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Introduction

In this paper we apply algebraic and combinatorial tools coming from representation theory of Lie algebras to the study of random paths. In [START_REF] Lecouvey | Random walks in Weyl chambers and crystals[END_REF] and [START_REF] Lecouvey | Conditioned random walks from Kac-Moody root systems[END_REF] we investigate the random Littelmann path defined from a simple module V of a Kac-Moody algebra g and use the generalized Pitmann transform P introduced by Biane, Bougerol and O'Connell [START_REF] Biane | Littelmann paths and Brownian paths[END_REF] to obtain its conditioning to stay in the dominant Weyl chamber of g. Roughly speaking, this random path is obtained by concatenation of elementary paths randomly chosen among the vertices of the crystal graph B associated to V following a distribution depending on the graph structure of B. It is worth noticing that for g = sl 2 , this random path reduces to the random walk on Z with steps {±1} and the transform P is the usual Pitman transform [START_REF] Pitman | One-dimensional Brownian motion and the three-dimensional Bessel process[END_REF]. Also when V is the defining representation of g = sl n+1 , the vertices of B are simply the paths linking 0 to each vector of the standard basis of R n+1 and we notably recovered some results by O'Connell exposed in [START_REF] O' Connell | A path-transformation for random walks and the Robinson-Schensted correspondence[END_REF]. It appears that many natural random walks can in fact be realized from a suitable choice of the representation V .

We will assume here that g is a simple (finite-dimensional) Lie algebra over C of rank n. The irreducible finite-dimensional representations of g are then parametrized by the dominant weights of g which are the elements of the set P + = P ∩ C where P and C are the weight lattice and the dominant Weyl chamber of g, respectively. The random path W we considered in [START_REF] Lecouvey | Conditioned random walks from Kac-Moody root systems[END_REF] is defined from the crystal B(κ) of the irreducible g-module V (κ) with highest weight κ ∈ P + (κ is fixed for each W). The crystal B(κ) is an oriented graph graded by the weights of g whose vertices are Littelmann paths of length 1. The vertices and the arrows of B(κ) are obtained by simple combinatorial rules from a path π κ connecting 0 to κ and remaining in C (the highest weight path). We endowed B(κ) with a probability distribution p compatible with the weight graduation defined from the choice of a n-tuple τ of positive reals (a positive real for each simple root of g). The probability distribution considered on the successive tensor powers B(κ) ⊗ℓ is the product distribution p ⊗ℓ . It has the crucial property to be central: two paths in B(κ) ⊗ℓ with the same ends have the same probability. We can then define, following the classical construction of a Bernoulli process, a random path W with underlying probability space (B(κ) ⊗Z ≥0 , p ⊗Z ≥0 ) as the direct limit of the spaces (B(κ) ⊗ℓ , p ⊗ℓ ). The trajectories of W are the concatenations of the Littelmann paths appearing in B(κ). It makes sense to consider the image of W by the generalized Pitman transform P. This yields a Markov process H = P(W) whose trajectories are the concatenations of the paths appearing in B(κ) which remain in the dominant Weyl chamber C. When the drift of W belongs to the interior of C, we establish in [START_REF] Lecouvey | Conditioned random walks from Kac-Moody root systems[END_REF] that the law of H coincides with the law of W conditioned to stay in C. By setting W ℓ = W(ℓ) for any positive integer ℓ, we obtain in particular a Markov chain W = (W ℓ ) ℓ≥1 on the dominant weights of g.

In the spirit of the works of Kerov and Vershik, one can define central probability measures on the space Ω C of infinite trajectories associated to H (i.e. remaining in P). These are the probability measures giving the same probability to any cylinders C π and C π ′ issued from paths π and π ′ of length ℓ remaining in C with the same ends. Alternatively, we can consider the multiplicative graph G with vertices the pairs (λ, ℓ) ∈ P + × Z ≥0 and weighted arrows (λ, ℓ) m Λ λ,κ → (Λ, ℓ + 1) where m Λ λ,κ is the multiplicity of the representation V (Λ) in the tensor product V (λ) ⊗ V (κ). Each central probability measure on Ω C is then characterized by the harmonic function ϕ on G associating to each vertex (λ, ℓ), the probability of any cylinder C π where π is any path of length ℓ remaining in C and ending at λ. Finally, a third equivalent way to study central probability measures on Ω C is to define a Markov chain on G whose transition matrix is computed from the harmonic function ϕ. We refer to Paragraph 6.1 for a detailed review.

When g = sl n+1 , the elements of P + can be regarded as the partitions λ = (λ 1 ≥ • • • ≥ λ n ≥ 0) ∈ Z n . Moreover, if we choose V (κ) = V , the defining representation of g = sl n+1 , we have m Λ λ,κ = 0 if and only if the Young diagram of Λ is obtained by adding one box to that of λ. The connected component of G obtained from (∅, 0) thus coincides with the Young lattice Y n of partitions with at most n parts (one can obtain the whole Young lattice Y by working with g = sl ∞ ). In that case, Kerov and Vershik (see [START_REF] Kerov | Asymptotic representation theory of the symmetric group and its applications in analysis[END_REF]) completely determined the harmonic function on Y. They showed that these harmonic functions have nice expressions in terms of generalized Schur functions.

In [START_REF] Pitman | One-dimensional Brownian motion and the three-dimensional Bessel process[END_REF] Pitman established that the usual (one-dimensional) Pitman transform is almost surely invertible on infinite trajectories (i.e. reversible on a space of trajectories of probability 1). It is then a natural question to ask wether its generalized version P shares the same invertibility property. Observe that in the case of the defining representation of sl n+1 (or sl ∞ ), the generalized Pitmann transform can be expressed in terms of a Robinson-Schensted-Knuth (RSK) type correspondence. Such an invertibility property was obtained by O'Connell in [START_REF] O' Connell | A path-transformation for random walks and the Robinson-Schensted correspondence[END_REF] (for usual RSK related to ordinary Schur functions) and recently extended by Sniady [START_REF] Sniady | Robinson-Schensted-Knuth algorithm, jeu de taquin on infinite tableaux and the characters of the infinite symmetric group[END_REF] (for the generalized version of RSK used by Kerov and Vershik and related to the generalized Schur functions). Our result shows that this invertibility property survives beyond type A and for random paths constructed from any irreducible representation.

In what follows, we first prove that the probability distributions p on B(κ) we introduced in [START_REF] Lecouvey | Random walks in Weyl chambers and crystals[END_REF], [START_REF] Lecouvey | Conditioned one-way simple random walks and representation theory[END_REF] and [START_REF] Lecouvey | Conditioned random walks from Kac-Moody root systems[END_REF] are precisely all the possible distributions yielding central distributions on B(κ) ⊗ℓ . We believe this will make the restriction we did in these papers more natural. We also establish a law of large numbers and a central limit theorem for the Markov process H. Here we need our assumption that g is finite-dimensional since in this case P has a particular simple expression as a composition of (ordinary) Pitman transforms. Then we determine the harmonic functions on the multiplicative graph G for which the associated Markov chain verifies a law of large numbers. We establish in fact that these Markov chains are exactly the processes H defined in [START_REF] Lecouvey | Random walks in Weyl chambers and crystals[END_REF] and have simple expressions in terms of the Weyl characters of g. This can be regarded as an analogue of the result of Kerov and Vershik determining the harmonic functions on the Young lattice. Finally, we prove that the generalized Pitman transform P is almost surely invertible and explain how its inverse can be computed. Here we will extend the approach developed by Sniady in [START_REF] Sniady | Robinson-Schensted-Knuth algorithm, jeu de taquin on infinite tableaux and the characters of the infinite symmetric group[END_REF] for the generalized RSK to our context. The paper is organized as follows. In Section 2, we recall some background on continuous time Markov processes. Section 3 is a recollection of results on representation theory of Lie algebras and the Littelmann path model. We state in Section 4 the main results of [START_REF] Lecouvey | Conditioned random walks from Kac-Moody root systems[END_REF] and prove that the probability distributions p introduced in [START_REF] Lecouvey | Random walks in Weyl chambers and crystals[END_REF] are in fact the only possible yielding central measures on trajectories. The law of large numbers and the central limit theorem for H are established in Section 5. We study the harmonic functions of the graphs G in Section 6. In Section 7 we show that the spaces of trajectories for W and H both have the structure of dynamical systems coming from the shift operation. We then prove that these dynamical systems are intertwined by P. Finally, we establish the existence of a relevant inverse of P in Section 7.

MSC classification: 05E05, 05E10, 60G50, 60J10, 60J22.

Random paths

2.1. Background on Markov chains. Consider a probability space (Ω, F, P) and a countable set M . A sequence Y = (Y ℓ ) ℓ≥0 of random variables defined on Ω with values in M is a Markov chain when

P(Y ℓ+1 = µ ℓ+1 | Y ℓ = µ ℓ , . . . , Y 0 = µ 0 ) = P(Y ℓ+1 = µ ℓ+1 | Y ℓ = µ ℓ )
for any any ℓ ≥ 0 and any µ 0 , . . . , µ ℓ , µ ℓ+1 ∈ M . The Markov chains considered in the sequel will also be assumed time homogeneous, that is

P(Y ℓ+1 = λ | Y ℓ = µ) = P(Y ℓ = λ | Y ℓ-1 = µ)
for any ℓ ≥ 1 and µ, λ ∈ M . For all µ, λ in M , the transition probability from µ to λ is then defined by Π(µ, λ) = P(Y ℓ+1 = λ | Y ℓ = µ) and we refer to Π as the transition matrix of the Markov chain Y . The distribution of Y 0 is called the initial distribution of the chain Y .

A continuous time Markov process Y = (Y(t)) t≥0 on (Ω, F, P) with values in R n is a measurable family of random variables defined on (Ω, F, P) such that, for any integer k ≥ 1 and any 0 ≤ t 1 < • • • < t k+1 the conditional distribution (1) of Y(t k+1 ) given (Y(t 1 ), • • • , Y(t k )) is equal to the conditional distribution of Y(t k+1 ) given Y(t k ); in other words, for almost all (y 1 , • • • , y k ) with respect to the distribution of the random vector (Y(t 1 ), • • • , Y(t k )) and for all Borelian set

B ⊂ R n P(Y(t k+1 ) ∈ B | Y(t 1 ) = y 1 , • • • , Y(t k ) = y k ) = P(Y(t k+1 ) ∈ B | Y(t k ) = y k ).
We refer to the book [START_REF] Dynkin | Markov Processes[END_REF], chapter 3, for a description of such processes.

From now on, we consider a R n -valued Markov process (Y(t)) t≥0 defined on (Ω, F, P) and we assume the following conditions:

(i) M ⊂ R n 1 Let us recall briefly the definition of the conditional distribution of a random variable given another one. Let X and Y be random variables defined on some probability space (Ω, F, P) with values respectively in R n and R m , n, m ≥ 1. Denote by µX the distribution of X, it is a probability measure on R n . The conditional distribution of Y given X is defined by the following "disintegration" formula: for any Borelian sets

A ⊂ R n and B ⊂ R m P (X ∈ A) ∩ (Y ∈ B) = A P(Y ∈ B | X = x) dµX (x).
Notice that the function x → P(Y ∈ B | X = x) is a Radon-Nicodym derivative with respect to µX and is thus just defined modulo the measure µX . The measure

B → P(Y ∈ B | X = x) is called the conditional distribution of Y given X = x.
(ii) for any integer ℓ ≥ 0

(1)

Y ℓ := Y(ℓ) ∈ M P-almost surely.
It readily follows that the sequence Y = (Y ℓ ) ℓ≥0 is a M -valued Markov chain. (iii) for any integer ℓ ≥ 0, the conditional distribution of (Y(t)) t≥ℓ given Y ℓ is equal to the one of (Y(t)) t≥0 given Y 0 ; in other words, for any Borel set B ⊂ (R n ) ⊗[0,+∞[ and any λ ∈ M , one gets

P((Y(t)) t≥ℓ ∈ B | Y ℓ = λ) = P((Y(t)) t≥0 ∈ B | Y 0 = λ).
In the following, we will assume that the initial distribution of the Markov process (Y(t)) t≥0 has full support, i.e. P(Y(0) = λ) > 0 for any λ ∈ M . 2.2. Elementary random paths. Consider a Z-lattice P ⊂ R n with rank n. An elementary Littelmann path is a piecewise continuous linear map π : [0, 1] → P R such that π(0) = 0 and π(1) ∈ P . Two paths which coincide up to reparametrization are considered as identical.

