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On the design of observer-based fuzzy adaptive controller
for nonlinear systems with unknown control gain sign
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Abstract

In this paper, an observer-based fuzzy adaptive controller for nonlinear systems with unknown control gain sign is investigated.
Because the system states are not available for measurement, a tracking-error observer is constructed. In this controller, the adaptive
fuzzy system is used to approximate the unknown nonlinearities and the Nussbaum function is incorporated to deal with the unknown
control direction (i.e. with the unknown control gain sign). The stability of the closed-loop system is proven using the strictly positive
real (SPR) condition and Lyapunov theory. Finally, simulation results are given to verify the feasibility and effectiveness of the
proposed controller.

Keywords: Fuzzy system; Adaptive control; Observer; Nussbaum function; SPR condition; Nonlinear system

1. Introduction

Fuzzy systems (FSs) have been successfully applied to many control problems because they do not need an accurate
mathematical model of the system under control and they can co-operate with human expert knowledge. It is also
known that FSs as well as neural networks (NNs) can approximate uniformly any nonlinear continuous function over
a compact set [12,29,30]. Thanks to the universal approximation theorem [30], several adaptive fuzzy control schemes
have been developed for uncertain nonlinear systems, e.g. [6,8,25,26]. The stability of the underlying control systems
has been investigated using a Lyapunov approach. A key assumption in these control systems is that the state vector
is assumed to be available for measurement. But this measurement requirement is more an exception than a rule in
the engineering practice. That is why observer-based controllers (i.e. output-feedback controllers) are most used in
practice.

Based on state or tracking-error observer, adaptive fuzzy control schemes have been developed in [14-16,27,31].
These schemes require strictly positive real (SPR) condition on the observation error dynamics (i.e. the estimation
error dynamics) so that one can use Meyer—Kalman—Yakubovich (MKY) lemma in the stability analysis. The original
observation error dynamics, which are not SPR in general, are augmented by a low-pass filter designed to satisfy the
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SPR condition of a transfer function associated with the Lyapunov stability analysis. However, according to [20], these
schemes result in the filtering of the fuzzy basis function (FBF) which makes the dynamic order of the controller-
observer system very large. Moreover, as stated in [1], these observer-based fuzzy adaptive controllers have not been
derived rigorously in mathematics. In fact, some comments on these control schemes have been given in [1].

A common assumption in the schemes proposed in [1,14-17,20,27,31] is that the sign of the control gain is known
a priori. However, in the general case, this assumption is by no means realistic as pointed out in [32]. When there is no
a priori knowledge about the control gain sign, the design of the adaptive controllers based on observer for unknown
nonlinear systems becomes more challenging. Especially, when the SPR condition is used in the control design and
stability analysis. In this paper, unlike [1,14-17,20,27,31], an observer-based fuzzy adaptive controller is designed for
a class of single-input single-output (SISO) nonlinear systems with unknown control gain sign. There are two main
contributions that are worth to be emphasized:

o to the authors’ best knowledge, there are little results reported on the fuzzy adaptive output-feedback control design
based on SPR condition for nonlinear systems with unknown control gain sign [18]. Note that, in the design of fuzzy
adaptive controller based on state observer, the combination of the Nussbaum-gain technique with the SPR condition
is very difficult. This is why there are few results reported on this problem.

e unlike [14-17,27,31], in our proposed control law, there is no filtering of the FBF vector. Moreover, by using the
SPR condition and Lyapunov theory, the stability of the closed-loop system is rigorously proven.

2. Problem formulation and preliminaries

In this paper, we consider the nth order nonlinear dynamical system of the form:
x® = fe, i, x"TD) g, %, L, x4 d (1),
y=x. o))
Or equivalently of the form

X =Ax+ B[f(x)+ gx)u + d(®)],

y=Clx, 2
where
01 0 --- 07 ~ 07 m 17
001 -0 0 0
A= oo, B=1], C=]1[, 3)
000 - 1 0
L0 0O 0 --- 0 L1 ] | 0 |
with u € R is the control input, x = [x, X, ..., x® DT =[x, x2, ..., x,]7 € R" is the vector of unmeasured states

and y € R is the measured output. f(x) and g(x) are unknown smooth functions, d(¢) is the external disturbance.
Note that it is easy to verify that the pair (A, B) is controllable and the pair (CT, A) is observable.

