z325 (573)
Using the inequality |z3z5| < 123 + 122, one obtains from (57a):

. 1 fo

Vi<~ (c3 - 2—]> 72— caz2 — (cs 7 2—]> 2% — cezt (57b)

As c3 — 21—] and cs +§ — zl]are both positive, due to the assumption
in Part 2, it follows from (57b) that V, < 0 whenever the state vec-
tor (zs,z4,25,26) is non-zero. Then, applying the Lasalle’s invariant
set principle, it follows that V, is bounded and (zs,z4,25,26) con-
verges to zero whatever the initial conditions.

Theorem 1 is established. [

Remark 3. The derivatives &, and &, are obtained using the
relation:

6ref = F(is) = hO + hlis + hZE +oet hnjg (583)
where
Iy = /(%% + x2 (58b)
Specifically, one has:
= dF(]S) - dF(IS) df]s o dF(is) X45(4 + X5).(5 (593)
U7 de T dl, drdl, I
= dF(I) (x45<4 + x5x5)2 . dF (I;)
YT dR I; dl,
« ().(4)2 +X45&4 :‘r ().(5)2 —+ X5j&5 _ ngs) (X4).(4 + X55(5)2 (59b)

I dI IE



3.5. Achievement of PFC and DC link voltage regulation

In this section, it will be formally shown that, for a specific class
of reference signals, including periodic signals, the control objec-
tives are achieved (in the mean) with an accuracy that depends,
among others, on the network frequency w,. The analysis is based
on Eq. (19a) which, in view of (49) becomes:

Zy = AZi +f(Z1,6) + p(Za, 1) + hyyy (60)
with:
et ~ (40374 Qo)+ 5y (g~ 23)) 25— 1)

ap* P?

Theorem 2 (PFC and DC-link regulation). Consider the system
including an AC/DC power rectifier, a DC/AC inverter and an induction
motor, connected as shown in Fig. 3. For control design purpose, the
system is represented by its average model (6a)-(6e). Consider the
controller defined by the control laws (10), (18) and (49), the
parameter update laws (51)-(53) and the optimal flux generator
(25). Let the reference signals vcrer, Qrer and @y be selected such that
Vacref > 0, Qrer = 0and @rep > 0 and vyerer and Qrf, be periodic with
period N1t/w. (for some positive integer N), and suppose them to be
time derivable (up to second order for Q..s) with bounded derivatives.
Finally, suppose the design parameters (c1, c2, d) to be positive. Then,
there exists a positive real &* such that, if 0 < ¢ < ¢*, with ¢ = 1/w,,
then:

(1) The tracking error z, =y — y,,; and the tuning parameter k are
harmonic signals continuously depending on .
(2) Furthermore, one has:

_ 1 p(04)
=C b (62)

where p(04)denotes the mean value of the periodic time function
p(04,t) and 04 € IR* denotes the null vector

(i) lin(}zz(t, ¢&)=0 and (ii)lingk(t, €)

Proof. As v, and Q,, as well as their derivatives are constant or
periodic (with period N7/w,), it follows that the system (60) is
periodically time-varying. Therefore, the averaging theory turns
out to be a suitable framework to analyze its stability (see e.g.
[6]). To this end, introduce the time-scale change T = w,.t and the
following signal changes:

. Nt . Nt
WA(©)=21(0) YegO) =Yg (55 )+ Per O =2 ()

e

(63a)

This readily implies that y;,. and €, are in turn periodic, with
period 27, and:

. (27 . (27T
$er® =Yig (3 ). or(® = 2 (5): (63b)
~ Also, it is easily seen that Wi (1) = dW, (1) /dT = edZ, (t)/dt =
eZ4(t) with ¢ = 1/w,. Then, using (63b) it follows from (60) that
the state vector W; undergoes the following state equation:

. .. (27
Wi = AW, -+ W, .0) + sy (W 7.0) + i ()

.. (27
= AW, -+ oy (Wi, 7.0) + 289, 0.7.0) + i ()

+egp1(Wo, t,¢€) (64a)

with:

filWy,t,8) = f(Wq,e1), Wo(T) = Z12(t) (64b)
p1(Wa,T,8) = p(W, e1) pl(W27T78):pl(W27T78)
- p1(0,7,¢) (64c)
It readily follows from (64b) that:
filWy,7,6) =[0  (bowcos(27) + byw; cos(t)) 0] (64d)

where the following notations are adopted in coherence with (19b):
Wy=[w w, w| (65)

By Theorem 1 and (64c) one has W(t) — 0 as T — co. Since
p1(W5,7,¢) is continuous in W5, it follows that p;(W;,7,6) —» 0
as T — oo. Then, according to the averaging theory, one gets stabil-
ity results regarding the system of interest (64a) and (64b) by ana-
lyzing the averaged system defined by:

W, = eAW, + &f 1 (W) + £2p1 (0a) (66a)
where

2 def . -l 2nN o

F (W) ©im o /0 fi(W,7,e) de (66b)
o def . 1 27N

pr(Wo) iimo [ 0.y (66c)