The set F of continuous functions from [0, 1] to R n is equipped with the norm • ∞ of uniform convergence : for any π ∈ F, on has π ∞ := sup t∈[0,1] π(t) where • denotes the euclidean norm on P ⊂ R n . Let B be a finite set of elementary paths and fix a probability distribution p = (p π ) π∈B on B such that p π > 0 for any π ∈ B. Let X be a random variable with values in B defined on a probability space (Ω, F, P) and with distribution p (in other words P(X = π) = p π for any π ∈ B). The variable X admits a moment of order 1 defined by

m := E(X) = π∈B p π π.
The concatenation π 1 * π 2 of two elementary paths π 1 and π 2 is defined by

π 1 * π 2 (t) = π 1 (2t) for t ∈ [0, 1 2 ], π 1 (1) + π 2 (2t -1) for t ∈ [ 1 2 , 1]. In the sequel, C is a closed convex cone in P ⊂ R n .
Let B be a set of elementary paths and (X ℓ ) ℓ≥1 a sequence of i.i.d. random variables with same law as X where X is the random variable with values in B introduced just above. We define a random process W as follows: for any ℓ ∈ Z >0 and t ∈ [ℓ, ℓ + 1]

W(t) := X 1 (1) + X 2 (1) + • • • + X ℓ-1 (1) + X ℓ (t -ℓ).
The sequence of random variables W = (W ℓ ) ℓ∈Z ≥0 := (W(ℓ)) ℓ≥0 is a random walk with set of increments I := {π(1) | π ∈ B}.

Littelmann paths

3.1. Background on representation theory of Lie algebras. Let g be a simple finitedimensional Lie algebra over C of rank n and g = g + ⊕ h ⊕ g -a triangular decomposition. We shall follow the notation and convention of [START_REF] Bourbaki | Groupes et algèbres de Lie[END_REF]. According to the Cartan-Killing classification, g is characterized (up to isomorphism) by its root system R. This root system is determined by the previous triangular decomposition and realized in the euclidean space R n . We denote by ∆ + = {α i | i ∈ I} the set of simple roots of g, by R + the (finite) set of positive roots. We then have n = card(∆ + ) and R = R + ∪ R -with R -= -R + . The root lattice of g is the integral lattice Q = n i=1 Zα i . Write ω i , i = 1, . . . , n for the fundamental weights associated to g. The weight lattice associated to g is the integral lattice P = n i=1 Zω i . It can be regarded as an integral sublattice of h * R (the real form of the dual h * of h). We have dim(P ) = dim(Q) = n and Q ⊂ P .

The cone of dominant weights for g is obtained by considering the positive integral linear combinations of the fundamental weights, that is

P + = n i=1 Z ≥0 ω i . The corresponding open Weyl chamber is the cone C = n i=1 R >0 ω i . We also introduce its closure C = n i=1 R ≥0 ω i .
In type A, we shall use the weight lattice of gl n rather than that of sl n for simplicity. We also introduce the Weyl group W of g which is the group generated by the orthogonal reflections s i through the hyperplanes perpendicular to the simple root α i , i = 1, . . . , n. Each w ∈ W may be decomposed as a product of the s i , i = 1, . . . , n. All the minimal length decompositions of w have the same length l(w). The group W contains a unique element w 0 of maximal length l(w 0 ) equal to the number of positive roots of g, this w 0 is an involution and if s i 1 • • • s ir is a minimal length decomposition of w 0 , we have

(2) R + = {α i 1 , s i 1 • • • s ia (α i a+1 ) with a = 1, . . . , r -1}.
Example 3.1. The root system of g = sp 4 has rank 2. In the standard basis (e 1 , e 2 ) of the euclidean space R 2 , we have ω 1 = (1, 0) and ω 2 = (1, 1).

So P = Z 2 and C = {(x 1 , x 2 ) ∈ R 2 | x 1 ≥ x 2 ≥ 0}.
The simple roots are α 1 = e 1e 2 and α 2 = 2e 2 . We also have

R + = {α 1 , α 2 , α 1 + α 2 , 2α 1 + α 2 }.
The Weyl group W is the octahedral group with 8 elements. It acts on R 2 by permuting the coordinates of the vectors and flipping their sign. More precisely, for any

β = (β 1 , β 2 ) ∈ R 2 , we have s 1 (β) = (β 2 , β 1 ) and s 2 (β) = (β 1 , -β 2 )
. The longest element is w 0 = -id = s 1 s 2 s 1 s 2 . On easily verifies we indeed have

R + = {α 1 , s 1 s 2 s 1 (α 2 ) = α 2 , s 1 s 2 (α 1 ) = α 1 + α 2 , s 1 (α 2 ) = 2α 1 + α 2 }.
We now summarize some properties of the action of W on the weight lattice P . For any weight β, the orbit W • β of β under the action of W intersects P + in a unique point. We define a partial order on P by setting µ ≤ λ if λµ belongs to Q + = n i=1 Z ≥0 α i . Let U (g) be the enveloping algebra associated to g. Each finite dimensional g (or U (g))-module M admits a decomposition in weight spaces M = µ∈P M µ where

M µ := {v ∈ M | h(v) = µ(h)v for any h ∈ h and some µ(h) ∈ C}.
This means that the action of any h ∈ h on the weight space M µ is diagonal with eigenvalue µ(h). In particular, (M ⊕ M ′ ) µ = M µ ⊕ M ′ µ . The Weyl group W acts on the weights of M and for any σ ∈ W, we have dim M µ = dim M σ•µ . For any γ ∈ P , let e γ be the generator of the group algebra C[P ] associated to γ. By definition, we have e γ e γ ′ = e γ+γ ′ for any γ, γ ′ ∈ P and the group W acts on C[P ] as follows: w(e γ ) = e w(γ) for any w ∈ W and any γ ∈ P .

The character of M is the Laurent polynomial in C[P ] char(M )(x) := µ∈P dim(M µ )e µ where dim(M µ ) is the dimension of the weight space M µ .

The irreducible finite dimensional representations of g are labelled by the dominant weights. For each dominant weight λ ∈ P + , let V (λ) be the irreducible representation of g associated to λ. The category C of finite dimensional representations of g over C is semisimple: each module decomposes into irreducible components. The category C is equivariant to the (semisimple) category of finite dimensional U (g)-modules (over C). Roughly speaking, this means that the representation theory of g is essentially identical to the representation theory of the associative algebra U (g). Any finite dimensional U (g)-module M decomposes as a direct sum of irreducible M = λ∈P + V (λ) ⊕m M,λ where m M,λ is the multiplicity of V (λ) in M . Here we slightly abuse the notation and also denote by V (λ) the irreducible f.d. U (g)-module associated to λ.

When M = V (λ) is irreducible, we set s λ := char(M ) = µ∈P K λ,µ e µ with dim(M µ ) = K λ,µ . Then K λ,µ = 0 only if µ ≤ λ. Recall also that the characters can be computed from the Weyl character formula but we do not need this approach in the sequel.

Given κ, µ in P + and a nonnegative integer ℓ, we define the tensor multiplicities f ℓ λ/µ,κ by

(3) V (µ) ⊗ V (κ) ⊗ℓ ≃ λ∈P + V (λ) ⊕f ℓ λ/µ,κ .
For µ = 0, we set f ℓ λ,κ = f ℓ λ/0,κ . When there is no risk of confusion, we write simply f ℓ λ/µ (resp. f ℓ λ ) instead of f ℓ λ/µ,κ (resp. f ℓ λ,κ ). We also define the multiplicities m λ µ,κ by ( 4)

V (µ) ⊗ V (κ) ≃ µ λ V (λ) ⊕m λ µ,κ
where the notation µ λ means that λ ∈ P + and V (λ) appears as an irreducible component of V (µ) ⊗ V (κ). We have in particular m λ µ,κ = f 1 λ/µ,κ .

3.2. Littelmann path model. We now give a brief overview of the Littelmann path model. We refer to [START_REF] Littelmann | A Littlewood-Richardson type rule for symmetrizable Kac-Moody algebras[END_REF], [START_REF] Littelmann | Paths and root operators in representation theory[END_REF], [START_REF] Littelmann | The path model, the quantum Frobenius map and standard monomial theory, Algebraic Groups and Their Representations NATO[END_REF] and [START_REF] Kashiwara | On crystal bases[END_REF] for examples and a detailed exposition. Consider a Lie algebra g and its root system realized in the euclidean space P R = R n . We fix a scalar product •, • on P R invariant under W. For any root α, we set α ∨ = 2α α,α . We define the notion of elementary continuous piecewise linear paths in P R as we did in § 2.2. Let L be the set of elementary paths η having only rational turning points (i.e. whose inflexion points have rational coordinates) and ending in P i.e. such that η(1) ∈ P . We then define the weight of the path η by wt(η) = η(1). Given any path η ∈ L, we define its reverse path r(η) ∈ L by

r(η)(t) = η(1 -t) -η(1).
Observe the map r is an involution on L. Littelmann associated to each simple root α i , i = 1, . . . , n, some root operators ẽi and fi acting on L ∪ {0}. We do not need their complete definition in the sequel and refer to the above mentioned papers for a complete review. Recall nevertheless that roots operators ẽi and fi essentially act on a path η by applying the symmetry s α on parts of η and we have [START_REF] Kashiwara | On crystal bases[END_REF] fi (η) = rẽ i r(η).

These operators therefore preserve the length of the paths since the elements of W are isometries. Also if fi (η) = η ′ = 0, we have ( 6) ẽi (η ′ ) = η and wt( fi (η)) = wt(η)α i .

By drawing an arrow η

i → η ′ between the two paths η, η ′ of L as soon as fi (η) = η ′ (or equivalently η = ẽi (η ′ )), we obtain a Kashiwara crystal graph with set of vertices L. By abuse of notation, we yet denote it by L which so becomes a colored oriented graph. For any η ∈ L, we denote by B(η) the connected component of η i.e. the subgraph of L generated by η by applying operators ẽi and fi , i = 1, . . . , n. For any path η ∈ L and i = 1, . . . , n,

set ε i (η) = max{k ∈ Z ≥0 | ẽk i (η) = 0} and ϕ i (η) = max{k ∈ Z ≥0 | f k i (η) = 0}. The set L min Z of integral paths is the set of paths η such that m η (i) = min t∈[0,1] { η(t), α ∨ i } belongs to Z for any i = 1, . . . , n.
We also recall that we have

C = {x ∈ h * R | x, α ∨ i ≥ 0} and C = {x ∈ h * R | x, α ∨ i > 0}.
Any path η such that Im η ⊂ C verifies m η (i) = 0 so belongs to L min Z . One gets the Proposition 3.2. Let η and π two paths in L min Z . Then (i) the concatenation π * η belongs to L min Z , (ii) for any i = 1, . . . , n we have

(7) ẽi (η * π) = η * ẽi (π) if ε i (π) > ϕ i (η) ẽi (η) * π otherwise, and fi (η * π) = fi (η) * π if ϕ i (η) > ε i (π) η * fi (π) otherwise.
In particular, ẽi (η * π) = 0 if and only if ẽi (η) = 0 and ε i (π) ≤ ϕ i (η) for any i = 1, . . . , n. (iii) ẽi (η) = 0 for any i = 1, . . . , n if and only if Im η is contained in C.

The following theorem summarizes crucial results by Littelmann (see [START_REF] Littelmann | A Littlewood-Richardson type rule for symmetrizable Kac-Moody algebras[END_REF], [START_REF] Littelmann | Paths and root operators in representation theory[END_REF] and [START_REF] Littelmann | The path model, the quantum Frobenius map and standard monomial theory, Algebraic Groups and Their Representations NATO[END_REF]). Theorem 3.3. Consider λ, µ and κ dominant weights and choose arbitrarily elementary paths η λ , η µ and η κ in L such that Im η λ ⊂ C, Im η µ ⊂ C and Im η κ ⊂ C and joining respectively 0 to λ, 0 to µ and 0 to κ.