Our design objective consists in determining the control law u to steer the system output y closes to the reference
signal y,, while ensuring that involved signals in the closed-loop system remain bounded.

Assumption 1. There exists an unknown positive constant d* such that |d(¢)| = d*.

Assumption 2. The reference signals y,, y,, ..., yf"_]), and yf") are assumed to be continuous and bounded.

Assumption 3. The sign of the control gain g(x) is also unknown. And there exist two unknown positive constants
g1 and go such that: 0 < go = |g(x)| = g1 [1,24].



The following remarks allow to motivate the above assumptions with respect to the considered design framework:

Remark 1. Assumptions 1 is usually required in system theory, e.g. see [1,14,20,31]. Assumption 2 is a standard
assumption in the adaptive control literature. This latter is the first to be made in an adaptive control scheme and can
be given explicitly or implicitly.

Remark 2. Many practical systems can be expressed or transformed in the form (1) such as: inverted pendulum system,
Duffing oscillator, Chua’s chaotic circuit, mass—springer—damper system, aircraft wing rock, induction servo-motor,
gyro system, Genesio chaotic system, single-link robot, and many others. Assumption 3 is not restrictive as it is satisfied
by all these practical systems. It is worth noting that the property 0 < go = |g(x)| guarantees the controllability of the
system (1).

Let us define the reference signal vector Y, and the tracking error vector as follows:

(n=1)yT

Xr:[yrsyrs“'syr ]T-

ce=y —x=leé ... " VN =le1, e .0
By using the fact that y = Ay + By, we get

é=Ae+ Bly" — f(x) — gxu —d@)],
e1 =Cle. “4)

Based on the feedback linearization approach, when the functions f(x) and g(x) are known, d(¢) = 0 and the state x
is available for measurement, the so-called ideal controller can be chosen as follows:

u=u* =g '@WI-f@)+y" +Kel, (5)

where K, = [ke1, ke2, ..., ken]T € R" is the feedback-gain vector selected such that the characteristic polynomial of
A — BK[ is strictly Hurwitz (i.e. stable).
Substituting (5) into (4) yields

e(")+KCTg=e(")+kcne("_”+---—}-kc-]e=O.

Thus, it can be obtained that lim,_, o, e(#) = 0. However, since the functions f(x) and g(x) are unknown and the state
vector x is not available for measurement, the ideal controller (5) cannot be implemented. Thereafter, to overcome such
problems, we will use

e an adaptive fuzzy system to approximate the unknown nonlinear function,
e a Nussbaum function to estimate the sign of g(x), and
e a state observer to estimate the tracking error vector.

2.1. Description of the fuzzy logic system

The basic configuration of a fuzzy logic system consists of a fuzzifier, some fuzzy IF-THEN rules, a fuzzy inference
engine and a defuzzifier, as shown in Fig. 1.

The fuzzy inference engine uses the fuzzy IF-THEN rules to perform a mapping from an input vector
xT =1[x1,x,...,x,] € R"toan output f € R. The ith fuzzy rule is written as

R™ :if x; is A} and ...and x, is Al then f is f', (6)

where A’i, Aiz, ...,and Al are fuzzy sets and f' is the fuzzy singleton for the output in the ith rule. By using the
singleton fuzzifier, product inference, and center-average defuzzifier, the output of the fuzzy system can be expressed
as follows:

R Sty F T2 iai (6)))
) = —=m n .
i1 (IT= ﬂA;(xj))

= 0"y (), (N



‘ Fuzzy Rules Base
x 7
— Fuzzifier Defuzzifier ».
Fuzzy Inference
Engine
Fig. 1. The basic configuration of a fuzzy logic system.
where p 4 (x;) is the degree of membership of x; to A;, m is the number of fuzzy rules, 07 = [f] , fz, cery f™]is the
J

adjustable parameter vector (composed of consequent parameters), and ! = ! y? ... Y™ with

(H?:] NA;(xj))

D Yy RTRIEY

being the fuzzy basis function (FBF). Throughout the paper, it is assumed that the FBFs are selected so that there is
always at least one active rule [30], i.e. 3 /L) ([Tj—; ppi (x;)) > 0.