Note that the fourth term on the right side of (64a) has not been
accounted for in (66a) because its average value is null, due to the
periodicity (with period 27) of y,,.. From (64c), one has:

fiw)y=[0 o of (67)
In view of (67) the average system (66a) simplifies to:

Wl = eA1W1 + £gp1(04) (68)

Now, let us check that A; is in turn Hurwitz. Its characteristic
polynomial is:

det(Al —Ay) = 22 + (c; +d)22 +d(c) + )2+ deicy (69)

Applying for instance the well known Routh’s algebraic criteria,
it follows that all zeros of the polynomial (69) have negative real
parts if the coefficients c¢;,c; and d are positive which actually is
presently the case. Hence, the matrix A, is Hurwitz implying that
the autonomous part of the linear system (68) is globally exponen-
tially stable. Then, the solution of the system (68) satisfies:

}ile(t) = —p1(04)A;'g, exponentially and whatever W, (0)
(70)
The exponential feature of the convergence is due to the linear-
ity of (68). From (70), it follows that the state vector

Wi € pi(0)A gelR (71)

is a globally exponentially stable equilibrium of the average system
(68). Now, invoking averaging theory, e.g. Theorem 10.4 in [6], we
conclude that there exists a positive real constants ¢* such that,
for all 0 < ¢ < ¢, the differential equation (64a) has a 2m-periodic
solution W (1) = Wq(t, ¢), that continuously depends on ¢ and that:
lin(}Wl(r, ¢) = Wj, exponentially (72a)
£—

The same result applies to the differential equation (60) using
the relation Z;(t) = Wy (t) with t = w,t. That is, Z;(t) = Z;(t, ) is
(2m/w.)-periodic, continuously depends on ¢ and satisfies:

limZy (¢,¢) = W; (72b)



This establishes Part 1 of Theorem 2.
To prove Part 2, note that from (71) one has:

Wi = —p1(0s)A;'g (73a)
Also, it is readily checked using (19d) and (19e) that:
T
Wi = —pi1(05)A;'g = —p1(04)| 0 “gils oL (73b)
Furthermore, it is obviously seen from (19b) that:
d — Chobs
“Chea; 0 (73c¢)
Consequently, one gets from (72b), (73b) and (73c) that:
lin(}zz(t, &) =ws=0 (74a)
£—
. . P1(0q)
limk(t, &) =w* = Chy (74b)
Finally, notice that:
_ I B .
pr(0s) = lim A p1(0,7,8)dr (using (66¢))
. 27N .
=limo—s A (04, ¢7)dT (using (64b)) (75a)
Introducing the variable change t = w.t, (75a) becomes:
B . W, 27N/ w, B
p1(04) = 13151(} 27N J, p(04, t)dt = p(04) (75b)

This, together with (74a) and (74b), establishes Part 2-b and
completes the proof of Theorem 2. O

Remark 4

(a) The motor speed and the rotor flux norm both converge to
their respective references because the errors (z3, zs) con-
verge to zero, a result of Theorem 1.

(b) Using Proposition 1 and the fact that the tuning parameter k
and its time derivative are available, we gets that the error
Z1 =X, — X} =i, — kv, converges exponentially fast to zero.
The importance of Theorem 2 (part 2) lies (partly) in the fact
that the (time varying) parameter k does converge to a fixed
value (up to a harmonic error that depends on w,). This
demonstrates that the PFC requirement is actually fulfilled
with an accuracy that depends on w.. The larger w, is, the
more accurate the PFC quality. It will be seen in the next
simulation study that the usual value w, = 1007 rd/s leads
to a quite acceptable quality.

(c) Theorem 2 (Part 2) also demonstrates that the tracking
objective is achieved (in the mean) for the DC-link squared
voltage y = x3 = v3. with an accuracy that depends on the
voltage network frequency w.. The class of admissible refer-
ences Vg and Q. includes periodic signals with period
N7t/w,. That is, these signals must oscillate less rapidly than
the network voltage.

(d) The fact that the tracking error z, = v, — ¥, is harmonic
proves the existence of output ripples. Theorem 2 (Part 2)
ensures that the effect of these ripples is insignificant if w,
is sufficiently large. It will be observed through simulations
that the value w, = 1007 rd/s leads to sufficiently small
ripples.

4. Simulation
The experimental setup has been simulated within the Matlab/

Simulink environment. The simulated system has the following
characteristics:

o Supply network: z.(t) = v2-Ecos(wt) a
220V \ 50 Hz.
e AC/DC/AC converters: L; = 15 mH; C = 1.5 mF; modulation fre-

quency: 10 KHz.

single phase

The induction machine characteristics are summarized in
Table 1.