(i

) We have B(η λ ) := { fi 1 • • • fi k η λ | k ∈Z ≥0 and 1 ≤ i 1 , • • • , i k ≤ n} \ {0}. In particular wt(η) -wt(η λ ) ∈ Q + for any η ∈ B(η λ ). (ii) All the paths in B(η λ ) have the same length than η λ . (iii) The paths on B(η λ ) belong to L min Z . (iv) If η ′ λ is another elementary path from 0 to λ such that Im η ′ λ is contained in C, then B(η λ ) and B(η ′
λ ) are isomorphic as oriented graphs i.e. there exists a bijection θ : B(η λ ) → B(η ′ λ ) which commutes with the action of the operators ẽi and fi , i = 1, . . . , n. 1) .

(v) We have (8) s λ = η∈B(η λ ) e η(
(vi) For any b ∈ B(η λ ) we have wt(b) = n i=1 (ϕ i (b) -ε i (b))ω i . (vii) For any i = 1, . . . , n and any b ∈ B(η λ ), let s i (b) be the unique path in B(η λ ) such that ϕ i (s i (b)) = ε i (b) and ε i (s i (b)) = ϕ i (b)
(in other words, s i acts on each i-chain C i as the symmetry with respect to the center of C i ). The actions of the s i 's extend to an action 2 of W on L which stabilizes B(η λ ). In particular, for any w ∈ W and any b ∈ B(η λ ), we have w(b) ∈ B(η λ ) and wt(w(b)) = w(wt(b)). (viii) Given any integer ℓ ≥ 0, set

(9) B(η µ ) * B(η κ ) * ℓ = {π = η * η 1 * • • • * η ℓ ∈ L | η ∈ B(η µ ) and η k ∈ B(η κ ) for any k = 1, . . . , ℓ}. The graph B(η µ ) * B(η κ ) * ℓ is contained in L min Z . (ix) The multiplicity m λ µ,κ defined in (4) is equal to the number of paths of the form µ * η with η ∈ B(η κ ) contained in C. (x) The multiplicity f ℓ λ/µ defined in (3) is equal to cardinality of the set H ℓ λ/µ := {π ∈ B(η µ ) * B(η κ ) * ℓ | ẽi (π) = 0 for any i = 1, . . . , n and π(1) = λ}. Each path π = η * η 1 * • • • * η ℓ ∈ H ℓ λ/µ verifies Im π ⊂ C and η = η µ . Remarks 3.4.
(i) Combining ( 6) with assertions (i) and (v) of Theorem 3.3, one may check that the function e -λ s λ is in fact a polynomial in the variables T i = e -α i , namely [START_REF] Lenart | On the Combinatorics of Crystal Graphs, I. Lusztig's Involution[END_REF] 

s λ = e λ S λ (T 1 , . . . , T n ) where S λ ∈ C[X 1 , . . . , X n ].
2 This action, defined from the crystal structure on paths, should not be confused with the pointwise action of the Weyl group on the paths.

(ii) Using assertion (i) of Theorem 3.3, we obtain m λ µ,κ = 0

only if µ + κ -λ ∈ Q + . Similarly, when f κ,ℓ λ/µ = 0 one necessarily has µ + ℓκ -λ ∈ Q + .

Random paths from Littelmann paths

In this Section we recall some results of [START_REF] Lecouvey | Conditioned random walks from Kac-Moody root systems[END_REF]. We also introduce the notion of central probability distribution on elementary Littelmann paths and show these distributions coincide with those used in the seminal works [START_REF] Biane | Littelmann paths and Brownian paths[END_REF], [START_REF] O' Connell | A path-transformation for random walks and the Robinson-Schensted correspondence[END_REF] and also in our previous papers [START_REF] Lecouvey | Random walks in Weyl chambers and crystals[END_REF], [START_REF] Lecouvey | Conditioned one-way simple random walks and representation theory[END_REF], [START_REF] Lecouvey | Conditioned random walks from Kac-Moody root systems[END_REF]. 4.1. Central probability measure on trajectories. Consider κ ∈ P + and a path π κ ∈ L from 0 to κ such that Im π κ is contained in C. Let B(π κ ) be the connected component of L containing π κ . Assume that {π 1 , . . . , π ℓ } is a family of elementary paths in B(π κ ); the path

π 1 ⊗ • • • ⊗ π ℓ of length ℓ is defined by: for all k ∈ {1, . . . , ℓ -1} and t ∈ [k, k + 1] (11) π 1 ⊗ • • • ⊗ π ℓ (t) = π 1 (1) + • • • + π k (1) + π k+1 (t -k).
Let B(π κ ) ⊗ℓ be the set of paths of the form b = π 1 ⊗ • • • ⊗ π ℓ where π 1 , . . . , π ℓ are elementary paths in B(π κ ); there exists a bijection ∆ between B(π κ ) ⊗ℓ and the set B * ℓ (π κ ) of paths in L obtained by concatenations of ℓ paths of B(π κ ):

(12) ∆ : B(π κ ) ⊗ℓ -→ B(π κ ) * ℓ π 1 ⊗ • • • ⊗ π ℓ -→ π 1 * • • • * π ℓ .
In fact

π 1 ⊗ • • • ⊗ π ℓ and π 1 * • • • * π ℓ coincide up to a reparametrization and we define the weight of b = π 1 ⊗ • • • ⊗ π ℓ setting wt(b) := wt(π 1 ) + • • • + wt(π ℓ ) = π 1 (1) + • • • + π ℓ (1). The involution r on η ∈ B(π κ ) ⊗ℓ is such that r(η)(t) = η(ℓ -t) -η(0) for any t ∈ [0, ℓ].
Consider p a probability distribution on B(π κ ) such that p π > 0 for any π ∈ B(π κ ). For any integer ℓ ≥ 1, we endow B(π κ ) ⊗ℓ with the product density p ⊗ℓ . That is we set

p ⊗ℓ π = p π 1 ו • •×p π ℓ for any π = π 1 ⊗ • • • ⊗ π ℓ ∈ B(π κ ) ⊗ℓ .
Here, we follow the classical construction of a Bernoulli process. Write Π ℓ : B(π κ ) ⊗ℓ → B(π κ ) ⊗ℓ-1 the projection defined by Π ℓ (π

1 ⊗ • • • ⊗ π ℓ-1 ⊗ π ℓ ) = π 1 ⊗ • • • ⊗ π ℓ-1
; the sequence (B(π κ ) ⊗ℓ , Π ℓ , p ⊗ℓ ) ℓ≥1 is a projective system of probability spaces. We denote by Ω = (B(π κ ) ⊗Z ≥0 , p ⊗Z ≥0 ) its projective limit. The elements of B(π κ ) ⊗Z ≥0 are infinite sequences ω = (π ℓ ) ℓ≥1 we call trajectories. By a slight abuse of notation, we will write Π ℓ (ω) = π 1 ⊗ • • • ⊗ π ℓ . We also write P = p ⊗Z ≥0 for short. For any b ∈ B(π κ ) ⊗ℓ , we denote by The following proposition shows that P can only be central when the probability distribution p on B(π κ ) is compatible with the graduation of B(π κ ) by the set of simple roots. This justifies the restriction we did in [START_REF] Lecouvey | Random walks in Weyl chambers and crystals[END_REF] and [START_REF] Lecouvey | Conditioned random walks from Kac-Moody root systems[END_REF] on the probability distributions we have considered on B(π κ ). This restriction will also be relevant in the remaining of this paper.

U b = {ω ∈ Ω | Π ℓ (ω) =
Proposition 4.3. The following assertions are equivalent (i) The probability distribution P is central.

(ii) There exists an n-tuple τ = (τ 1 , . . . , τ n ) ∈]0, +∞[ n such that for each arrow

π i → π ′ in B(π κ ), we have the relation p π ′ = p π × τ i .
Proof. Assume probability distribution P is central. For any path π ∈ B(π κ ), we define the depth d(π) as the number of simple roots appearing in the decomposition of κwt(π) on the basis of simple roots (see assertion (i) of Theorem 3.3). This is also the length of any path joining π κ to π in the crystal graph B(π κ ). We have to prove that p π ′ pπ is a constant depending only on i as soon as we have an arrow

π i → π ′ in B(π κ ). For any k ≥ 1, we set B(π κ ) k = {π ∈ B(π κ ) | d(π) ≤ k}.
We will proceed by induction and prove that p π ′ pπ is a constant depending only on i as soon as there is an arrow

π i → π ′ in B(π κ ) k . This is clearly true in B(π κ ) 1 since there is at most one arrow i starting from π κ . Assume, the property is true in B(π κ ) k with k ≥ 1. Consider π ′ in B(π κ ) k+1 and an arrow π i → π ′ in B(π κ ) k+1 . We must have π ∈ B(π κ ) k . If B(π κ ) k does not contains any arrow i
→, there is nothing to verify. So assume there is at least an arrow π

1 i → π 2 in B(π κ ) k . In B(π κ ) ⊗2 , we have wt(π 1 ⊗π ′ ) = wt(π 1 )+wt(π)-α i since wt(π ′ ) = wt(π)-α i . Similarly, we have wt(π 2 ⊗ π) = wt(π 1 ) -α i + wt(π) since wt(π 2 ) = wt(π 1 ) -α i . Thus wt(π 1 ⊗ π ′ ) = wt(π 2 ⊗ π).
Since P is central, we deduce from the above remark the equality p ⊗2 (π

1 ⊗ π ′ ) = p ⊗2 (π 2 ⊗ π). This yields p π 1 p π ′ = p π 2 p π . Hence p π ′ pπ = pπ 2 pπ 1
. So by our induction hypothesis,

p π ′
pπ is equal to a constant which only depends on i.

Conversely, assume there exists an n-tuple τ = (τ 1 , . . . , τ n ) ∈]0, +∞[ n such that for each arrow 

π i → π ′ in B(π κ ), we have the relation p π ′ = p π × τ i . Consider vertices b, b ′ in B(π κ ) ⊗ℓ such that wt(b) = wt(b ′ ).
u = u 1 α 1 + • • • + u n α n ∈ Q, we set τ u = τ u 1 1 • • • τ un n .
Since the root and weight lattices have both rank n, any weight β ∈ P also decomposes on the form β = β 1 α 1 + • • • + β n α n with possibly non integral coordinates β i . The transition matrix between the bases {ω i , i = 1, . . . , n} and {α i , i = 1, . . . , n} (regarded as bases of P R ) being the Cartan matrix of g whose entries are integers, the coordinates β i are rational. We will also set

τ β = τ β 1 1 • • • τ βn n . Let π ∈ B(π κ ): by assertion (i) of Theorem 3.3, one gets π(1) = wt(π) = κ - n i=1 u i (π)α i
where u i (π) ∈Z ≥0 for any i = 1, . . . , n. We define S κ (τ ) := S κ (τ 1 , . . . , τ n ) = π∈B(πκ) τ κ-wt(π) . Definition 4.4. We define the probability distribution p = (p π ) π∈B(πκ) on B(π κ ) associated to τ by setting p π = τ κ-wt(π) S κ (τ ) .

Remark 4.5. By assertion (iii) of Theorem 3.3, for π ′ κ another elementary path from 0 to κ such that Im π ′ κ is contained in C, there exists an isomorphism Θ between the crystals B(π κ ) and

B(π ′ κ ).
For p ′ the central probability distribution defined from τ on B(π ′ κ ), one gets p π = p ′ Θ(π) for any π ∈ B(π κ ). Therefore, the probability distributions we use on the graph B(π κ ) are invariant by crystal isomorphisms and also the probabilistic results we will establish in the paper.

The following proposition gathers results of [START_REF] Lecouvey | Random walks in Weyl chambers and crystals[END_REF] (Lemma 7.2.1) and [START_REF] Lecouvey | Conditioned random walks from Kac-Moody root systems[END_REF] (Proposition 5.4) . Recall that m = π∈B(πκ) p π π. We set m = m(1). Proposition 4.6.