It is worth noting that the fuzzy system (7) is com#nonly used in control applications. Following the universal
approximation results [30], the fuzzy system (7) is able to approximate any nonlinear smooth function f(x) on a
compact operating space to an arbitrary degree of accuracy. Of particular importance, it is assumed that the structure
of the fuzzy system (i.e. the pertinent inputs, the number of membership functions for each input and the number of
rules) and the membership function parameters are properly specified beforehand. The consequent parameters 0 are
then determined by appropriate adaptation algorithms.

2.2. Nussbaum function

In this paper, a Nussbaum function will be incorporated in the control law in order to estimate the sign of the control
gain.

A function N ({) is called a Nussbaum-function, if it has the following useful properties [10,19]:
(1) lim, 400 sup(1/5) f5 N()d{ = +o0,
(2) limy, 400 inf(1/5) f5 N(O)d{ = —o0.

Example. The following functions are Nussbaum functions [10]:

N1(©) = (¥ cos(0),

N>() = cos((n/2))e" .

Of course, the cosine in the above examples can be replaced by the sine. It is very easy to see that N1({) and N>({) are
Nussbaum functions.

As in [3,10], the even Nussbaum function N({) = ¢ cos((7t/2)C)eC2 will be used throughout this paper. Physically,
a Nussbaum-function can be visualized as a function of infinite gain and infinite switching frequency. The following
lemma regarding with the property of Nussbaum function will be utilized in the control design and theorem proof of
the next section.



Lemma 1 (Ge et al. [10]). Let V(-) and {(-) be smooth functions defined on [0, ty), with V(t)=0,Vt € [0, t7), and
N(-) be an even Nussbaum-type function. If the following inequality holds:

t t
V(t)=<co+ eV f gx (DN T dt 4 eV f Le“'"dt, Vi el0,1y), (8)
0 0

where cq represents some suitable constant, ci is a positive constant, and g(x(t)) is a time-varying parameter which
takes values in the unknown closed interval I = [I=,17], with O ¢ I, then V(t), {(t) and fé gx ()N ()¢ dt must be
bounded on [0, t 7).

Proof of Lemma 1. To proof this lemma, see [10]. [

Remark 3. As pointed out in [11], Lemma 1 is true for all the Nussbaum functions. Because of the presence of ¢“!*
in (8), the proof is function-dependent. In addition, we underline that N (-) is not necessarily to be an even function,
which is only made for convenience of the proof. If N(-)is chosen as an odd function, e.g. N({) = C2 sin({), the lemma

can be easily proven by following the same procedure in [10].

Lemma 1 can be easily extended to case where ¢ty = 00 due to Proposition 1 given below. Consider [11]:
x(t) = F(x(t)) with x(0) = xo, ©)]

where z—~F(z) € R" is upper semicontinuous on R" with non-empty convex and compact values. It is well known
that the initial-value problem has a solution and that every solution can be maximally extended.

Proposition 1 (Ryan [22]). Ifx : [0,t7) — RV is a bounded maximal solution of 9), thenty = oo.
3. The design of the observer-based fuzzy adaptive controller

Consider now the following observer for estimating the tracking error vector e:

é= A+ K@y,

e =C"e, (10)
where A, = A— BK!,é) =ej—61 =9 —y,é =% — Y., with X is the estimate of the state vector x and ¢ is the
estimate of the tracking error vector e. K, = [ko1, ko2, ..., ko] € R" is the observer-gain vector to be selected such
that the characteristic polynomial of A. — K,C7 is strictly Hurwitz and the vector K. has been previously defined.

Let us define the observation error vector as ¢ = ¢ — é = [}, €2, ..., &,]” . Subtracting (10) from (4), we get the

dynamics of the observation error as
¢ = AoZ+ Blfilx,) = g@u —d(®)],
er=cTe, (11

with A, = A, — K,CT, fi(x,) = f(x) + v, where x, = [xT,v]T and v = 4 Kle.
The unknown continuous nonlinear function fi(x,) can be approximated, on the compact set £, by the fuzzy system
(7) as follows:

fix,, 0) = 0T y(x,), (12)

where /(x,) is the FBF vector fixed a priori by the designer and 0 is the adjustable parameter vector of the fuzzy
system.
Let us define the optimal value of 0 as follows:

0 = argomin[sug fix,) = fitx,, 0)|]. (13)



Notice that the optimal value of 0 (i.e. 6*) is introduced only for analysis purposes, and its value is not needed when
implementing the controller.
Define

0=0-0* (14)
as the parameter estimation error, and
dolx,) = filx,) — filx,. 0) (15)

as the fuzzy approximation error, where f) (x,, 0%) = 0" T (x,).

