
HAL Id: hal-01061543
https://hal.science/hal-01061543v1

Preprint submitted on 7 Sep 2014 (v1), last revised 8 Jun 2015 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algebraic Invariance Conditions in the Study of
Approximate (Null-)Controllability of Markov Switch

Processes
Dan Goreac, Miguel Martinez

To cite this version:
Dan Goreac, Miguel Martinez. Algebraic Invariance Conditions in the Study of Approximate (Null-
)Controllability of Markov Switch Processes. 2014. �hal-01061543v1�

https://hal.science/hal-01061543v1
https://hal.archives-ouvertes.fr


Algebraic Invariance Conditions in the Study of Approximate

(Null-)Controllability of Markov Switch Processes

Dan Goreac∗†‡, Miguel Martinez∗§

September 7, 2014

Abstract

We aim at studying approximate null-controllability properties of a particular class of piece-
wise linear Markov processes (Markovian switch systems). The criteria are given in terms of
algebraic invariance and are easily computable. We propose several necessary conditions and a
sufficient one. The hierarchy between these conditions is studied via suitable counterexamples.
Equivalence criteria are given in abstract form for general dynamics and algebraic form for sys-
tems with constant coefficients or continuous switching. The problem is motivated by the study
of lysis phenomena in biological organisms and price prediction on spike-driven commodities.

Keywords : Approximate (null-)controllability, Controlled Piecewise Deterministic Markov
Process, Markov switch process, invariance, stochastic gene networks

1 Introduction

This paper focuses on a particular class of controlled piecewise deterministic Markov processes
(PDMP) introduced in [1], see also [2]. Namely, we are interested in the approximate (null-)
controllability of switch processes. A switch process is often used to model various aspects in biology
(see [3], [4], [5], [6], [7]), reliability or storage modelling (in [8]), finance (in [9]), communication
networks ([10]), etc. We can describe these processes as having two components denoted (γ,X).
In our framework, the mode component γ evolves as a pure jump Markov process and cannot be
controlled. It corresponds to spikes inducing regime switching. The second component X obeys a
controlled linear stochastic differential equation (SDE) with respect to the compensated random
measure associated to γ. The linear coefficients of this controlled SDE also depend on the current
mode γ. We are concerned with a problem fitting the framework of controllability for stochastic
jump systems. The main aim of the paper is to exhibit explicit algebraic conditions on the linear
coefficients under which, given a time horizon T > 0, for every initial configuration (γ0, x0) the XT
component can be steered arbitrarily close to acceptable targets (random variables, adapted to the
filtration generated by the random measure).

Let us briefly explain the applications we have in mind. The first class of applications comes
from the theory of genetic applets. The simplest model is the one introduced in [3] in connection
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to gene expression. The model can be resumed by the following diagram.

G
ka
�

kd

G*
B;C
→ X

A
→

It reduces the gene expression phenomenon to a single gene which toggles between an inactive
state G and an active one G∗ and to a set of proteins X. Activation and deactivation occur at
different rates ka and kd. Thus, the mode component γ is given by a random process toggling
between active and inactive at specific rates. When active, the gene can express (some of) the
products X. We can have a continuous expression at some rate (matrix) B per time unit or a
unique burst rate proportional to the protein concentration. The products degrade at some rate
A. Various external factors (e.g. catalyzers, temperature, generically denoted by u) can lead to the
enhancement of continuous expression and a first order approximation would lead to an expression
term B(γ)u (Bu if the gene is active, 0 otherwise). The classical method in analytical chemistry

would lead to considering a piecewise differential behavior for the proteins concentration
·

Xt =
−A (γt)Xt + B(γt)ut and, eventually a jump of intensity C (γt−)Xt−, hence leading to a switch
model. In this kind of simple model, the proteins act as their own regulator and a null concentration
of proteins leads to the death of the system. Our method gives simple algebraic conditions on the
model (A (γ) , B (γ) and C (γ)) under which the system can be controlled from given protein
concentrations to cellular death in a given finite time horizon.