(i) We have m ∈ C if and only if τ i ∈]0, 1[ for any i = 1, . . . , n. (ii) Denote by L the common length of the paths in B(π κ ). Then, the length of m is less or equal to L.

Set M κ = {m | τ = (τ 1 , . . . , τ n ) ∈]0
, +∞[} be the set of all vectors m obtained from the central distributions defined on B(π κ ). Observe that M κ only depends on κ and not of the choice of the highest path π κ . This is the set of possible mean obtained from central probability distributions defined on B(π κ ). We will also need the set ( 13) 

D κ = M κ ∩ C = {m ∈ M κ | τ i ∈]0, 1[, i = 1, . . . , n} of drifts in C.
= {(x 1 , x 2 ) ∈ R 2 | x 1 ≥ x 2 ≥ 0}.
For κ = ω 1 and π κ the line between 0 and ε 1 , we get B(π κ ) = {π 1 , π 2 , π 2 , π 1 } where each π a is the line between 0 and ε a (with the convention ε 2 = -ε 2 and ε 1 = -ε 1 ). The underlying crystal graph is

π 1 1 → π 2 2 → π 2 1 → π 1 .
For (τ 1 , τ 2 ) ∈]0, +∞[ 2 , we obtain the probability distribution on B(π κ )

p π 1 = 1 1 + τ 1 + τ 1 τ 2 + τ 2 1 τ 2 , p π 2 = τ 1 1 + τ 1 + τ 1 τ 2 + τ 2 1 τ 2 , p π 2 = τ 1 τ 2 1 + τ 1 + τ 1 τ 2 + τ 2 1 τ 2 and p π 2 = τ 2 1 τ 2 1 + τ 1 + τ 1 τ 2 + τ 2 1 τ 2 .
So we have

m = 1 1 + τ 1 + τ 1 τ 2 + τ 2 1 τ 2 ((1 -τ 2 1 τ 2 )ε 1 + (τ 1 -τ 1 τ 2 )ε 2 ).
When the pair (τ 1 , τ 2 ) runs over ]0, 1[ 2 , one verifies by a direct computation that D κ coincide with the interior of the triangle with vertices 0, ε 1 , ε 2 .

Remark 4.8. In the previous example, it is easy to show by a direct calculation that the adherence M κ of M κ is the convex hull of the weight {±ε 1 , ±ε 2 } of the representation V (ω 1 ) considered (i.e. the interior of the square with vertices {±ε 1 , ±ε 2 }). In general, one can show that M κ is contained in the convex hull of the weights of V (κ). The problem of determining, for any dominant weight κ, wether or not both sets coincide seems to us interesting and not immediate.

4.3.

Random paths of arbitrary length. With the previous convention, the product probability measure p ⊗ℓ on B(π κ ) ⊗ℓ satisfies ( 14)

p ⊗ℓ (π 1 ⊗ • • • ⊗ π ℓ ) = p(π 1 ) • • • p(π ℓ ) = τ ℓκ-(π 1 (1)+•••+π ℓ (1)) S κ (τ ) ℓ = τ ℓκ-wt(b) S κ (τ ) ℓ .
Let (X ℓ ) ℓ≥1 be a sequence of i.i.d. random variables with values in B(π κ ) and law p = (p π ) π∈B(πκ) ; for any ℓ ≥ 1 we thus gets (15) P(X ℓ = π) = p π for any π ∈ B(π κ ).

Consider µ ∈ P . The random path W starting at µ is defined from the probability space Ω with values in P R by

W(t) := Π ℓ (W)(t) = µ + (X 1 ⊗ • • • ⊗ X ℓ-1 ⊗ X ℓ )(t) for t ∈ [ℓ -1, ℓ].
For any integer ℓ ≥ 1, we set W ℓ = W(ℓ). The sequence W = (W ℓ ) ℓ≥1 defines a random walk starting at W 0 = µ whose increments are the weights of the representation V (κ). The following proposition was established in [START_REF] Lecouvey | Conditioned random walks from Kac-Moody root systems[END_REF] (see Proposition 4.6).

Proposition 4.9.

(i) For any β, η ∈ P , one gets

P(W ℓ+1 = β | W ℓ = η) = K κ,β-η τ κ+η-β S κ (τ ) .
(ii) Consider λ, µ ∈ P + we have

P(W ℓ = λ, W 0 = µ, W(t) ∈ C for any t ∈ [0, ℓ]) = f ℓ λ/µ τ ℓκ+µ-λ S κ (τ ) ℓ .
In particular

P(W ℓ+1 = λ, W ℓ = µ, W(t) ∈ C for any t ∈ [ℓ, ℓ + 1]) = m λ µ,κ
τ κ+µ-λ S κ (τ ) . 3 thus implies that η h is the unique highest weight path in B(η) = B(η h ). Similarly, there is a unique lowest path η l in B(η) such that fi (η l ) = 0 for any i = 1, . . . , n. This permits to define the generalized Pitman transform on B(π κ ) ⊗ℓ as the map P which associates to any η ∈ B(π κ ) ⊗ℓ the unique path P(η) ∈ B(η) such that ẽi (P(η)) = 0 for any i = 1, . . . , n. By definition, we have ImP(η) ⊂ C and P(η)(ℓ) ∈ P + . One can also define a dual Pitman transform E which associates to any η ∈ B(π κ ) ⊗ℓ the unique path E(η) ∈ B(η) such that fi (E(η)) = 0 for any i = 1, . . . , n. By (5), we have in fact

E = rPr
As observed in [START_REF] Biane | Littelmann paths and Brownian paths[END_REF] the path transformation P can be made more explicit (recall we have assumed that g is finite-dimensional). Consider a simple reflection α. The Pitman transformation P α : B(π κ ) ⊗ℓ → B(π κ ) ⊗ℓ associated to α is defined by ( 16)

P α (η)(t) = η(t) -2 inf s∈[0,t] η(s), α α 2 α = η(t) -inf s∈[0,t] η(s), α ∨ α
for any η ∈ B(π κ ) ⊗ℓ and any t ∈ [0, ℓ]. Also define the dual transform E α := rP α r on B(π κ ) ⊗ℓ . One verifies easily that we have in fact

(17) E α (η)(t) = η(t) -inf s∈[t,ℓ] η(s), α ∨ α + inf s∈[0,ℓ] η(s), α ∨ α.
Let w 0 be the maximal length element of W and fix a decomposition w 0 = s i 1 • • • s ir of w 0 as a product a reflections associated to simple roots.

Proposition 4.10 ([1]). For any path η ∈ B(π κ ) ⊗ℓ , we have

(18) P(η) = P α i 1 • • • P α ir (η) and E(η) = E α i 1 • • • E α ir (η).
Moreover, P and E do not depend on the decomposition of w 0 chosen.

Remarks 4.11.

(1) Since P(η) corresponds to the highest weight vertex of the crystal B(η), we have P 2 (η) =P(η).

(2) One easily verifies that each transformation P α is continuous for the topology of uniform convergence on the space of continuous maps from [0, ℓ] to R. Hence P is also continuous for this topology.

(3) Assume η ∈ B(η λ ) ⊂ B(π κ ) ⊗ℓ where η λ is the highest weight path of B(η λ ). Then η λ = w 0 (η λ ) (the action of W is that of Theorem 3.3) is the lowest weight path in B(η λ ).

In this particular case, one can show that we have in fact

(19) P i a+1 • • • P ir (η λ ) = s i a+1 • • • s ir (η λ ) and E i a+1 • • • E ir (η λ ) = s i a+1 • • • s ir (η λ )
for any a = 1, . . . , r -1.

Let W be the random path of § 4.3. We define the random process H setting (20) H = P(W).

For any ℓ ≥ 1, we set H ℓ := H(ℓ). The following Theorem was established in [START_REF] Lecouvey | Conditioned random walks from Kac-Moody root systems[END_REF].

Theorem 4.12.

(i) The random sequence H := (H ℓ ) ℓ≥1 is a Markov chain with transition matrix

(21) Π(µ, λ) = S λ (τ ) S κ (τ )S µ (τ ) τ κ+µ-λ m λ µ,κ
where λ, µ ∈ P + . (ii) Assume η ∈ B(π κ ) ⊗ℓ is a highest weight path of weight λ. Then

P(W ℓ = η) = τ ℓκ-λ S λ (τ ) S κ (τ ) ℓ
We shall also need the asymptotic behavior of the tensor product multiplicities established in [START_REF] Lecouvey | Conditioned random walks from Kac-Moody root systems[END_REF]. Theorem 4.13. Assume m ∈ D κ (see [START_REF] Littelmann | The path model, the quantum Frobenius map and standard monomial theory, Algebraic Groups and Their Representations NATO[END_REF]). For any µ ∈ P and any sequence of dominant weights of the form λ (ℓ) = ℓm + o(ℓ), we have

(i) lim ℓ→+∞ f ℓ λ (ℓ) -γ f ℓ λ (ℓ) = τ -γ for any γ ∈ P . (ii) lim ℓ→+∞ f ℓ λ (ℓ) /µ f ℓ λ (ℓ) = τ -µ S µ (τ ).
Corollary 4.14. Under the assumptions of the previous theorem, we also have

lim ℓ→+∞ f ℓ-ℓ 0 λ (ℓ) f ℓ λ (ℓ) = 1
τ -ℓ 0 κ S ℓ 0 κ (τ ) for any nonnegative integer ℓ 0 .

Proof. We first consider the case where ℓ 0 = 1. By definition of the tensor product multiplicities in (3) we have

s ℓ κ = λ∈P + f ℓ λ s λ but also s ℓ κ = s κ × s ℓ-1 κ = λ∈P + f ℓ-1 λ/κ s λ . Therefore f ℓ λ = f ℓ-1 λ/κ
for any ℓ ≥ 1 and any λ ∈ P + . We get

(22) lim ℓ→+∞ f ℓ-1 λ (ℓ) f ℓ λ (ℓ) = lim ℓ→+∞ f ℓ-1 λ (ℓ) f ℓ-1 λ (ℓ) /κ = 1 τ -κ S κ (τ )
by assertion (ii) of Theorem. Now observe that for any ℓ 0 ≥ 1 we have

f ℓ-ℓ 0 λ (ℓ) f ℓ λ (ℓ) = f ℓ-ℓ 0 λ (ℓ) f ℓ-ℓ 0 +1 λ (ℓ) × • • • × f ℓ-1 λ (ℓ) f ℓ λ (ℓ)
.

By using ( 22) each component of the previous product tends to 1 τ -κ Sκ(τ ) when ℓ tends to infinity which gives the desired limit.

The previous theorem also implies that the drift m determines the probability distribution on B(π κ ). More precisely, consider p and p ′ two probability distributions defined on B(π κ ) from τ ∈]0, 1[ n and τ ′ ∈]0, 1[ n , respectively. Set m = π∈B(πκ) p π π and m ′ = π∈B(πκ) p ′ π π.

Proposition 4.15. We have m = m ′ if and only if τ = τ ′ . Therefore, the map which associates to any τ ∈]0, 1[ n the drift m ∈ D κ is a one-to-one correspondence.

Proof. Assume m = m ′ . By applying assertion (i) of Theorem 4.13, we get τ γ = (τ ′ ) γ for any γ ∈ P . Consider i ∈ {1, . . . , n}. For γ = α i , we obtain τ i = τ ′ i . Therefore τ = τ ′ .

5. Some Limit theorems for the Pitman process 5.1. The law of large numbers and the central limit theorem for W. We start by establishing two classical limit theorems for W, deduced from the law of large numbers and the central limit theorem for the random walk

W = (W ℓ ) ℓ≥1 = (X 1 + • • • + X ℓ ) ℓ≥1 .
Recall that m = π∈B(πκ) p π π and m = m(1). Write m ⊗∞ for the random path such that m ⊗∞ (t) = ℓm + m(tℓ) for any t > 0 where ℓ = ⌊t⌋ . Let Γ = (Γ i,j ) 1≤i,j≤n = t X ℓ • X ℓ be the common covariance matrix of each random variable X ℓ .