The experimental protocol is described by Figs. 9-11. Accord-
ingly, the inertia moment J and viscous friction coefficient f deviate
from their nominal values on some time intervals (Figs. 9 and 10).
The applied load torque T, (Fig. 11) and rotor speed reference Q,,
(Fig. 18) are chosen so that the induction machine works in two
zones of its magnetic characteristic and operates both as motor
and generator. Indeed, the induction machine operates in motor
mode in the interval [0, 16s] and in generator mode in the interval
[16s, 20s]. The DC-link voltage reference is constant, i.e.
Vdcref = 600 V.

Recall that the nonlinear adaptive controller to be illustrated is
described by: (i) the control laws (10), (18) and (49); (ii) the
parameter update laws (51)-(53); and (iii) the optimal flux refer-
ence generator (25). The following values of the controller design
parameters proved to be suitable:

¢; = 1000, c, =30,
¢ = 1000,d = 100

c3 =100, c4 =400, c5=>500,

The above adaptive controller will be compared with its simpli-
fied (constant flux reference) version obtained keeping the flux ref-
erence constant equal to its nominal value, i.e. 0.56 Wb. To avoid
confusion, the two controllers will be referred to Optimal Flux Ref-
erence (OFR) adaptive controller and Constant Flux Reference (CFR)
adaptive controller.

The performances of both controllers are illustrated by
Figs. 12-20. It is seen from Fig. 12 that the input current i, is
higher with the CFR adaptive controller than with the OFR.
Fig. 13 shows the reference and measured input current i,
response of the OFR controller: it is observed that the current
amplitude changes whenever the speed reference or the load
torque vary. However, the current frequency is insensitive to
these changes. Specifically, the current remains most time either
in phase (motor mode) or opposed phase (generator mode) with
the supply net voltage, complying with the PFC requirement.
This is further demonstrated by Figs. 14-16 which show that
the ratio k takes a constant value after short transient periods

-3
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Fig. 9. Friction coefficient variation.
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Fig. 11. Applied load torque.

following changes in the references signal and load torque. Note
that the ratio k is negative when the network gets back energy.
Fig. 17 shows that the DC-link voltage x, = v, is well regulated
and quickly settles down after each change in the speed refer-
ence or the load torque. As stipulated by Theorem 2, and com-
mented on in Remark 4c, the DC link voltage z, is subject to
small amplitude ripples oscillating at the supply net frequency
.. Fig. 18 shows that both controllers ensure a perfect asymp-
totic speed reference tracking despite the uncertainty and
changes of the mechanical parameters (load torque T;, rotor
inertia J and viscous friction coefficient f). Fig. 19 shows the
resulting (state-dependent) optimal flux reference (for the OFR
adaptive controller) and the constant flux reference (for the sim-
plified CFR adaptive controller). It is clearly seen that the state-
dependent flux reference varies significantly in function of the
load torque and the speed. Fig. 20 shows the absorbed stator
currents for both controllers, in various operation conditions. It
is seen that the OFR controller requires a smaller current than
the constant flux controller. This difference is more significant
in presence of low load torques, because in this situation the
optimal flux reference is most different from the constant flux
reference.

150 T T T

i (A)

-150

0.05 0.1 0.15 0.2
Time (s)

Fig. 12. Zoom on the input current i, response (A) over the interval [0 0.2s] (solid:
OFR controller, dotted: CFR controller).
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Fig. 13. Zoom on the reference and measured input current i.(A) over the interval
[4 4.6s] when using the OFR controller.
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Fig. 14. Unitary power factor checking with the OFR controller when the induction
machine absorbs energy (motor mode operation).
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Fig. 18. Rotor speed Q (rd/s) response: the identical speed responses obtained by
the OFR controller and the constant flux controller.
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Fig. 19. Rotor flux norm reference (Wb) (solid: state-dependent optimized flux,
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Fig. 20. Absorbed stator current (A) (Upper: constant flux controller. Lower: OFR

controller).



5. Conclusion

The problem of controlling associations including an AC/DC rec-
tifier, a DC/AC inverter and induction motor has been addressed
with consideration of magnetic characteristic saturation. The sys-
tem dynamics have been described by the averaged 7th order non-
linear state-space model (6a)-(6g). Based on such a model, a
multiloop nonlinear adaptive controller has been designed and
analyzed in several steps. The controller consists of: (i) the control
laws (10), (18) and (49); (ii) the parameter update laws (51)-(53);
and (iii) the optimal flux reference generator (25). Their perfor-
mances have been analyzed using tools from the Lyapunov stabil-
ity and averaging theory. It has been formally established that the
controller actually meets the objectives it has been designed to, i.e.
(i) almost unitary power factor; (ii) well regulated DC-link voltage
(vac); (iii) satisfactory rotor speed reference tracking over a wide
range of mechanicals parameters variation; and (iv) tight optimiza-
tion and regulation rotor flux norm for minimizing the stator cur-
rent absorbed. These results have been confirmed by a simulation
study. To the author’s knowledge, it is the first time that a so com-
plete formal design and analysis framework has been developed
for inductions motors in presence of magnetic saturation control
design.
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