
HAL Id: hal-01061640
https://hal.science/hal-01061640v1

Submitted on 8 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tabu search for human pose recognition
William Dyce, Nancy Rodriguez, Benoit Lange, Sebastien Andary, Antoine

Seilles

To cite this version:
William Dyce, Nancy Rodriguez, Benoit Lange, Sebastien Andary, Antoine Seilles. Tabu search for
human pose recognition. 3DIPM: 3D Image Processing, Measurement, Feb 2014, San Francisco,
United States. �10.1117/12.2040563�. �hal-01061640�

https://hal.science/hal-01061640v1
https://hal.archives-ouvertes.fr


Tabu search for human pose recognition

Dyce W.a, Rodriguez N.b, Lange B.c, Andary S.d, Seilles A.d

aUniversité Montpellier 2, 2 Place Eugène Bataillon, 34095 Montpellier Cedex 5,

France;
bLIRMM, 161 Rue Ada 34090 Montpellier, France;

cUPMC Univ Paris 06, ICS - Institut du Calcul et de la Simulation, F-75005, Paris,

France;
dNaturalPad, 70 Ancien Chemin de Saint Vincent Prades-le-Lez, 34730, France

ABSTRACT

The use of computer vision techniques to build hands-free input devices has long been a topic of
interest to researchers in the field of natural interaction. In recent years Microsoft’s Kinect has
brought these technologies to the layman, but the most commonly used libraries for Kinect human
pose recognition are closed-source. There is not yet an accepted, effective open-source alternative
upon which highly specific applications can be based. We propose a novel technique for extracting
the appendage configurations of users from the Kinect camera’s depth feed, based on stochastic
local search techniques rather than per-pixel classification.

Keywords: computer-vision, human-computer interaction, topology

1. INTRODUCTION

Computer vision techniques are widely used to extract meaningful human poses from a stream
of images. Over the last few years Microsoft’s Kinect depth sensor and accompanying software
libraries (Kinect for Windows,1 NITE,2 . . . ) have lowered the barrier of entry to human movement
recognition. Our interest is in using the Kinect for movement analysis, in line with the work of
Oulasvirta et al.3 and Stone et al.4 We are interested in particular in applying this movement
analysis in a therapeutic context, for automatic post-stroke mobility evaluation for example.

Microsoft’s “Kinect for Windows” library estimates the user’s pose in the form of tree graph of
labeled nodes representing joints, and presents this to the application programmer via a software
interface. Primesense, the company responsible for developing the Kinect sensor, has made avail-
able similar pose-tracking middleware. Both these libraries are closed-source5 and implementation
details are scant, but it is known that Microsoft Research reformulated the problem of body part
recognition as a classification problem and used extensive machine learning to train their classifiers.6

Further author information:
Dyce W.: E-mail: william.dyce@univ-montp2.fr
Rodriguez N. E-mail: nancy.rodriguez@lirmm.fr
Lange B.: E-mail: benoit.lange@lip6.fr
Andary S.: E-mail: sebastien@naturalpad.fr
Seilles A.: E-mail: antoine@naturalpad.fr



There are many problems with this approach which hamper its use for movement analysis,
as Oulasvirta et al. noted in the context of their work on body movements.3 To begin with,
poses not present in the training set (for instance lying down or facing away from the camera)
are not detected. Furthermore since the algorithm simply connects the patches together to form a
“skeleton”, it is possible for the resulting skeleton to defy the constraints of the human body, for
instance by putting an arm through its torso. There is also no “bone” rotation information: bone
roll values are needed, for example, to measure “dorsiflexion” during a post-stroke Fugl-Meyer et
al.7 Assessment of Sensorimotor Recovery.

It is with these limitations in mind that we present the beginnings of an alternative solution to
the real-time human pose estimation, or “user skeleton extraction”, problem.

2. RELATED WORK

We look at the problem of user skeleton extraction as a general topology extraction problem. This
subject has been studied for several years now within the 3D graphics community but it remains
an open problem.