Theorem 5.1. Let W be a random path defined on (B(π κ ) ⊗Z ≥0 , p ⊗Z ≥0 ) with drift path m. Then, we have lim

ℓ→+∞ 1 ℓ sup t∈[0,ℓ] W(t) -m ⊗∞ (t) = 0 almost surely.
Furthermore, the family of random variables W(t)m ⊗∞ (t) √ t t>0 converges in law as t → +∞ towards a centered Gaussian law N (0, Γ).

More precisely, setting W (ℓ) (t) := W(ℓt)m ⊗∞ (ℓt) √ ℓ for any 0 ≤ t ≤ 1 and ℓ ≥ 1, the sequence of random processes (W (ℓ) (t)) ℓ≥1 converges to a n-dimensional Brownian motion (B Γ (t)) 0≤t≤1 with covariance matrix Γ.

Proof. Fix ℓ ≥ 1 and observe that sup

t∈[0,ℓ] W(t) -m ⊗∞ (t) = sup 0≤k≤ℓ-1 sup t∈[k,k+1] W(t) -km -m(t -k) .
For any 0 ≤ k ≤ ℓ and t ∈ [k, k + 1], we have 

W(t) = W k + X k+1 (t -k) so that (23) W(t) -m ⊗∞ (t) = W k -km + X k+1 (t -k) -m(t -k) with sup t∈[k,k+1] X k+1 (t -k) -m(t -k) = sup t∈[0,1] X k+1 (t) -m(t) ≤ +2L,
W(t) -m ⊗∞ (t) ≤ sup 0≤k≤ℓ W k -km + 2L.
By the law of large number for the random walk W = (W k ) k≥1 , one gets lim Let us now prove the central limit theorem; for any t > 0, set k t := ⌊t⌋ and notice that decomposition (23) yields to ( 25) The convergence of the sequence (W ℓ (t)) ℓ≥1 towards a Brownian motion goes along the same line One sets

W(t) -m ⊗∞ (t) √ t = k t t × W kt -k t m √ k t + X kt+1 (t -k t ) -m(t -k t ) √ t
W (ℓ) (t) := W ⌊ℓt⌋ + (ℓt -⌊ℓt⌋)X ⌊ℓt⌋+1 (1) -ℓtm √ ℓ for all ℓ ≥ 1 and 0 ≤ t ≤ 1 and observes that W (ℓ) (t) -W (ℓ) (t) ≤ 2 √ ℓ ( m ∞ + X ⌊nt⌋+1 ∞ ).
5.2. The law of large numbers and the central limit theorem for H. To prove the law of large numbers and the central limit theorem for H, we need the two following preparatory lemmas. Consider a simple root α and a trajectory η ∈ Ω such that 1 ℓ η(ℓ), α ∨ converges to a positive limit when ℓ tends to infinity. Lemma 5.2. There exists a nonnegative integer ℓ 0 such that for any ℓ ≥ ℓ 0

inf t∈[0,ℓ] η(t), α ∨ = inf t∈[0,ℓ 0 ] η(t), α ∨ .
Proof. Since 1 ℓ η(ℓ), α ∨ converges to a positive limit, we have in particular that lim ℓ→+∞ η(ℓ), α ∨ = +∞. Consider t > 0 and set ℓ = ⌊t⌋. We can write by definition of η ∈ Ω, η(t) = η(ℓ) + π(tℓ) where π is a path of B(π κ ). So η(t), α ∨ = η(ℓ), α ∨ + π(tℓ), α ∨ . Since π ∈ B(π κ ), we have

π(t -ℓ) ≤ L
where L is the common length of the paths in B(π κ ). So the possible values of π(tℓ), α ∨ are bounded. Since lim ℓ→+∞ η(ℓ), α ∨ = +∞, we also get lim t→+∞ η(t), α ∨ = +∞. Recall that η(0) = 0. Therefore inf t∈[0,ℓ] η(t), α ∨ ≤ 0. Since lim t→+∞ η(t), α ∨ = +∞ and the path η is continuous, there should exist an integer ℓ 0 such that inf t∈[0,ℓ 0 ] η(t), α ∨ = inf t∈[0,ℓ 0 ] η(t), α ∨ for any ℓ ≥ ℓ 0 .

Lemma 5.3.

(i) Consider a simple root α and a trajectory η ∈ Ω such that 1 ℓ η(ℓ), α ∨ converges to a positive limit when ℓ tends to infinity. We have for any simple root α 

sup t∈[0,+∞[ P α (η)(t) -η(t) < +∞ in particular, 1 ℓ P α (η)(ℓ), α ∨ also converges to a positive limit. (ii) More generally, let α i 1 , • • • , α ir , r ≥ 1,
P α i 1 • • • P α ir (η)(t) -η(t) < +∞.
Proof. (i) By definition of the transform P α , we have

P α (η)(t) -η(t) = inf t∈[0,t] η(s), α ∨ α ∨
for any t ≥ 0. By the previous lemma, there exists an integer ℓ 0 such that for any t ≥ ℓ 0 ,

P α (η)(t) -η(t) = inf s∈[0,t] η(s), α ∨ α ∨ = inf s∈[0,ℓ 0 ] η(s), α ∨ α ∨ .
Since the infimum inf s∈[0,ℓ 0 ] η(s), α ∨ does not depend on ℓ, we are done. Now 1 ℓ P α (η(ℓ)), α ∨ and 1 ℓ η(ℓ), α ∨ admit the same limit.

(ii) Consider a ∈ {2, . . . , r -1} and assume by induction that we have

(26) sup t∈[0,+∞[ P α ia • • • P α ir (η)(t) -m ⊗∞ (t) < +∞.
We then deduce

(27) lim ℓ→+∞ 1 ℓ P α ia • • • P α ir (η)(ℓ), α ∨ i a-1 = m, α ∨ i a-1 > 0.
This permits to apply Lemma 5.3 with η ′ =P α ia • • • P α ir (η) and α = α i a-1 . We get sup t∈[0,+∞[

P α i a-1 • • • P α ir (η)(t) -P α ia • • • P α ir (η)(t) < +∞.
By using (26), this gives

(28) sup t∈[0,+∞[ P α i a-1 • • • P α ir (η)(t) -m ⊗∞ (t) < +∞.
We thus have proved by induction that (28) holds for any a = 2, . . . , r -1.

Theorem 5.4. Let W be a random path defined on Ω = (B(π κ ) ⊗Z ≥0 , p 

H(t) -m ⊗l (t) ≤ lim sup ℓ→+∞ 1 ℓ sup t∈[0,ℓ] W(t) -m ⊗l (t) +lim sup ℓ→+∞ 1 ℓ sup t≥0 H(t)-W(t) = 0
almost surely. To get the central limit theorem for the process H(t), we write similarly

H(t) -m ⊗l (t) √ t = W(t) -m ⊗l (t) √ t + H(t) -W(t) √ t .
By Theorem 5.1, the first term in this decomposition satisfies the central limit theorem; on the other hand the second one tends to 0 almost surely and one concludes using Slutsky theorem 6. Harmonic functions on multiplicative graphs associated to a central measure Harmonic functions on the Young lattice are the key ingredients in the study of the asymptotic representation theory of the symmetric group. In fact, it was shown by Kerov and Vershik that these harmonic functions completely determine the asymptotic characters of the symmetric groups. We refer the reader to [START_REF] Kerov | Asymptotic representation theory of the symmetric group and its applications in analysis[END_REF] for a detailed review. The Young lattice is an oriented graph with set of vertices the set of all partitions (each partition is conveniently identified its Young diagram). We have an arrow λ → Λ between the partitions λ and Λ when Λ can be obtained by adding a box to λ. The Young lattice is an example of branching graph in the sense that its structure reflects the branching rules between the representations theory of the groups S ℓ and S ℓ+1 with ℓ > 0. One can also consider harmonic functions on other interesting graphs.

Here we focus on graphs defined from the weight lattice of g. These graphs depend on a fixed κ ∈ P + and are multiplicative in the sense that a positive integer, equal to a tensor product multiplicity, is associated to each arrow. We call them the multiplicative tensor graphs. We are going to associate a Markov chain to each multiplicative tensor graph G. The aim of this section is to determine the harmonic functions on G when this associated Markov chain is assumed to have a drift. We will show this is equivalent to determine the central probability measure on the subset Ω C containing all the trajectories which remains in C. When g = sl n+1 and κ = ω 1 (that is V (κ) = C n+1 is the defining representation of sl n+1 ), G is the subgraph of the Young lattice obtained by considering only the partitions with at most n + 1 parts and we recover the harmonic functions as specializations of Schur polynomials. 6.1. Multiplicative tensor graphs, harmonic functions and central measures. So assume κ ∈ P + is fixed. We denote by G the oriented graph with set of vertices the pairs (λ, ℓ) ∈ P + × Z ≥0 and arrow

(λ, ℓ) m Λ λ,κ → (Λ, ℓ + 1) with multiplicity m Λ λ,κ when m Λ λ,κ > 0.
In particular there is no arrows between (λ, ℓ) and (Λ, ℓ + 1) when m Λ κ,κ = 0. Example 6.1. Consider g = sp 2n . Then P = Z n and P + can be identified with the set of partitions with at most n parts. For κ = ω 1 the graph G is such that (λ, ℓ) → (Λ, ℓ + 1) with m Λ λ,κ = 1 if and only of the Young diagram of Λ is obtained from that of λ by adding or deleting one box. We have drawn below the connected component of ( ∅, 0 ) up to ℓ ≤ 3.

( ∅, 0 ) ↓ , 1 ւ ↓ ց ( ∅, 2 ) , 2 , 2 ւց ↓ ւց ↓ ց , 3 , 3 , 3   , 3   . . . . . . . . . . . .
Observe that in the case g = sl n+1 and κ = ω 1 , we have m Λ λ,κ = 1 if and only if of the Young diagram of Λ is obtained by adding one box to that of λ and m Λ λ,κ = 0 otherwise. So in this very particular case, it is not useful to keep the second component ℓ since it is equal to the rank of the partition λ. The vertices of G are simply the partitions with at most n parts (i.e. whose Young diagram has at most n rows). Now return to the general case. Our aim is now to relate the harmonic functions on G and the central probability distributions on the set Ω C of infinite trajectories with steps in B(π κ ) which remain in C. We will identify the elements of P + × Z ≥0 as elements of the R-vector space

P R × R (recall P R = R n ). For any ℓ ≥ 0, set H ℓ = {π ∈ B(π κ ) ⊗ℓ | Im π ⊂ C}. Also if λ ∈ P + , set H ℓ λ = {π ∈ H ℓ | wt(π) = λ}. Given π ∈ H ℓ , we denote by C π = {ω ∈ Ω C | Π ℓ (ω) = π}
the cylinder defined by π. We have C ∅ = Ω C . Each probability distribution Q on Ω C is determined by its values on the cylinders and we must have

π∈H ℓ Q(C π ) = 1 for any ℓ ≥ 0. Definition 6.2. A central probability distribution on Ω C is a probability distribution Q on Ω C such that Q(C π ) = Q(C π ′ ) provided that wt(π) = wt(π ′
) and π, π ′ have the same length.

Consider a central probability distribution Q on Ω C . For any ℓ ≥ 1, we have π∈H ℓ Q(C π ) = 1, so it is possible to define a probability distribution q on H ℓ by setting q π = Q(C π ) for any π ∈ H ℓ . Since Q is central, we can also define the function

(29) ϕ : G → [0, 1] (λ, ℓ) -→ Q(C π )
where π is any path of H ℓ . Now observe that

C π = η∈B(πκ)|Im(π⊗η)⊂C C π⊗η . This gives (30) Q(C π ) = η∈B(πκ)|Im(π⊗η)⊂C Q(C π⊗η ).
Assume π ∈ H ℓ λ . By Theorem 3.3, the cardinality of the set {η ∈ B(π κ ) | Im(π ⊗ η) ⊂ C and wt(π ⊗ η) = Λ} is equal to m Λ λ,κ . Therefore, we get

(31) ϕ(λ, ℓ) = Λ m Λ λ,κ ϕ(Λ, ℓ + 1).
This means that the function ϕ is harmonic on the multiplicative graph G.