As in the literature [1-5,14-17,20,27,28,31], we assume that the used fuzzy system does not violate the universal
approximator property on the compact set £2,. The latter is assumed to be large enough so that the input vector of
the fuzzy system remains in £, under the closed-loop control system. So it is reasonable to assume that the fuzzy
approximation error is bounded for all x € €y, i.e.

|G0(x,)| =0, Vx € Qy,
where 50 is an unknown constant.

Since the input vector x, = [xT, v]” is not available for measurement, the fuzzy system (12) used to approximate
fi(x,) is replaced by the following fuzzy system:

A&, 0)=0"y(&,). (16)
where the vector £, = [27, 3] = [T, KT ¢ + YT ig the estimate of x, =[x, v]T.
From (14)—(16), we have
fix)= ) = Ailx,. 09+ filx,. 0% = AGE,. 09+ fig,, 09)
= fi,. 09+ filx,) — Aix,. 0%+ filx,. 0%) — Ai&,. 0
=0T y(&,) + do(x,) + [0*TY(x,) — 0*TY(E,)]
=0T Y(E,) + 01(x,, £,), (17)

where d1(x,, X,) = do(x,) + [O*T_lp(gv) — O*Tlp@v)] is the approximation error. Notice that 61(X,, x,)) has an upper
bound, i.e. |01(x,, X,)| = 61 with J; is an unknown positive constant [1,14-17,20,27,31].
Substituting (17) into (11) yields

= Aoé + BIOTY(Z,) — g(x)u + 5],

I

~

1=C¢, (18)

QA

where 0 = d1(x,, x,) — d(t).

Since 01(x,, X,,) and d(t) € Lo, thus the upper bound of J; also exists, i.e. |02| = >, with J, is an unknown positive
constant.

The dynamics (18) can be expressed in frequency domain using the mixed notation (i.e. time-frequency) which is
very common in the adaptive control literature such as in [9,13,23,24]:

& = HOWO T Y(E,) — gx)u + 51, (19)

where s is the Laplace variable and H(s) = C T(sI — A,)"! B is the stable transfer function of (18).
Note that the mixed notation in (19) refers to the convolution between the inverse Laplace transform of H(s) and
(0T y(&,) — g@u + 62].



B Now, since the observation error dynamics (19) are not SPR, we introduce a low pass filter 7'(s) such that
H(s) = H(s)T~!(s) is SPR:

&1=HET )T Y(E,)] — T($)[g@ul + T(s)[62])
= HS)O Y (&) — T(9)[gul + dap)
= H(s) (07T Y(&,) — T(s)[gx)u] + 53), (20)
where
V@) =TEWE,),
0Ty (R,) = TGO YE )] = 0T TSYE,)],
02y = T(s)[d2],
83 = 0T [y (R,) — Y(E)] + 0y,

and T'(s) is called a SPR filter.

Because 2, Y(x,) and 0* € Lo and T(s) is a stable filter, therefore the term 43 can be also bounded as follows:
|03] = 53, where 53 is an unknown positive constant.

From (20), it is clear that the presence of the filtered term 7(s)[g(x)u] in the output observation-error dynamics
makes the control system design very difficult. To facilitate this task, the following assumption is made.

Assumption 4. The following inequality holds:

lg@)u — T()[g)ull =A% |u —uy|, (21)
where 1* is an unknown positive constant and uyp = T(s)[ul
Remark 4. For a general class of nonlinear systems, Assumption 4 can be relatively restrictive. However, it is already
satisfied in the following special cases:

e if g(x) is constant, and
e if g(x) varies slowly, i.e. in the case where T (s)[g(x)u] ~ g(x)T (s)[u].