A second motivation comes from mathematical finance. Let us suppose that a controller needs to
"predict" a vector price of some derivatives on some commodity (say energy) starting from previous
predictions x0 (whose precision is unknown). The fluctuations in the commodity are observed as
spikes (the γ component) leading to a pure jump process. As long as the commodity does not
change, the price process X is imposed to have a linear behavior (induced by the interest rate,
for example) proportional to some A (γ) matrix. The controller following the market information
imposes a continuous linear correction term (B). When a spike is noticed, the price X is multiplied
by some coefficient (I + C). Given a finite time horizon T , the actual price at time T can be any
random variable with respect to the information given by the commodity at time T. The idea is
to give explicit conditions on the contract terms A,B,C under which, independently of the initial
prediction x0, the controller is able to reach the actual price (or, to be arbitrarily close to it).

In the finite-dimensional deterministic setting, exact controllability of linear systems has been
characterized by the so-called Kalman criterion. Alternatively, one studies the dual notion of
observability via Hautus’ test as in [11]. These conditions can also be written in terms of algebraic
invariance of appropriate linear subspaces and the notions easily adapt to infinite dimensional
settings in [12], [13], [14], [15], [16], etc.

In the stochastic setting, a duality approach to the different notions of controllability would
lead to backward stochastic differential equations (in short BSDE introduced in [17]). This method
allows one to characterize the exact (terminal-) controllability of Brownian-driven control systems
via a full rank condition (see [18]). Whenever this condition is not satisfied, one characterizes the
approximate controllability and approximate null-controllability using invariance-like criteria (see
[19] for the control-free noise setting and [20] for the general Brownian setting). In the case when the
stochastic perturbation is of jump-type, exact controllability cannot be achieved (as consequence of
the incompleteness; see [21]). Hence, the "good" notions of controllability are approximate (resp.
approximate null-) ones. For Brownian-driven control systems, the two approximate controllability
notions are equivalent (cf. [20]). This is no longer the case if the system has an infinite-dimensional
component (see [22] treating mean-field Brownian-driven systems). Various methods can be em-
ployed in infinite-dimensional state space Brownian setting leading to partial results (see [23], [24],
[25], [26]).

In this paper, we are interested in the study of approximate controllability properties for a
particular class of piecewise deterministic Markov processes (introduced in all generality in [1]),
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namely Markovian systems of switch type. We propose explicit algebraic invariance conditions
which are necessary or sufficient for the approximate (null-) controllability of this class of jump
systems. We emphasize that these algebraic conditions are easily computable. We propose several
examples and counterexamples illustrating the necessary and sufficient conditions in all generality.
Explicit equivalent criteria are obtained for two particular classes of systems having either constant
coefficients or continuous switching. The approach relies on duality, backward stochastic differential
equations techniques and Riccati systems.

In Section 2 we recall some elements on Markov pure-jump processes governing the mode com-
ponent and piecewise-linear switch processes. Using the controllability operators and the adjoint
BSDE, we give a first (abstract) criterion for approximate and approximate null-controllability
in Theorem 2. The study of algebraic invariance characterizations for the approximate null-
controllability forms the objective of Section 3. The previously proven abstract tool allows us
to obtain two necessary conditions for approximate null-controllability in Propositions 5 and 7 as
well as a sufficient criterion in Proposition 8. These conditions are explicit and involve invariance
or strict invariance algebraic notions. By means of counterexamples in the framework of bimodal
switch systems, we show in Section 4 that no hierarchy can be established between these necessary
conditions and/or the Kalman criterion for the control of the associate deterministic system. We
exhibit a two-dimensional example in which the necessary condition of Proposition 5 fails to imply
the deterministic Kalman condition and, hence, may not be sufficient for general controllability
(see Example 10). Even if both the necessary condition of Proposition 5 and Kalman deterministic
condition are satisfied, the system may fail to satisfy the condition of Proposition 7, and, thus,
might not be approximately null-controllable (see Example 11). In a similar way, the necessary
condition of Proposition 7 and Kalman deterministic condition do not (in all generality) imply the
condition of Proposition 5 (see Example 12). In the framework of systems with constant coeffi-
cients (Subsection 4.1), we prove that the necessary condition of Proposition 7 is also sufficient.
The basic idea is to give a deterministic characterization for the local viability kernel of KerB∗ by
means of linear-quadratic control techniques in Proposition 13 which allows to weaken the sufficient
condition (see Criterion 15). This is made possible by Riccati techniques which, in this particular
setting, concern deterministic equations (instead of backward Riccati stochastic systems). We prove
that for this class of systems, the necessary and sufficient condition (given in Criterion 15) can be
weaker than the sufficient one in Proposition 8 (see Example 16). The second class for which we can
achieve complete description of approximate null-controllability is that of continuous linear systems
of switch type. This forms the objective of Subsection 4.2. The proof of the equivalence Criterion
17 can be easily extended to more general systems in which the mode is equally influenced by the
continuous component. It relies on explicit construction of stabilizing open-loop control processes.
Finally, we give a hint on work to come in Section 5.