Conversely, if ϕ ′ is harmonic on the multiplicative graph G, for any cylinder

C π in Ω C with π ∈ H ℓ λ , we set Q ′ (C π ) = ϕ ′ (λ, ℓ).
Then Q ′ is a probability distribution on Ω C since it verifies (30) and is clearly central. Therefore, a central probability distribution on Ω C is characterized by its associated harmonic function defined by (29).

Harmonic function on a multiplicative tensor graph. Let

Q a central probability distribution on Ω C . Consider π = π 1 ⊗ • • • ⊗ π ℓ ∈ H ℓ λ and π # = π 1 ⊗ • • • ⊗ π ℓ ⊗ π ℓ+1 ∈ H ℓ+1 Λ . Since we have the inclusion of events C π # ⊂ C π , we get Q(C π # | C π ) = Q(C π # ) Q(C π ) = ϕ(Λ, ℓ + 1) ϕ(λ, ℓ)
where the last equality is by definition of the harmonic function ϕ (which exists since Q is central). Let us emphasize that Q(C π # ) and Q(C π ) do not depend on the paths π and π # but only on their lengths and their ends λ and Λ. We then define a Markov chain

Z = (Z ℓ ) ℓ≥0 from (Ω C , Q) with values in G and starting at Z 0 = (µ, ℓ 0 ) ∈ G by Z ℓ (ω) = (µ + ω(ℓ), ℓ + ℓ 0 ).
Its transition probabilities are given by

Π Z ((λ, ℓ), (Λ, ℓ + 1)) = π # Q(C π # | C π )
where π is any path in H ℓ λ and the sum runs over all the paths π # ∈ H ℓ+1 Λ such that π # = π ⊗ π ℓ+1 . Observe, the above sum does not depend on the choice of π in H ℓ λ because Q is central. Since there are m Λ λ,κ such pairs, we get

(32) Π Z ((λ, ℓ), (Λ, ℓ + 1)) = m Λ λ,κ ϕ(Λ, ℓ + 1) ϕ(λ, ℓ)
and by (31) Z = (Z ℓ ) ℓ≥0 is indeed a Markov chain. We then write Q (µ,ℓ 0 ) (Z ℓ = (λ, ℓ)) for the probability that Z ℓ = (λ, ℓ) when the initial value is Z 0 = (µ, ℓ 0 ). When Z 0 = (0, 0), we simply write

Q(Z ℓ = (λ, ℓ)) = Q (0,0) (Z ℓ = (λ, ℓ)).
Lemma 6.3. For any µ, λ ∈ P + and any integer ℓ 0 ≥ 1, we have

Q (µ,ℓ 0 ) (Z ℓ-ℓ 0 = (λ, ℓ)) = f (ℓ-ℓ 0 ) λ/µ ϕ(λ, ℓ) ϕ(µ, ℓ 0 ) for any ℓ ≥ ℓ 0 .
Proof. By (32), the probability Q (µ,ℓ 0 ) (Z ℓ-ℓ 0 = (λ, ℓ)) is equal to the quotient ϕ(λ,ℓ) ϕ(µ,ℓ 0 ) times the number of paths in C of length ℓℓ 0 starting at µ and ending at λ. The lemma thus follows from the fact that this number is equal to f (ℓ-ℓ 0 ) λ/µ by Theorem 3.3.

We will say that the family of Markov chains Z with transition probabilities given by (32) and initial distributions of the form Z 0 = (µ, ℓ 0 ) ∈ G admits a drift m ∈ P R when lim ℓ→+∞ Z ℓ ℓ = (m, 1) Q-almost surely for any initial distributions Z 0 = (µ, ℓ 0 ) ∈ G.

Theorem 6.4. Let Q be a central probability distribution on Ω C such that Z admits the drift m ∈ D κ (see [START_REF] Littelmann | The path model, the quantum Frobenius map and standard monomial theory, Algebraic Groups and Their Representations NATO[END_REF]).

(i) The associated harmonic function ϕ on G verifies ϕ(µ, ℓ 0 ) =

τ -µ Sµ(τ ) τ -ℓ 0 κ S ℓ 0 κ (τ )
for any µ ∈ P + and any ℓ 0 ≥ 0 where τ is determined by m as prescribed by Proposition 4.15. (ii) The probability transitions (32) do not depend on ℓ.

(iii) For any π ∈ H ℓ 0 µ , we have Q(C π ) = τ -µ Sµ(τ ) τ -ℓ 0 κ S ℓ 0 κ (τ )
. In particular, Q is the unique central probability distribution on Ω C such that Z admits the drift m. We will denote it by Q m .

Proof. (i). Consider a sequence of random dominant weights of the form λ (ℓ) = ℓm + o(ℓ). We get by using Lemma 6.3

f (ℓ-ℓ 0 ) λ (ℓ) /µ f (ℓ) λ (ℓ) × 1 ϕ(µ, ℓ 0 ) = f (ℓ-ℓ 0 ) λ (ℓ) /µ × ϕ(λ (ℓ) , ℓ) ϕ(µ, ℓ 0 ) × [f (ℓ) λ (ℓ) × ϕ(λ (ℓ) , ℓ)] -1 = Q (µ,ℓ 0 ) (Z ℓ-ℓ 0 = (λ (ℓ) , ℓ)) Q(Z ℓ = (λ (ℓ) , ℓ)) = Q (µ,ℓ 0 ) ( Z ℓ-ℓ 0 ℓ-ℓ 0 = ( λ (ℓ) ℓ-ℓ 0 , ℓ ℓ-ℓ 0 )) Q( Z ℓ ℓ = ( λ (ℓ) ℓ , 1)) 
.

Since Z admits the drift m, we obtain

lim ℓ→+∞ Q (µ,ℓ 0 ) ( Z ℓ-ℓ 0 ℓ-ℓ 0 = ( λ (ℓ) ℓ-ℓ 0 , ℓ ℓ-ℓ 0 )) Q( Z ℓ ℓ = ( λ (ℓ) ℓ , 1)) = 1 1 = 1 and lim ℓ→+∞ f (ℓ-ℓ 0 ) λ (ℓ) /µ f (ℓ) λ (ℓ) × 1 ϕ(µ, ℓ 0 ) = 1.
This means that

ϕ(µ, ℓ 0 ) = lim ℓ→+∞ f (ℓ-ℓ 0 ) λ (ℓ) /µ f (ℓ) λ (ℓ) 
. Now by Theorem 4.13 and since m ∈ D κ we can write

lim ℓ→+∞ f (ℓ-ℓ 0 ) λ (ℓ) /µ f (ℓ) λ (ℓ) = lim ℓ→+∞ f (ℓ-ℓ 0 ) λ (ℓ) /µ f (ℓ-ℓ 0 ) λ (ℓ) × lim ℓ→+∞ f (ℓ-ℓ 0 ) λ (ℓ) f (ℓ) λ (ℓ) = τ -µ S µ (τ )
τ -ℓ 0 κ S ℓ 0 κ (τ ) where τ ∈]0, 1[ n is determined by the drift m as prescribed by Proposition 4.15. We thus obtain ϕ(µ, ℓ 0 ) =

τ -µ Sµ(τ ) τ -ℓ 0 κ S ℓ 0 κ (τ ) . (ii). We have Π Z ((λ, ℓ), (Λ, ℓ + 1)) = m Λ λ,κ ϕ(Λ,ℓ+1) ϕ(λ,ℓ) = S Λ (τ ) Sκ(τ )S λ (τ ) τ κ+λ-Λ m Λ λ,κ which does not depend on ℓ.
(iii). This follows from the fact that

Q(C π ) = ϕ(λ, ℓ) for any π ∈ H ℓ λ .
Consider m ∈ D κ and write τ for the corresponding n-tuple in ]0, 1[ n . Let W be the random walk starting at 0 defined on P from κ and τ as in § 4.3. Corollary 6.5. Let Q be a central probability distribution on Ω C such that Z admits the drift m ∈ D κ . Then, the processes (Z ℓ ) ℓ and ((P(W ℓ ), ℓ)) ℓ have the same law.

Proof. By the previous theorem, the transitions of the Markov chain Z on G are given by Π Z ((λ, ℓ), (Λ, ℓ + 1)) = m Λ λ,κ ϕ(Λ,ℓ+1) ϕ(λ,ℓ)

. By Theorem 4.12, the transition matrix Π Z thus coincides with the transition matrix of P(W ) as desired.

Let P m and Q m be the probability distributions associated to m (recall m determines τ ∈ ]0, 1[ n ) defined on the spaces Ω and Ω C , respectively. Corollary 6.6. The Pitman transform P is a homomorphism of probability spaces between (Ω, P m ) and (Ω C , Q m ), that is we have

Q m (C π ) = P m (P -1 (C π ))
for any ℓ ≥ 1 and any π ∈ H ℓ .

Proof. Assume π ∈ H ℓ λ . We have Q m (C π ) = ϕ(λ, ℓ) = τ -λ S λ (τ ) τ -ℓκ S ℓ κ (τ )
. By definition of the generalized Pitman transform P, P -1 (C π ) = {ω ∈ Ω | P(Π ℓ (ω)) = π}, that is P -1 (C π ) is the set of all trajectories in Ω which remains in the connected component B(π) ⊂ B(π κ ) ⊗ℓ for any t ∈ [0, ℓ]. We thus have P m (P -1 (C π )) = p ⊗ℓ (B(π)) = τ -λ S λ (τ ) τ -ℓκ S ℓ κ (τ ) by assertion (ii) of Theorem 4.12. Therefore we get P m (P -1 (C π )) = Q m (C π ) as desired.

Isomorphism of dynamical systems

In this section, we first explain how the trajectories in Ω and Ω C can be equipped with natural shifts S and J, respectively. We then prove that the generalized Pitman transform P intertwines S and J. When g = sl n+1 and κ = ω 1 , we recover in particular some analogue results of [START_REF] Sniady | Robinson-Schensted-Knuth algorithm, jeu de taquin on infinite tableaux and the characters of the infinite symmetric group[END_REF]. (i) The Pitman transform is a factor map of dynamical systems, i.e. the following diagram commutes :

Ω S → Ω P ↓ ↓ P Ω C → J Ω C
(ii) For any m ∈ D κ , the transformation J : Ω C → Ω C is measure preserving with respect to the (unique) central probability distribution Q m with drift m.

Proof. (i). To prove assertion (i), it suffices to establish that the above diagram commutes on trajectories of any finite length ℓ > 0. So consider

π = π 1 ⊗ π 2 ⊗ • • • ⊗ π ℓ ∈ B(π κ ) ⊗ℓ and set P(π) = π + 1 ⊗ π + 2 ⊗ • • • ⊗ π + ℓ . We have to prove that P(π 2 ⊗ • • • ⊗ π ℓ ) = P(π + 2 ⊗ • • • ⊗ π + ℓ ) which means that both vertices π 2 ⊗ • • • ⊗ π ℓ and π + 2 ⊗ • • • ⊗ π +
ℓ belong to the same connected component of B(π κ ) ⊗ℓ-1 . We know that P(π) is the highest weight vertex of B(π). This implies that there exists a sequence of root operators ẽi 1 , . . . , ẽir such that (33)

π + 1 ⊗ π + 2 ⊗ • • • ⊗ π + ℓ = ẽi 1 • • • ẽir (π 1 ⊗ π 2 ⊗ • • • ⊗ π ℓ )
. By [START_REF] Lecouvey | Random walks in Weyl chambers and crystals[END_REF], we can define a subset X := {k ∈ {1, . . . , r} such that ẽi k acts on the first component of the tensor product ẽi k+1

• • • ẽir (π 1 ⊗ π 2 ⊗ • • • ⊗ π ℓ )}. We thus obtain π + 2 ⊗ • • • ⊗ π + ℓ = k∈{1,...,r}\X ẽi k (π 2 ⊗ • • • ⊗ π ℓ ) which shows that π 2 ⊗ • • • ⊗ π ℓ and π + 2 ⊗ • • • ⊗ π +
ℓ belong to the same connected component of B(π κ ) ⊗ℓ-1 . They thus have the same highest weight path as desired.