Note that there exist many practical systems satisfying Assumption 4, e.g. mass—springer—damper system, aircraft
wing rock, induction servo-motor, gyro system, single-link robot, and many others.

The control input for the system (1) can be determined as

u = NE(—0"y(&,) — p tanh(en /1)), (22)
with

N(©) = cos((m/2)0)e", (23)

(= em (0" Y(&,) + p tanh(en1 /1)), (24)

0=—71010 + y1emP(£,), (25)

p = —7202p + Pzem1 tanh(em1/e1), (26)

where 1, 75, 01, 02 and ¢ are positive design constants, p is the estimate of p* = 53, and tanh(-) denotes the hyperbolic
tangent function. A new error e,1, called the modified error, is defined by

em1 = €1 + eql, (27



where the error e, is called the auxiliary error. It is generated by the following dynamics:
ear = H(s)(—A(u — u ) tanh((u — 1 f)em1 /22)), (28)
with

A= —=7303A 4 p3em1(u — u ) tanh((u — u f)ey1/e2), (29)

where 73, 63 and &; are positive design constants and 4 is the estimate of 1*.
From (20), (27) and (28), the dynamics of the modified error e,,; can be expressed as follows:

emt = H($)OTW(E ) — T(s)gx)u] — Au — ug) tanh((u — u lem /e2) + 3)
=H($)(OTY(E,) — g@u + 4, + 83), (30)

where 4, = g(x)u — T(s)[g(x)u] — A(u — uy)tanh((u — u r)ey1/e2).
Substituting (22) into (30) yields

emt = HS) O Y(Z,) — g@u + Ay, + 3)
= A(s)(—0" W(&,) — p tanh(en1/e1) + (1 + g@ONONOTYE,) + p tanh(en/e1)) + Ay + 03). (1)
where 0 = 0 — 0*.

The state space realization of (31) is given by

b0 = Aoey + BI=0" Y(&,) — p tanh(en1/e1) + (1 + g@NO)OTY(E,) + p tanh(em1 /e1) + Ay + 331,

emi=Cle,, (32)

m

where e,, = [en1, em2, vooyemn]? and (A(, € R"" B € R",C € R")is a minimal state realization of
H(s)= H(s)T~'(s) = C"(s1 — A4,)"'B,

with C = [0, ..., 0]17.
Since H(s) is SPR, the following holds:

ATP+PA,=-0 <0,
PB =oC, (33)

where o is a positive design constant, P = PT > 0and Q = Q7 > 0. Note that the matrix equations (33) and the
dynamics (32) will be used in the stability analysis.
To summarize, Fig. 2 shows the scheme of the proposed fuzzy adaptive controller.

Theorem 1. Consider the system (1) under Assumptions 1-4 and the observer (10). Then, the proposed fuzzy adaptive
controller, defined by (22)—(29), guarantees the following properties:

1. All signals in the closed-loop system are bounded, i.e. e,,, em1, €41, €1, ¢, €, ¢, 0 and u € L.

2. The output tracking error remains in a compact set Q, specified as: Q. = {e1||le1| =k}, where x is a positive
constant which will be defined later.

Proof of Theorem 1. Let us consider the Lyapunov function candidate

1 1 -7~ 1 1 <2
V=—e'P — 0 0+ —p*+—1, 34
205 gm+2V1 +2V2p +2V3 G

where 0 = 0 — 0*.
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Eq. (10)
Fuzzy adaptive u Plant y
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Eq. (22-29)

Estimator of ¢,
Eq. (28)

Fig. 2. The scheme of the proposed adaptive fuzzy controller based on observer.

Using (32) and (33), the time derivative of V| becomes
. 1 ~T . A
V=—3-¢,0¢, +eml=0 y(,) = p anh(en/en) + (1 + N ONOY(E,) + p tanh(en /21))