Baran et al.8 create a signed distance field by sampling the model’s mesh, then use its gradient
to approximate a medial surface. Finally the model is packed with spheres along this surface: their
intersections approximate the topology of the model. Au et al.9 contract their model mesh down to
a degenerate tree-shape using Laplacian smoothing, then collapse this into a curve skeleton. Other
techniques use mesh sequences or transformations: Schaefer et al.10 cluster groups of contiguous
faces together when they can be described approximately by a rigid transformation, in other words
a combination of translations and rotations. Once the faces have been clustered the underlying
topological structure, the skeleton, can be calculated. Similarly de Aguiar et al.11 use spectral
clustering to associate vertices across full mesh sequences based on spatial affinity over time. These
mesh-based techniques are unfortunately not well adapted to the depth maps provided by the
Kinect, more readily converted into points clouds or voxels.

Kar et al.12 use multiple Kinect sensors to build a closed voxel model of the user from which
“voxel scooping”13 extracts a skeleton to be trimmed and matched to an anatomical model of a
human. Our current work is loosely inspired by that of Au, et al.9 and Tierny, et al.14 who use
Morse Theory to deduce topology of a 3D mesh from the minimum and maximum values of a key
function defined across its surface.

3. OUR APPROACH

For our implementation we used the open source OpenNI15 library to stream depth-labeled pixels
from the infrared sensor. OpenNI depth images (see figure 1) use lower values to represent closer
areas and higher values to represent more distant ones, though the 0 value (black) is used for “dead”
areas which are either too near, too far or subject to UV interference (from the sun or other Kinect
sensors16).

Our method uses the entire set of depth-labeled pixels provided by the Kinect sensor. An initial
preprocessing phase separates the user’s silhouette from the background (see section 3.1). Next
we approximate the appendage positions by calculating 5 paths from the centre of the silhouette
with geodesically distant endpoints (see section 3.2). Finally we remove as many path nodes as is
possible while keeping it within the bounds of the user silhouette (see section 3.3).



Figure 1. OpenNI source depth-map (normalised). Figure 2. Foreground (user) segmentation.

3.1 User segmentation

This is achieved by calculating the histogram of the map’s non-black areas and looking for the first
“significant” peak. Let:

• τ ∈ [0; 640× 480]
the minimum surface in pixels of the user,

• α ∈ ]0; 1]
the fraction of τ to used as a threshold for the nearest parts of the user,

• β ∈ ]0; 1]
the fraction of τ to used as a threshold for the furthest part of the user.

We scan the histogram’s categories from nearest (darkest) to furthest (lightest) looking for one
containing at least τ depth pixel elements. We then move backwards to the first category containing
fewer than τ×α and forwards to the first category containing fewer than τ×β elements. Everything
outside of this interval of depth is set to 0 (“dead”) on the map and ignored (see figure 2).

The cvBlob17 library contains an implementation of the Senior et al.18 blob detection algorithm.
We use cvBlob to identify the pixel-area occupied by the user (assumed to be the largest blob) and
filter out the rest. From here on our method uses the depth-labeled silhouette of the user.

3.2 User diameters

A graph of nodes is generated based on the remaining non-null pixels in the depth map. For each
depth-pixel p in the user’s silhouette we create a graph node n. Each neighbouring pixel p′ of p will
thus have a corresponding graph node n′ if it is non-null. Where n′ exists n and n′ are connected
if and only if the absolute difference in value (depth) δ(p, p′) is below a given threshold ǫ. Thus if
an arm is front of the body, for instance, paths will not cross it.

The weight of any connection (n, n′) is equal to the sum of δ(p, p′) and the Euclidean distance
between p and p′ on the depth map. This means that the differences in depth are taken into
account when calculating the geodesic length of paths. It should be noted that for our prototype



we downsample the original image to 1
8

th
its original size to speed up calculations: the performance

increase more than makes up for the slight decrease in accuracy.

Tierny et al.19 identify an initial set of prominent features based on the geodesic distances of
each vertex from the extremities of the mesh diameter. Their algorithm makes no assumptions
about the topology of the model, but since we are dealing with humans we can generally assume
that there will be 5 appendages. As such we search not for the two most geodesically distant points,
but rather for the 5 points most geodesically distant both from the blob centroid C and from each
other.