(ii). Let A ⊂ Ω C be a Q-measurable set. We have Q(J -1 (A)) = P(P -1 (J -1 (A)) since P is an homomorphism. Using the fact that previous diagram commutes and S preserves P, we get Q(J -1 (A)) = P(S -1 (P -1 (A))) = P(P), so that so Q(J -1 (A)) = Q(A) since P is an homomorphism.

Dual random path and the inverse Pitman transform

It is well known (see [START_REF] Pitman | One-dimensional Brownian motion and the three-dimensional Bessel process[END_REF]) that the Pitman transform on the line is reversible. The aim of this paragraph is to establish that E, restricted to a relevant set of infinite trajectories with measure 1, can be regarded as a similar inverse for the generalized Pitman transform P. We assume in the remaining of the paper that m ∈ D κ . This permits to define a random walk W and a Markov chain H = P(W) as in Section 4. Since m is fixed, we will denote for short by P and Q the probability distributions P m and Q m , respectively. 8.1. Typical trajectories. Consider m ∈ D κ and the associated distributions P m and Q m defined on Ω and Ω C , respectively. We introduce the subsets of typical trajectories in Ω typ , Ω ιtyp and Ω typ C as

Ω typ = {π ∈ Ω | lim ℓ→+∞ 1 ℓ π(ℓ), α ∨ i = m, α ∨ i ∈ R >0 ∀i = 1, . . . , n}, Ω ιtyp = {π ∈ Ω | lim ℓ→+∞ 1 ℓ π(ℓ), α ∨ i = w 0 (m), α ∨ i ∈ R <0 ∀i = 1, . . . , n} Ω typ C = {π ∈ Ω C | lim ℓ→+∞ 1 ℓ π(ℓ), α ∨ i = m, α ∨ i ∈ R >0 ∀i = 1, . . . , n}.
By Theorems 5.1 and 5.4, we have

P m (Ω typ ) = 1 and Q m (Ω typ C ) = 1.
We are going to see that the relevant Pitman inverse coincides with E acting on the trajectories of Ω typ C and we will show that E(H) is then a random trajectory with drift w 0 (m) where w 0 is the longest element of the Weyl group W.

8.2.

An involution on the trajectories. We have seen that the reverse map r on paths defined in [START_REF] Kashiwara | On crystal bases[END_REF] flips the actions of the operators ẽi and fi on any connected crystal B(π κ ) of highest path π κ . Nevertheless, we have r(B(π κ ) = B(π κ ) in general. So r(Ω) = Ω. To overcome this difficulty we can replace our space of trajectories Ω by the set L ∞ of all infinite paths defined from the set L of § 3.2. But L ∞ has not a probability space structure neither a simple algebraic interpretation. Rather, it is interesting to give another definition of E where the involution r is replaced by the Lusztig involution ι which stabilizes B(π κ ) (see for example [START_REF] Lenart | On the Combinatorics of Crystal Graphs, I. Lusztig's Involution[END_REF]). The longest element w 0 of the Weyl group W (which is an involution) induces an involution * on the set of simple roots defined by α i * = -w 0 (α i ) for any i = 1, . . . , n. Write π low κ for the lowest weight vertex of B(π κ ), that is π low κ is the unique vertex of B(π κ ) such that fi (π low κ ) = 0 for any i = 1, . . . , n. The involution ι is first defined on the crystal B(π κ ) by

ι(π κ ) = π low κ and ι( fi 1 • • • fir π κ ) = ẽi * 1 • • • ẽi * r (π low κ )
for any sequence of crystal operators fi 1 , . . . , fir with r > 0. This means that ι flips the orientation of the arrows of B(π κ ) and each label i is changed in i * . In particular, we have wt(ι(π)) = w 0 (wt(π)) for any π ∈ B(π κ ). We extend ι by linearity on the linear combinations of paths in B(π κ ).

We next define the involution ι on B(π κ ) ⊗ℓ by setting

ι(π 1 ⊗ • • • ⊗ π ℓ ) = ι(π ℓ ) ⊗ • • • ⊗ ι(π 1 )
for any π 1 ⊗ • • • ⊗ π ℓ ∈ B(π κ ) ⊗ℓ . It then follows from [START_REF] Lecouvey | Random walks in Weyl chambers and crystals[END_REF] that for any any i = 1, . . . , n we have

(34) ι fi ι(π 1 ⊗ • • • ⊗ π ℓ ) = ẽi * (π 1 ⊗ • • • ⊗ π ℓ ).
Thus the involution ι flips the lowest and highest weight paths, reverses the arrows and changes each label i in i * . In particular, for any connected component B(η) of B(π κ ) ⊗ℓ , the set ι(B(η)) is also a connected component of B(π κ ) ⊗ℓ . In addition, we have

(35) wt(ι(π 1 ⊗ • • • ⊗ π ℓ )) = w 0 (wt(π 1 ⊗ • • • ⊗ π ℓ )).
Remark 8.1. Observe that ι is very closed from r. The crucial difference is that the crystals ι(B(π κ )) and B(π κ ) coincide whereas r(B(π κ )) is not a crystal in general. Here we simply write a ∈ { 2, 1, 1, 2} instead of π a and omitted for short the symbols ⊗.

The paths η (in red) and β(η) (in dashed read)

The following proposition shows we can replace the involution r by ι in the definition of the dual Pitman transform. Proposition 8.3. We have E = rPr = ιPι.

Proof. Observe first that for any simple root α i , and any path η ∈ B(π κ ) ⊗ℓ , we have by (34) Lemma 8.4. We have

E α i (η) = ιP α i * ι(η) because the action of E α i on any path reduces to a product of operators fi . Since E = E α 1 • • • E αr , we get E = ιP α 1 * • • • P α r * ι. But P α 1 * • • • P α r * = P α 1 • • • P αr = P
(i) m ι = ι(m) (ii) m ι = w 0 (m).
In particular, m ∈ D κ if and only if m ι ∈ D ι κ . Proof. By using that ι is an involution on B(π κ ), we get

m ι = π∈B(πκ) p ι π π = π∈B(πκ) p ι(π) π = ι   π∈B(πκ) p ι(π) ι(π)   = ι(m)
which proves assertion (i). In particular, if we set m ι = m ι (1), we have m ι = w 0 (m) and assertion 2 follows.

Similarly, we may consider the probability measure (p ι ) ⊗ℓ on B(π κ ) ⊗ℓ defined by

(p ι ) ⊗ℓ (π 1 ⊗ • • • ⊗ π ℓ ) = p ι (π 1 ) • • • p ι (π ℓ ) = τ ℓκ-w 0 (π 1 (1)+•••π ℓ (1)) S κ (τ ) ℓ = τ ℓκ-w 0 (wt(b)) S κ (τ ) ℓ . (3 )
By the Kolmogorov extension theorem, the family of probability measure ((p ι ) ⊗ℓ ) ℓ admits a unique extension P ι := (p ι ) ⊗Z ≥0 to the space B(π κ ) ⊗Z ≥0 . For any ℓ ≥ 1, let Y ℓ : B(π κ ) ⊗Z ≥0 -→ B(π κ ) be the canonical projection on the ℓ th coordinate; by construction, the variables Y 1 , Y 2 , • • • are independent and identically distributed with the same law as Y . We denote by W ι the random path defined by

W ι (t) := Y 1 (1) + Y 2 (1) + • • • + Y ℓ-1 (1) + Y ℓ (t -ℓ + 1) for t ∈ [ℓ -1, ℓ].
Then W ι is defined on the probability space Ω ι = (B(π κ ) ⊗Z ≥0 , P ι ); notice that the set of trajectories of Ω ι is the same as the one of Ω but that the probability P ι is defined from p ι . We have in particular P ι (Ω ιtyp ) = 1. We also define the random walk W ι = (W ι ℓ ) ℓ≥1 such that W ι ℓ = W ι (ℓ) for any ℓ ≥ 1. Let H ι be the random process H ι =P(W ι ) and define H ι = (H ι ℓ ) ℓ≥1 such that H ι ℓ = H ι (ℓ) for any ℓ ≥ 1. We then have (see Proposition 4.6 in [9]) Theorem 8.5.

(i) For any β, η ∈ P , one gets

P ι (W ι ℓ+1 = β | W ι ℓ = η) = K κ,β-η, τ κ-w 0 (β-η) S κ (τ ) . 
(ii) The random sequence H ι is a Markov chain with the same law as H, that is with transition matrix

Π(µ, λ) = S λ (τ ) S κ (τ )S µ (τ ) τ κ+µ-λ m λ µ,κ
where λ, µ ∈ P + . (iii) For any path π ∈ H ℓ λ ,we have

P ι (H ι = π) = P(H = π) = τ ℓκ-λ S λ (τ ) S κ (τ ) ℓ .
8.4. Asymptotic behavior in a fixed component. Consider π ∈ B(π κ ) ⊗ℓ and η ∈ Ω such that 1 L η(L), α ∨ i converges to a positive limit for any positive root α i , i = 1, . . . n. For any L, set Π L (η) = η L so that we have η

L ∈ B(π κ ) ⊗L . Since π ∈ B(π κ ) ⊗ℓ , the path η L ⊗ π is defined on [0, ℓ + L]. More precisely, we have η L ⊗ π(t) = η L (t) for t ∈ [0, L[ and η L ⊗ π(t) = η L (L)+ π(t -L) for t ∈ [L, ℓ + L].
Lemma 8.6. With the previous notation, we get

P(η L ⊗ π) = P(η L ) ⊗ π for L sufficiently large.
Proof. Recall that P=P α i 1 • • • P α ir . One proves by induction that for any s = 1, . . . , r, there exists a nonnegative integer L s such that Let H = (H ℓ ) ℓ≥1 be a random process in Ω C ⊂ Ω with distribution Q m . Since H takes value in Ω, we can write H ℓ = T 1 ⊗ • • • ⊗ T ℓ for any ℓ ≥ 1, where the random variable T i takes values in B(π κ ) for any i ≥ 1. By Corollary 6.6, there exists a random process W with values in Ω and distribution P m such that H and P(W) coincide P m -almost surely. Notice that we also have W ℓ = X 1 ⊗ • • • ⊗ X ℓ for any ℓ ≥ 1, where X ℓ is a random variable with values in B(π κ ) with the law defined in [START_REF] O' Connell | Conditioned random walks and the RSK correspondence[END_REF]. Proposition 8.7. P m -almost surely, the random variables T ℓ and X ℓ coincide for any large enough ℓ.

P α is • • • P α ir (η L ⊗ π) = P α is • • • P α ir (η L ) ⊗ π for any L > L s and lim L→+∞ P α is • • • P α ir (η)(L), α ∨ = +∞
Proof. Consider a trajectory ω ∈ Ω typ . For any ℓ ≥ 1 and set Π ℓ (ω) = π 1 ⊗ • • • ⊗ π ℓ . We can apply Lemma 8.6 to π 1 ⊗ • • • ⊗ π ℓ-1 ⊗ π ℓ since we have ω ∈ Ω typ . Hence, for ℓ sufficiently large, we have

P(π 1 ⊗ • • • ⊗ π ℓ-1 ⊗ π ℓ ) = P(π 1 ⊗ • • • ⊗ π ℓ-1
) ⊗ π ℓ . We thus have lim ℓ→+∞ (T ℓ -X ℓ ) = 0 on Ω typ . We are done since P m (Ω typ ) = 1. We finally get lim t→∞ E α i a+1 • • • E α ir η(t), α a = +∞ because

E α i a+1 • • • E α ir (η(t)) -E α i a+1 • • • E α ir (η(ℓ)) with ℓ = ⌊t⌋
is bounded by the common length of the elementary paths of B(π κ ), uniformly in ℓ. This proves that E(η) is well-defined. Since η ∈ Ω typ C , the path η ℓ = Π ℓ (η) is of highest weight. Thus, the path E(η ℓ ) is of lowest weight. Comparing their weights, we get E(η)(ℓ) = w 0 (η(ℓ)) which implies that E(η) ∈ Ω ιtyp .