ler. 1 _. 1=
+A4, + 93]+ —0 04+ —pp+ — 74, (35)
V1 72 73
Evaluating (35) along the trajectories (24) and (25) gives
. 1 . ~T 1 _. 1-~.
V= —ﬂg,fl Qe,, + (1 + gXN). — 010" 0+ epi[—p tanh(e,1/e1) + 03 + 4] + PP + V_M' (36)
2 3
Using the following nice property with regard to function tanh(-) [21]:
0= |z|] — z tanh(z/¢) = & = 0.2785¢,
we can obtain the following inequalities:
en103 — pey tanh(e,1/e1) = p*lemi] — pem tanh(en /e1)
= p*&1 — pen1 tanh(e,1/e1), (37)
emidy = 2Fu—uglleni| — Au — ug)ey tanh((u — u pey /e2)
= By — Au — up)ep tanh((u — u p)en1 /6), (38)
where ¢1 = 0.2785¢1 and &5 = 0.2785¢;.
From (26), (29), (37) and (38), we can rewrite (36) as follows:
. 1 : ~T - = _ -
V== -6, 0, + 1+ 8WNOX = 010" 0= 02pp = 0300+ "% + p*a. (39)
Since the following inequalities are valid:
rd O1 302 | 01 g2
—010 0= — —|0 —10%1%,
ol 2||||+2|| I
~ 02.2 | 92 42
— = - = =
a2pp > p-+ P
and
~ 03 72 03 .42
—03A = — =1+ =1,
73 24 T3
we can rewrite (39) as follows:
. 1 01,72 02 .9 03 ~2 :
V== enQe, = S I01P = 50 = S0+ m4 (14 g@NO). (40)

where © = (a1/2)[10%|1% + (62/2)p*% + (63/2)1*% + % + p*E1.



Let p = min{Amin(Q)/Amax(P), 7101, }202, 7303}, hence we can rewrite (40) as follows:
V= —uV+r+1+g0NOYK, (41)

where Anmin(Q) denotes the smallest eigen-value of Q, and Amax (P) the largest eigen-value of P.
Multiplying (41) by e yields

%(Ve’”) = met + (1 + N0 (42)

Integrating (42) over [0,1], it follows that

t
o=V = % + (V(O) - %) e+ e_’”/ [(1+ g({)N(C))]e’”édT. (43)
0

We can rewrite (43) as follows:

t .
0=vViy=n+e™ /0 [(1 + g)NO))le Ldr, (44)

where n = n/u+ V(0). .

According to Lemma 1, we can conclude from (44) that V(¢), {(¢) and fé [(1+ gx)N(D)I{ dr are all bounded on
[0,¢7). The boundedness of 0, p, 4 and ¢, on [0, ) follows that of V(¢). From the boundedness of 0, p and {, we can
conclude directly about the boundedness of u. Since u € L, and T'(s) is a stable filter, then u s € Loo. From (18),
since the term [O*Tlp@v) — g(x)u + d2] is bounded and A, is stable, we can easily show that the observation error
vector ¢ is also bounded. Because e,; = e;;1 — €1, from the boundedness of e; and e,,1, we can conclude directly the
boundedness of e, ;. From (10), the boundedness of ¢ follows that of ;. Since ¢ and ¢ are bounded, then the tracking
error vector e is also bounded (i.e. ¢ € Lo).

Furthermore, owing to the smoothness of the proposed controller, the closed-loop system admits a solution on its
maximum interval of existence [0, #5). Therefore, according to Proposition 1, no finite time escape phenomenon may
occur and thus 74 can be extended to oo [10,22]. As an immediate result, all signals in the closed-loop system are
bounded on [0, 00).

Let [e™# [0 [(1 + gx)N()]Ce"* dt| = c; . From (43), we have

lem1] = lle, |l <\/ (P (0) - —) e~H + . (45)

Let c3 = |e,1| and ¢4 be the upper bound of |é1]|. Then, from (45), we get the upper bound of |e| as follows:

let] = le1] + e

= lemtl + leat| + le1]

PR Ry
C. C -
TS TN PV P

= K, (46)
where Kk = ¢4 + ¢3 + v/ 20/ 2min(P)~/7/ 1t + ¢2. This ends the proof. [

Remark 5. Note that an observer-based fuzzy adaptive controller for nonlinear multivariable systems with unknown
control direction has been also investigated in [18]. The stability of the closed-loop system has been proven by using
the SPR condition and the Lyapunov theory. A comparison between our paper and that of Liu et al. [18] is summarized
in Table 1.

I\



Table 1

Comparison between our control scheme and that proposed in [18].

