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Today, the scientific community uses massively simulations
to test their theories and to understand physical phenomena.
Simulation is however limited by two important factors: the
number of elements used and the number of time-steps which are
computed and stored. Both limits are constrained by hardware
capabilities (computation nodes and/or storage).

From this observation arises the VELaSSCo project1. The
goal is to design, implement and deploy a platform to store
data for DEM (Discrete Element Method) and FEM (Finite
Element Method) simulations. These simulations can produce
huge amounts of data regarding to the number of elements
(particles in DEM) which are computed, and also regarding to the
number of time-steps processed. The VELaSSCo platform solves
this problem by providing a framework fulfilling the application
needs and running on any available hardware.

This platform is composed of different software modules:
a Hadoop distribution and some specific plug-ins. The plug-
ins which are designed deal with the data produced by the
simulations. The output of the platform is designed to fit with
requirements of available visualization software.

Keywords—Big Data architecture, Scientific simulation, VE-
LaSSCo, Hadoop

I. INTRODUCTION

The data production rate has followed a path similar to
computation hardware (based on Moores law). The amount of
information has an exponential growth while hardware storage
capabilities does not follow a similar path. Moreover, the data
produced has also an impact on which architecture is needed.
This amount of data is extracted by several sources: sensors,
simulations, users, etc. For example, the LSST produces 30
terabytes of astrophysics data every night [1]. Simulations can
also create large amount of data as in [2], where the authors
present a parallel implementation of the Denhen algorithm
[3], an astrophysical N -body simulator. This implementation
produces 500 Megabytes of data in 1.19 seconds (for a
plummer distribution with 10 M particles, and only one time-
step). HPC facilities, which are used by scientists to perform
simulations, are not currently designed to store such important
amounts of data: these systems are only suitable to provide
efficient computation capabilities.

1http://www.velassco.eu

Fig. 1. Visualization of FEM simulation (Air flow), produced by GID
(CIMNE).

This paper presents the VELaSSCo project: it provides a
BigData architecture to store the data produced by various
simulation engines. This data must be visualized by specific
tools. For this purpose, two visualization software are targeted:
GID2 from CIMNE3 and I-FX4 from Fraunhofer IGD5 .

The project is also focused on specific data produced by
two different simulation engines: FEM and DEM data. An
example of visualization of FEM simulation data is presented
in Figure 1. This simulation deals with the decomposition of
space using a mesh structure, and it is used to understand the
dynamic of specific objects. For the DEM, a particle example
is presented in Figure 2 (The figure has be produced by the
University of Edinburg6). Both of these solutions produce
important amounts of information: for 10 millions particles
and 1 billion of time-steps, DEM uses 1 Petabytes of data,
or 1 billion elements with 25000 time-steps, whereas FEM
produces 50 TB of data. Currently, all the data produced by
these simulations data are simply not stored, and several time-
steps are deleted from storage device.

This paper focuses on the Big Data architecture designed
for the VELaSSCo project. The platform is designed to be
scalable regarding to which IT capabilities are available (HPC,

2http://www.gidhome.com
3http://www.cimne.com
4http://www.i-fx.net
5https://www.igd.fraunhofer.de
6http://www.ed.ac.uk



Fig. 2. Visualization of DEM data (UEDIN), silo discharge.

Clouds, etc.). It also interfaces visualization tools. It must also
interface some commercial tools specifically designed to deal
with engineering data.

Section II is an overview of related work on Big Data. Sec-
tion III addresses the architecture of the VELaSSCo platform.
Section IV is a conclusion.

II. RELATED WORK

This section is mainly focused on Big Data for engineering
applications. Problematics linked with this field are not widely
developed in the literature. Most of Big Data related problems
concentrate on Web crawling and analytics. Further, simple
visualization queries for engineering simulations are similar
to Web crawling. Therefore, we assume that using solutions
provided for Web search can enhance engineering applications
and visualization queries.

MapReduce computation has been massively studied and
developed recently. Traditional Big Data approaches are
mainly based on MapReduce computations to extract infor-
mation. Strict implementations have been proposed for this
computation model. But evolutions have also been presented
and follow two different paths: Hadoop compliant and none
Hadoop compliant software. Hadoop7 is an open-source project
which implements all the needs with respect to distribute
processing systems for large-scale data. This project was
mainly inspired by Google papers [4] and [5].

At the same time, non-Hadoop compliant solutions have
been developed, which have been designed by database
providers, e.g., to propose a BigData platform based on ex-
isting products. In other cases, these solutions are developed
to deal with other requirements than Hadoop does. An example
is to store big data on HPC facilities without dedicate storage,
and run MapReduce jobs on the HPC nodes. These strategies
have been designed to provide solutions for running big data
applications on traditional data-centers.