Observe we have P(η) = lim ℓ→+∞ P(η ℓ ) and E(η) = lim ℓ→+∞ E(η ℓ ) where η ℓ = Π ℓ (η). But the last equality hold by Lemma 8.6 for L sufficiently large. This proves that E(π ⊗ ξ L ) = π ⊗E(ξ L ) for L sufficiently large. Now, observe that π ⊗ξ L and E(π ⊗ξ L ) = π ⊗E(ξ L ) both belong to the crystal B(π ⊗ ξ L ). In this crystal the transforms P and E return the highest and lowest paths, respectively. Therefore, we have EP(π ⊗ ξ L ) = EP(π ⊗ E(ξ L )). But π ⊗ E(ξ L ) = E(π ⊗ ξ L ) is the lowest path of B(π ⊗ ξ L ). This implies that EP(π ⊗ ξ L ) = π ⊗ E(ξ L ) for L sufficiently large as desired. cedric.lecouvey@lmpt.univ-tours.fr emmanuel.lesigne@lmpt.univ-tours.fr marc.peigne@lmpt.univ-tours.fr

  b} the cylinder defined by π in Ω. Definition 4.1. The probability distribution P = p ⊗Z ≥0 is central on Ω when for any ℓ ≥ 1 and any vertices b and b ′ in B(π κ ) ⊗ℓ such that wt(b) = wt(b ′ ) we have P(U b ) = P(U b ′ ).

Remark 4 . 2 .

 42 The probability distribution P is central when for any integer ℓ ≥ 1 and any vertices b, b ′ in B(π κ ) ⊗ℓ such that wt(b) = wt(b ′ ), we have p ⊗ℓ b = p ⊗ℓ b ′ . We indeed have U b = b⊗Ω and U b ′ = b ⊗ Ω. Hence P(U b ) = p ⊗ℓ b and P(U b ′ ) = p ⊗ℓ b ′ .

4 . 2 .

 42 Since b and b ′ have the same weight, we derive from (6) that the paths from π κ to b and the paths from π κ to b ′ contain the same number (says a i ) of arrows i → for any i = 1, . . . , n. We therefore have p b = p b ′ = p πκ τ a 1 1 • • • τ an n and the probability distribution P is central. Central probability distributions on elementary paths. In the remaining of the paper, we fix the n-tuple τ = (τ 1 , . . . , τ n ) ∈]0, +∞[ n and assume that P is a central distribution on Ω defined from τ (in the sense of Definition 4.1. For any

Example 4 . 7 .

 47 We resume Example 3.1 and consider the Lie algebra g = sp 4 of type C 2 for which P = Z 2 and C

4. 4 .

 4 The generalized Pitman transform. By assertion (viii) of Theorem 3.3, we know that B(π κ ) ⊗ℓ is contained in L min Z . Therefore, if we consider a path η ∈ B(π κ ) ⊗ℓ , its connected component B(η) is contained in L min Z . Now, if η h ∈ B(b) is such that ẽi (η h ) = 0 for any i = 1, . . . , n, we should have Im η h ⊂ C by assertion (iii) of Proposition 3.2. Assertion (iii) of Theorem 3.

k→+∞ 1 k

 1 W kkm = 0 almost surely; this readily implies lim ℓ→+∞ 1 ℓ sup t∈[0,ℓ] W(t)m ⊗∞ (t) = 0 almost surely.

7. 1 .

 1 The shift operator. Let S : Ω → Ω be the shift operator on Ω defined byS(π) = S(π 1 ⊗ π 2 ⊗ π 3 ⊗ • • • ) := (π 2 ⊗ π 3 ⊗ . . .) for any trajectory π = π 1 ⊗ π 2 ⊗ π 3 ⊗ • • • ∈ Ω.Observe that S is measure preserving for the probability distribution P m . We now introduce the map J : Ω C → Ω C defined byJ(π) = P • S(π)for any trajectory π ∈ Ω C . Observe that S(π) does not belong to Ω C in general so we need to apply the Pitman transform P to ensure that J takes values in Ω C . 7.2. Isomorphism of dynamical systems. Theorem 7.1.

Example 8 . 2 .

 82 We resume Example 4.7 and consider g = sp 4 and κ = ω 1 . In this particular case we get w 0 = -id and ι = r on B(π ω 1 ). We then have ι(π 1 ) = π 1 and ι(π 2 ) = π 2 . In the picture below we have drawn the path η and ι(η) where η = 112111 212 111222 12 111222111 21 22211, ι(η) = 11222 12 111222111 21 222111 212 111211 .

by Proposition 4 . 8 . 3 .

 483 10 because w 0 = s α 1 * • • • s α r * is also a minimal length decomposition of w 0 . We therefore get E = ιPι as desired. Dual random path. Let us define the probability distribution p ι on B(π κ ) by setting (36) p ι π = p ι(π) = τ κ-w 0 wt(π) S κ (τ ) for any π ∈ B(π κ ) and consider a random variable Y with values in B(π κ ) and probability distribution p ι . Set m ι = E(Y ), m ι = m ι (1) and D ι κ = w 0 (D κ ).

  for any simple root α. The lemma then follows by putting s = 1.

8. 5 .Proposition 8 . 8 .

 588 The transformations P and E on infinite paths. The transformations P and E defined on B(π κ ) ⊗ℓ can be extended to Ω and Ω typ C , respectively. For any η ∈ Ω and any simple root α,set P α (η)(t) = η(t)inf s∈[0,t]η(s), α ∨ α and P(η) = P α i 1 • • • P α ir (η).Similarly, for any η ∈ Ω and any simple root α such that lim t→∞ η(t), α ∨ = +∞, the pathE α (η) such that E α (η)(t) = η(t)inf s∈[t,+∞[ η(s), α ∨ α + inf s∈[0,+∞[ η(s), α ∨ α for any t ≥ 0 is well defined. Consider η in Ω typ C . Then E(η) = E α i 1 • • • E α ir (η)is well defined and belongs to Ω ιtyp . Proof. We proceed by induction and show that E(η) = E α ia • • • E α ir (η) is well-defined for any a = 1, . . . , r. It suffices to prove that lim t→∞ η(t), α r = +∞ and lim t→∞E α i a+1 • • • E α ir η(t), α a = +∞for any a = 1, . . . r -1. We get lim t→∞ η(t), α r = +∞ directly from the definition of Ω typ C . Now for any a = 1, . . . , r -1, and any integer ℓ ≥ 0, we have that E α i a+1 • • • E α ir η(ℓ) is the weight of the path Π ℓ (η). So we obtain by (19)E α i a+1 • • • E α ir η(ℓ), α a = s i a+1 • • • s ir η(ℓ), α a = η(ℓ), s ir • • • s i a+1 (α a ) . Since w 0 is an involution, w 0 = s ir • • • s i 1 is also a minimal length decomposition. By (2), we know that s ir • • • s i a+1 (α a ) = α isa positive root. It follows that lim ℓ→∞ η(ℓ), s ir • • • s i a+1 (α a ) = lim ℓ→∞ E α i a+1 • • • E α ir η(ℓ), α a = +∞.

8. 6 .Lemma 8 . 9 .Proof. 1 :

 6891 Composition of the transformations P and E. Consider π ∈ B(π κ ) ⊗ℓ , η ∈ Ω typ C and ξ ∈ Ω ιtyp . For any positive integer L, set Π L (η) = η L and Π L (ξ) = ξ L . With the above notation we have for L sufficiently large (1)PE(π ⊗ η L ) = π ⊗ η L when π ⊗ η L is a highest weight path, (2) EP(π ⊗ ξ L ) = π ⊗ E(ξ L ). Since π ⊗ η L is a highest weight path, E(π ⊗ η L ) is the lowest weight path of B(π ⊗ η L ), the crystal associated to π ⊗ η L . Therefore PE(π ⊗ η L ) = π ⊗ η L is the highest weight path of B(π ⊗ η L ).2: Since ξ ∈ Ω ιtyp , we have for any i = 1, . . . , n, limL→+∞ ξ L (L), α ∨ i = -∞.We get by (35)ι(ξ L )(L), α ∨ i = w 0 (ξ L (L)), α ∨ i = ξ L (L), w 0 (α ∨ i ) =ξ L (L), α ∨ i * for any i = 1, . . . , n. So lim L→+∞ ι(ξ L )(L), α ∨ i =+∞ for any i = 1, . . . , n. Recall the ιP = Eι and ιE = Pι by Lemma 8.3. We have the equivalencies E(π ⊗ ξ L ) = π ⊗ E(ξ L ) ⇐⇒ ιE(π ⊗ ξ L ) = ι(π ⊗ E(ξ L )) ⇐⇒ P(ι(ξ L ) ⊗ ι(π)) = P(ι(ξ L )) ⊗ ι(π).

Theorem 8. 10 . ( 1 ) 2 )Remark 8 . 11 .

 1012811 For any η ∈ Ω typ C , we have PE(η) = η. (For any ξ ∈ Ω ιtyp , we have EP(ξ) = ξ. Proof. Consider ℓ a positive integer. For any integer L ≥ ℓ we can write Π L (η) = Π ℓ (η) ⊗ η L and Π L (ξ) = Π ℓ (ξ) ⊗ ξ L with η L and ξ L in B(π κ ) ⊗L-ℓ . Since η ∈ Ω typ C and ξ ∈ Ω ιtyp , we have for any simple root α i , lim L→+∞ η L (L), α ∨ i = +∞ and limL→+∞ ξ L (L), α ∨ i = -∞.So by applying Lemma 8.9, we get for L sufficiently large (depending on ℓ)PE(Π L (η)) = Π ℓ (η) ⊗ η L and EP(Π L (ξ)) = Π ℓ (ξ) ⊗ E(ξ L )for any ℓ ≤ L. This shows that PE(η) = η and EP(ξ) = ξ by taking the limit when ℓ tends to infinity. It is possible to state a slightly stronger statement of the previous theorem whereΩ is replaced by L ∞ (see § 8.2) in the definition of Ω typ Cand Ω ιtyp .Write W ι = Y 1 ⊗ Y 2 • • • the dual random path with drift ι(m).The following Theorem shows that the transformation E defined on Ω typ C can be regarded as the inverse of the generalized Pitman transform P. Recall that for both random trajectories W ι and W, we have H = P(W) = P(W ι ). Theorem 8.12. Assume m ∈ D κ . Then we have(i) EP(W ι ) = W ι P ι -almost surely, (ii) We have E(H) = Y 1 ⊗ Y 2 ⊗ • • • where the sequence of random variable (Y ℓ ) ℓ≥1 is i.i.d. and each variable Y ℓ , ℓ ≥ 1 has law Y as defined in (36). (iii) PE(H) = H Q-almost surely. Proof. (i) Write W ι = Y 1 ⊗ Y 2 • • • . Since P ι (Ω ιtyp ) = 1, we get EP(W ι ) = W ι P ι -almost surely by Assertion 2 of Theorem 8.10. Since P(W ι ) = H, we have E(H) = EP(W ι ). By assertion (i), this means that E(H) = W ι which proves assertion (ii).To obtain assertion (iii), it suffices to observe that PE(H) = H Q-almost surely by Assertion 1 of Theorem 8.10 since we have Q(Ω typ C ) = 1.

  be simple roots of g and η a path in Ω satisfying lim

t→+∞ η(t), α ∨ i j = +∞ for 1 ≤ j ≤ r. One gets sup t∈[0,+∞[

  ⊗Z ≥0 ) with drift path m and let H = P(W) be its Pitman transform. Assume m ∈ D κ . Then, we have Proof. Recall we have P=P α i 1 • • • P α ir by Proposition ([1]). Consequently, by Theorem 5.1 and Lemma 5.3, the random variable H -W = P(W) -W is finite almost surely. It follows that

	Furthermore, the family of random variables	H(t) -m ⊗∞ (t) √ t
	lim sup ℓ→+∞	1 ℓ	sup t∈[0,ℓ]	
			lim ℓ→+∞	1 ℓ	sup t∈[0,ℓ]	H(t) -m ⊗∞ (t) = 0 almost surely.

t>0 converges in law as t → +∞ towards a centered Gaussian law N (0, Γ).