These 5 optimal “appendage paths” are approximated sequentially using a modified version of
Dijkstra’s algorithm, rooted at the blob centroid. Let ∆(P ) the length of a path P across the
previously defined graph. We perform a best-first graph exploration in order to find P for which

λ(P ) = δ(P )
tabu(P ) is maximal (see algorithm 1).

Algorithm 1 appendage(centroid)

frontier.push(centroid)
best← centroid
while frontier is not empty do

n← frontier.pop()
for n’ in neighbours(n) do

frontier.push(n′)
if (best.distance / best.tabu) < (n’.distance / n’.tabu) then

best← n′

end if

end for

end while

return best

“Tabu search” is a local optimisation technique proposed by Glover et al.20 which avoids local
optima by placing a tabou on previous results. Here we are maximising the length ∆(P ) of each path
while avoiding the same appendage being “traced” multiple times by different paths. The “tabu”
factor tabu(P ) is a penalty applied to the utility of any path which revisits previously explored
nodes of the depth map. This ensures that the 5 paths diverge. The penalty for traversing a given
node is updated each time a new appendage is discovered: a negative utility value is propagated
backwards from each new appendage end-point with exponential attenuation (see algorithm 2).

Algorithm 2 tabu(appendage, tabu)

frontier.push(appendage.end)
while frontier is not empty do

n← frontier.pop()
for n’ in neighbours(n) do

frontier.push(n′)
tabu[n′.end]← max(tabu[n′.end], 1/(length(n′)2))

end for

end while



Figure 3. User appendage paths before simplification. Figure 4. Final result after simplification.

3.3 Appendage simplification

We now have a set of 5 appendage paths rooted and the silhouette’s centroid (see figure 3). Since
the end goal is an articulated skeleton we need to remove as many nodes as possible from these
paths so as to arrive at a small number of long, straight segments; However the resulting “bone”
segments should not leave the user’s silhouette (see figure 4).

Starting at the tip of the appendage path we explore backwards along its path towards the
silhouette centroid, using Bresenham’s line algorithm to perform “ray casts”. In so doing we can
calculate the number of pixels d outside of the silhouette that the candidate bone will cross. For b
the length of the candidate bone and k a constant, a new bone is started when b× d > k and the
process is repeated until we arrive back at the silhouette centroid.

4. RESULTS AND CONCLUSIONS

In this paper we provided a short summary of our technique for extracting the topology of a user
from a single frame of depth-data in order to infer their current pose. This is done by finding 5
appendage paths with end-points that are geodesically distant both from the center of the user’s
silhouette and from each other.

Our application was developed in C++ using the OpenNI,15 OpenCV21 and cvBlob17 libraries.
As this is an exploratory study its main merit is the novelty of the technique employed; it is simply
a proof of concept. We hope however with more work to attain real-time speeds.

Aside from speed optimisations, future work will look at ways to improve on the naïve foreground
segmentation method, to place bone joints closer to the center of the blob using sphere-packing in
a similar manner to Baran et al.8 and to fit the final graph to an anatomical model of a human
being for use in natural interaction applications. We hope for this to adapt the work of Kar et al.12



REFERENCES

[1] Microsoft, “Kinect for windows product page.” http://www.microsoft.com/en-us/

kinectforwindows/.

[2] Primesense, “Nite middleware.” http://www.openni.org/files/nite/.

[3] Oulasvirta, A., Roos, T., Modig, A., and Leppänen, L., “Information capacity of full-body
movements,” in [Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-
tems ], CHI ’13, 1289–1298, ACM, New York, NY, USA (2013).

[4] Stone, E. and Skubic, M., “Evaluation of an inexpensive depth camera for in-home gait assess-
ment,” J. Ambient Intell. Smart Environ. 3, 349–361 (Dec. 2011).

[5] Hendel, Z., “Openni and nite licenses.” http://groups.google.com/forum/#!msg/

openni-dev/kLwLLMmL5Bk/mAqupafe9TUJ.