Also, the MapReduce programming model has been ported
to HPC facilities, while Hadoop is mainly developed to run
on a dedicated storage nodes. In [6], [7], authors present two
implementations of MapReduce dedicated to HPC facilities.
Their strategies allow to apply MapReduce jobs on POSIX
compliant file systems, and an abstract layer is not necessary
(like HDFS). A deeper study of these methods is not possible,

7http://hadoop.apache.org

because the code source is not directly available and the
extensibility of these solutions is not discussed.

Global frameworks like Hadoop have also been proposed
by the scientific community. One of them is Dryad, [8]. This
solution is designed to extend the standard MapReduce model
by adding intermediate layers between the Map phase and
the Reduce phase. Now, this implementation has been ported
to the Hadoop ecosystem, and Dryad is a full extension of
Hadoop using YARN. This software is available on the GitHub
repository at Microsoft8.

Regarding our needs, our interest is focused on the Hadoop
ecosystem and more precisely on two extensions. The first
one shows the usage of Hadoop over HPC, and the second
one deals with an extension of the Hadoop storage with an
existing database system.

The paper [9] presents how Hadoop is used over a tradi-
tional HPC system. This solution is decomposed as follows:
Hadoop services are started, then the necessary files are
transferred to HDFS, then the computation is run. After the
computation, Hadoop services are stopped and the HDFS par-
tition is destroyed. This solution highlights some bottlenecks:
data transfers between HDFS and the HPC file system. Due
to the HPC structure, authors do not use local storage of the
HPC: indeed this storage can only be used as a temporary
repository.

The second paper [10] presents a Hadoop extension which
uses a RDBMS (Relational Data Base Management System)
to store the data. This storage system is used instead of the
traditional HDFS solution. The goal is to improve the query
speed over Hadoop using the SQL engine of the RDBMS.
Their example stores data into a Postgresql database, but any
database system can be used instead.

III. ARCHITECTURE

This section presents the architecture used for the
VE LaSSCo platform. It is designed to fit with specific require-
ments of engineering data simulations. These requirements are:

• the platform has to be compatible with various com-
puting infrastructure: HPC, clouds, grids, etc.,

• the data produced by the simulation engines can be
computed by several nodes,

• the visualization queries can be simple or complex,

• the visualization queries will be performed in batch or
in real-time,

• the architecture has to be extensible, scalable and
supported by a large community of users.

For the first requirement, we are currently extending the
solution presented in [9]. This tool provides a solution to
deploy a Hadoop ecosystem on any kind of computation
infrastructure, and moreover it reduces the bottleneck due to
numerous file transfers between the virtual file system (FS)
and the HPC FS. Regarding to our partners requirements, it
is necessary to provide a solution which can be parameterized
to deal with the specifics of their computing facilities. This
solution is designed to be suitable for three different cases:

8https://github.com/MicrosoftResearchSVC/Dryad



Fig. 3. Different partition of space for a FEM simulation (provided by
CIMNE).

1) HPC and dedicated storage nodes,
2) HPC nodes with dedicated local storage,
3) HPC nodes with an existing distributed storage sys-

tem.

For the first point, a HPC infrastructure coexists with
storage facilities. This solution is quite new for users from data
simulation. It implies to have two data-centers topologies with
dedicated nodes for both sides (HPC and Hadoop). To avoid
deployment of such an architecture, it is possible to extend an
existing datacenter using external providers like Amazon (with
EC29 and S310).

The second approach uses dedicated storage for storing
data. All the nodes in the HPC have a specific local storage
dedicated to Big Data. A local hard disk is already used to
store local data during computations. For these HPC facilities,
it is possible to add a specific storage. In this architecture,
we dedicate this local storage to all necessary information
concerning the BigData architecture. This solution can only
be implemented on private computing facilities, with possible
hardware modifications.

The last solution uses the distributed FS of the actual HPC
to store the data. This approach is the most suitable solution for
public computing facilities without extensibility for users. With
this approach the data transfers are an important bottleneck.

To fit with all these cases, we extend the myHadoop
implementation [9], by providing all the necessary modules
to deploy a VELaSSCo platform on all kind of computing
facilities. This tool also provides the necessary interfaces to
deal with visualization queries, using pre-installed extensions.