Comparison

Our paper

Paper of Liu et al. (i.e. [18])

The class of the systems considered

The control gain
Number of design parameters

Filtering of the fuzzy basis functions (FBF)
Number of the parameters to be adjusted

Conclusions

SISO nonlinear system (but, one can effort-
lessly extend our results to the class consid-
ered in [18])

It is a function of state-variables, but bounded
by a constant

There are nine design parameters to be deter-
mined

It is not necessary

There are m+3 parameters to be adjusted,
where m is the number of the fuzzy rules
The advantages of our control scheme are:
1. The class of the systems considered is rela-
tively large, as the control gain is not constant
2. Because the FBFs are not filtered, the com-
putation burden is relatively reduced

MIMO nonlinear system (but each subsys-
tem can be considered as a SISO system with
bounded interconnection nonlinearities)

It is constant

There are three design parameters (for each
subsystems) to be determined

It is necessary

There are three parameters to be adjusted

The advantages of the controller proposed in
[18]:

1. There are fewer parameters to be adapted.
Therefore, there are little design parameters
to be determined

2. Despite the FBF’s filtering, the controller
proposed in [18] is simple. And because there
are fewer design parameters to be determined,
it is more appropriate in the practical applica-
tions

4. Simulation results

Simulation studies are carried out to show the effectiveness of the proposed controller. Two control problems are
considered to this end. The first one concerns a Duffing oscillator, while the second one concerns an inverted pendulum

system.

4.1. Example 1

In the following, we present simulation results showing the performances of the proposed fuzzy adaptive controller

applied to a Duffing oscillator.

The Duffing equation describes the hardening spring effect observed in many mechanical systems or pendulum

moving in a viscous medium. This chaotic system can be described as [7]

x| = X2,
. 3 47)
X2 = —p1x2 — pax1 — p3xj +q cos(wi),

where x = [x, 117 = [x1, x2]7 is the state vector, P1, P2, P3, and g are positive constants, ¢ is the time variable, and
o is the frequency. Depending on the choice of these constants, it is known that the solutions of (47) exhibit periodic,
almost periodic, and chaotic behaviour [7]. A typical chaotic behaviour of the uncontrolled Duffing equation can be
obtained with

p1=04, pr=-1.1, pa=1, g=2.1 and w=1.8.

Then, the controlled Duffing equation can be written as follows:

0 0
00 X+ ! (f(x) + g(X)u + d(t)),

|-
Il

y =11 0lx, (48)



where f(x) = —p1x2 — pax] — p3x]3 + g cos(wt) and g(x) = 1. It is assumed that the external disturbance d(¢) is a
square wave having an amplitude 41 with a period of 27(s).

The control objective is to force the system output y to track the reference signal y, = sin(z). It is worth noting that
the function f(x) and the control gain g(x) are assumed here to be unknown by the controller and only the system
output y is measurable. In fact, the model (48) is only required for simulation purposes.

The observer-gain vector and the feedback-gain vector are selected respectively as follows: K, = [40, 400]7 and
KI' = [4, 4]. We must choose the SPR filter T(s) so that H(s) = H(s)T ~'(s) = (1/(s> + 44s + 564))T ~!(s) is also
SPR. The filter T (s) is selected as follows:

1

T()= —— .
)= 82383

From the expression of H (s), we can find that

_ —44 1 _, o
A= , BT =1182383], CT =[10], and o= 0.4636.

—564 0
Given
(12 -1
e= -1 0.5]’

solving the matrix equation (33), we obtain the following positive-definite matrix:

[ 1.8496 —0.1683
—0.1683 0.0204 |-

P =

The design parameters are selected as: y; = 500, y, = 20,y3 =4, 01 = 1074, o) = 1075, 03 = 1074, e = 0.0125
and &, = 0.1.

For each variable of the inputs of the adaptive fuzzy system OTlp(iv), as in [1], we define three (triangular and
trapezoidal) membership functions uniformly distributed on the intervals [—2, 2] for x| and [—3, 3] for X3, [—5, 5]
for 0.

The initial conditions are chosen as x(0) = [x1(0), x2(0)]7 = [1, 017, &(0) = [é1(0), é2(0)]” = [2, =217, p(0) = 10,
A0) = 0.5 and 0;(0) = 0.