[6] Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A.,
and Blake, A., “Real-time human pose recognition in parts from single depth images,” in
[Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition ],
CVPR ’11, 1297–1304, IEEE Computer Society, Washington, DC, USA (2011).

[7] Fugl-Meyer, A., Jääskö, L., Leyman, I., Olsson, S., and Steglind, S., “The post-stroke hemi-
plegic patient. 1. a method for evaluation of physical performance.,” Scandinavian journal of
rehabilitation medicine 7(1), 13–31 (1974).

[8] Baran, I. and Popović, J., “Automatic rigging and animation of 3d characters,” ACM Trans.
Graph. 26 (July 2007).

[9] Au, O. K.-C., Tai, C.-L., Chu, H.-K., Cohen-Or, D., and Lee, T.-Y., “Skeleton extraction by
mesh contraction,” in [ACM SIGGRAPH 2008 papers ], SIGGRAPH ’08, 44:1–44:10, ACM,
New York, NY, USA (2008).

[10] Schaefer, S. and Yuksel, C., “Example-based skeleton extraction,” in [Proceedings of the fifth
Eurographics symposium on Geometry processing ], SGP ’07, 153–162, Eurographics Associa-
tion, Aire-la-Ville, Switzerland, Switzerland (2007).

[11] de Aguiar, E., Theobalt, C., Thrun, S., and Seidel, H.-P., “Automatic Conversion of Mesh
Animations into Skeleton-based Animations,” Computer Graphics Forum (Proc. Eurographics
EG’08) 27, xx–xx (4 2008).

[12] Kar, A., “Skeletal tracking using microsoft kinect,” Methodology 1, 1–11 (2010).

[13] Rodriguez, A., Ehlenberger, D. B., Hof, P. R., and Wearne, S. L., “Three-dimensional neuron
tracing by voxel scooping,” Journal of neuroscience methods 184(1), 169 (2009).

[14] Tierny, J., Vandeborre, J.-P., and Daoudi, M., “Fast and precise kinematic skeleton extrac-
tion of 3d dynamic meshes,” in [Pattern Recognition, 2008. ICPR 2008. 19th International
Conference on ], 1–4 (2008).

[15] consortium, O., “Openni website.” http://www.openni.org/.

[16] Butler, D. A., Izadi, S., Hilliges, O., Molyneaux, D., Hodges, S., and Kim, D., “Shake’n’sense:
reducing interference for overlapping structured light depth cameras,” in [Proceedings of the
2012 ACM annual conference on Human Factors in Computing Systems ], CHI ’12, 1933–1936,
ACM, New York, NY, USA (2012).

[17] nán, C. C. L., “cvblob.” http://cvblob.googlecode.com.

[18] Senior, A., Hampapur, A., Tian, Y.-L., Brown, L., Pankanti, S., and Bolle, R., “Appearance
models for occlusion handling,” Image and Vision Computing 24(11), 1233–1243 (2006).

http://www.microsoft.com/en-us/kinectforwindows/
http://www.microsoft.com/en-us/kinectforwindows/
http://www.openni.org/files/nite/
http://groups.google.com/forum/#!msg/openni-dev/kLwLLMmL5Bk/mAqupafe9TUJ
http://groups.google.com/forum/#!msg/openni-dev/kLwLLMmL5Bk/mAqupafe9TUJ
http://www.openni.org/


[19] Tierny, J., Vandeborre, J.-P., Daoudi, M., et al., “3d mesh skeleton extraction using topological
and geometrical analyses,” in [14th Pacific Conference on Computer Graphics and Applications
(Pacific Graphics 2006) ], (2006).

[20] Glover, F., Laguna, M., et al., [Tabu search ], vol. 22, Springer (1997).

[21] OpenCV, “Opencv website.” http://opencv.org/.

http://opencv.org/

	INTRODUCTION
	RELATED WORK
	OUR APPROACH
	User segmentation
	User diameters
	Appendage simplification

	RESULTS AND CONCLUSIONS