The second step of our project is to gather information
from computation nodes. The computation of a specific job
can imply splitting the data among different nodes: for ex-
ample FEM simulations decompose the space into elements,
which are distributed among the nodes. A representation of
decomposition is presented in Figure 3, where each colored
area is assigned to a particular node. Thus, for each time-step,
it is necessary to gather all the information produced by each

9aws.amazon.com/fr/ec2/
10aws.amazon.com/fr/s3/
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Fig. 4. Expected architecture of the VELaSSCo platform.

node. For this purpose, we use an Apache Flume agent which is
in charge of storing information into the VELaSSCo platform.

The third and fourth points concern visualization, and
more precisely queries. Visualization has two query layers:
the simple one and the complex one.

Simple queries are very similar to traditional information
search over Big Data sets. A query has to find a specific
subset of information at a specific time-step. This model is
well-known and can be efficiently translated into MapReduce
jobs. To reduce the complexity of the query model (avoid to
define the MapReduce jobs), we use Hive with Tez. But we
also have to deal with more complex queries which imply
complex computations. For this, specific scripts are developed.
Examples of these computations are: extract spline, iso-surface,
interpolate information, provide a multi-resolution models, etc.
The fourth point concerns the queries rate: queries have to
be performed in batch (SQL is well suited for this specific
case), but queries can also be triggered dynamically from
specific visualization points of view. Displacements of the
camera in the 3D space thus produce a queries sent to the
platform. For this specific case, we use Storm to stream the
data. Different approaches have been proposed in the computer
graphic literature, one of them is presented in [11]. This
solution presents a continuous multi-resolution method for
terrain visualization. Information is sent to the viewer in real-
time depending on the camera location. To use efficiently
this method, it is necessary to store data using a multi-level
approach. In VELaSSCO, we plan to store the data at different
resolutions to provide real-time answers to the visualization
software. This decomposition of data will be inspired by the
method presented by Hoppe in [12], where a base mesh is used
to encode all information related to a higher resolution.

The storage architecture of the VELaSSCo platform has to
deal with this multi-resolution characteristics and hierarchical
decomposition. Moreover, the computational model used to
extract information has also to be suitable with these assets.
This part of the project is the trickier part, and most of our
future contributions will be focused on these specific points.



The last point concerns the extensibility and support.
We are looking for an extensible framework which supports
extensions for specific usage: queries, data locality and the
management of specific storage. Hadoop is the best choice for
this purpose. The framework already provides a large set of
extensions, and scientific communities continuously provide
new contributions. Moreover, this solution is well suited to
our needs: we provide a plugin to store data into a partner
database named EDM (Express Data Manager). The plug-in is
inspired by the solution presented in [9]. The EDM database is
an object-oriented database designed to store AP209 standard
compliant files. It is a database dedicated to engineering
applications.

To summarize the whole VELaSSCo platform is depicted
in the Figure 4. It enhances the myHadoop software, with
preinstalled plugins. It can be deployed on various IT archi-
tectures. This solution has been designed to store data from
multiple sources using Flume. We plan to extend the current
query engine, and improve it to support complex interactive
visualization queries. Another part is dedicated to storage
facilities using a specific database system for engineering data.
In Figure 4, some extensions are not defined for example:
applications and complex queries. The Application component
is dedicated to specific computations which run on the storage
nodes; for example the computation of multi-resolutions ob-
jects. For the complex queries, not all of them have been yet
selected, thus the future plugin has not been yet chosen. As
stated in this Figure 4, the platform also supports different file
systems: HDFS and Lustre for example. We also use the EDM
database system, and provide a wrapper between the abstract
file system layer in Hadoop and EDM.

IV. CONCLUSION

We introduce the VELaSSCo project. Simulations produce
exponentially growing volumes of data, and it is not possible
to store them anymore into existing IT systems. Therefore,
VELaSSCo aims to develop new concepts for integrated end-
user visual analysis with advanced management and post-
processing algorithms for engineering applications, dedicated
to scalable, real-time and petabyte level simulations. Data in
this project are produced by two simulation sources: DEM
and FEM applications. VELaSSCo is a solution to provide a
complete platform to answer these needs.

We introduce the architecture of the platform, which is
composed of a specific Hadoop distribution related to engineer-
ing data processing. The choice was made with respect to some
requirements: support complex architectures, support multi-
sources aggregation, query lead by visualization, scalability
and extensibility. It is be composed of an open-source Hadoop
distribution, using myHadoop and preinstalled extensions and
scripts for visual queries. We plan to extend the storage by
providing a plugin to use the EDM commercial database sys-
tem as a file system. This software is an engineering database
which supports large and complex engineering applications.

Our future work will be mainly focused on complex visual
queries on Big Data, and more precisely on real-time streaming
queries according to dynamic camera locations.
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