Fig. 3 shows the simulation results obtained by applying the proposed fuzzy adaptive controller based on observer.
Fig. 3(a) and (b) illustrates the tracking performances of the state variables. The estimates of tracking errors (¢; and
) are given in Fig. 3(c). Fig. 3(d) shows the boundedness of the control input u.

4.2. Example 2

In this section, we present simulation results showing the tracking performances of the proposed fuzzy adaptive
controller applied to an inverted pendulum system.

Let x; = 0 be the angle of the pendulum with respect to the vertical line and x, = 0. The dynamic equations of such
a system are given by [30]

X1 01 X1 0
RN R —
X2 00 X 1

X1
y=[10][ ] (49)
x2

with
mlxy sinxycosx; — (M + m)G sin x| — COS X]

X1, X2) = ) X1, Xx2) = )
fln x mlcosle—%l(M—f-m) 8(x1, %2 mlcosle—%l(M—f—m)
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Fig. 3. Simulation results of Example 1: (a) the system output y = x] (solid line) and the reference signal y, (doted line). (b) The state variable xp
(solid line) and the reference signal y, (doted line). (c) The tracking error estimates ¢| (doted line) and é, (solid line). (d) The control input u.

where G is the acceleration due gravity, M is the mass of the cart, m is the mass of the pole, [ is the half-length of pole
and u is the applied force.

It is assumed that the external disturbance d(¢) is a square wave having an amplitude £1 with a period of 27(s).
The system parameters are given as M=1kg, m=0.1kg, [=0.5m, G = 9.8 m/s>.

The control objective is to force the system output y to track the reference signal y, = sin(¢). We assume that the
functions f(x) and g(x) are completely unknown by the controller (including the sign of g(x)) and only the system
output y is available for measurement. In fact, the model (49) is only required for simulation purposes.

The observer-gain vector and the feedback-gain vector are selected respectively as follows: K, = [40, 400]7 and
KI =124, 144].

The SPR filter 7 (s) is designed as follows:

T(s) 1 thus F(s) = H( )T_]( ) s +4.7787
s) = ——— thu s) = H(s s) = .
s +4.7787 s2 4+ 184s + 6184
From the expression of H (s), we can find that
o[ —184 1 . -
A= , B =[147787], C" =[10], and o= 0.1967.
_—6184 0

Given Q = [12] 0. ;] solving the matrix equation (33), we get the following positive definite matrix:

P =

[ 0.2351 —0.008
| —0.008 0.0017 '

The design parameters are selected as: y; = 500, y, = 20,y; = 0.25, 01 = 1074, o) = 1073, o3 = 0.004,
g1 = 0.0125and & = 0.1.

For each variable of the inputs of the adaptive fuzzy system GTlp@U), as in [1], we define three (triangular and
trapezoidal) membership functions uniformly distributed on the intervals [—2, 2] for %1, [—3, 3] for %, and [—5, 5]
for v.
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Fig. 4. Simulation results of Example 2: (a) the system output y = x] (solid line) and the reference signal y, (doted line). (b) The state variable xp
(solid line) and the reference signal y, (doted line). (c) The tracking error estimates ¢| (doted line) and é, (solid line). (d) The control input u.

The initial conditions are chosen as x(0) = [x1(0), x2(0)]7 = [0.5,0]7, é(0) = [é1(0), &2(0)]T = [2,-2]7,
p(0) = 10, 4(0) = 0.5 and 0;(0) = 0.

The simulation results are depicted in Fig. 4. From this figure, we can see that the system tracks its desired trajectories
and the control input is bounded.

5. Conclusion

In this paper, an observer-based fuzzy adaptive controller for a class of SISO nonlinear systems with unknown control
gain sign has been presented. In the controller designing, neither measurement of the system states nor knowledge of
the system nonlinearities are required. Indeed, an observer has been constructed to estimate the tracking error vector
and an adaptive fuzzy system has been used to approximate the system nonlinearities. The Nussbaum-type function
has been particularly used to deal with the unknown control gain sign. Using the SPR condition and Lyapunov theory,
the stability of the closed-loop system has been rigorously proven. Simulation results have been reported to emphasize
the performances of the proposed controller.
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