2 A Coefficient-Switch Markov Model

2.1 Markov Jump Processes

We briefly recall the construction of a particular class of Markov pure jump, non explosive processes
on a space Ω and taking their values in a metric space (E,B (E)) . Here, B (E) denotes the Borel
σ-field of E. The elements of the space E are referred to as modes. These elements can be found
in [2] in the particular case of piecewise deterministic Markov processes; see also [27]. To simplify
the arguments, we assume that E ⊂ Rm, for some m ≥ 1. The process is completely described by
a couple (λ,Q)

(i) a Lipschitz continuous jump rate λ : E −→ R+ such that sup
θ∈E

|λ (θ)| ≤ c0 and

(ii) a transition measure Q : E −→ P (E), where P (E) stands for the set of probability measures
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on (E,B (E)) such that

(ii1) Q (γ, {γ}) = 0,
(ii2) for each bounded, uniformly continuous h ∈ BUC (Rm) , there exists ηh : R −→ R+,
ηh (0) = 0 and

∣∣∫
E
h (θ)Q (γ, dθ)−

∫
E
h (θ)Q (γ′, dθ)

∣∣ ≤ ηh (|γ − γ′|) .

(The distance |γ − γ′| is the usual Euclidian one on Rm.) Given an initial mode γ0 ∈ E, the first
jump time satisfies P0,γ0 (T1 ≥ t) = exp (−tλ (γ0)) . The process γt := γ0, on t < T 1. The post-jump
location γ1 has Q (γ0, ·) as conditional distribution. Next, we select the inter-jump time T2−T1 such
that P0,γ0

(
T2 − T1 ≥ t / T1, γ

1
)
= exp

(
−tλ

(
γ1
))
and set γt := γ

1, if t ∈ [T1, T2) . The post-jump
location γ2 satisfies P0,γ0

(
γ2 ∈ A / T2, T1, γ

1
)
= Q

(
γ1, A

)
, for all Borel set A ⊂ E. And so on.

Similar construction can be given for a non-zero initial starting time (i.e a pair (t, γ0)).

We look at the process γ under P0,γ0 and denote by F0 the filtration
(
F[0,t] := σ {γr : r ∈ [0, t]}

)
t≥0
.

The predictable σ-algebra will be denoted by P0 and the progressive σ-algebra by Prog0. As usual,
we introduce the random measure p on Ω× (0,∞)× E by setting

p (ω,A) =
∑

k≥1

1(Tk(ω),γTk(ω)(ω))∈A
, for all ω ∈ Ω, A ∈ B (0,∞)× B (E) .

The compensator of p is λ (γs−)Q (γs−, dθ) ds and the compensated martingale measure is given by

q (dsdθ) := p (dsdθ)− λ (γs−)Q (γs−, dθ) ds.

Following the general theory of integration with respect to random measures (see, for example [28]),
we denote by Lr

(
p;RM

)
the space of all P0 ⊗B (E) - measurable, RM−valued functions Hs (ω, θ)

on Ω× R+ × E such that

E
0,γ0

[∫ T

0

∫

E

|Hs (θ)|
r p (dsdθ)

]
= E0,γ0

[∫ T

0

∫

E

|Hs (θ)|
r λ (γs−)Q (γs−, dθ) ds

]
<∞, for all T <∞.

Here, M ∈ N∗ and r ≥ 1 is a real parameter. By abuse of notation, whenever no confusion is at
risk, the family of processes satisfying the above condition for a fixed T > 0 will still be denoted
by Lr

(
p;RM

)
.

2.2 Switch Linear Model

We consider switch systems given by a process (X(t), γ(t)) on the state space Rn × E, for some
n ≥ 1 and a family of modes E. The control state space is assumed to be some Euclidian space
R
d, d ≥ 1. The component X(t) follows a differential dynamic depending on the hidden variable γ.
A first order approximation leads to a linear behavior

(1)

{
dXx,u

s = [A (γs)X
x,u
s +Bsus] ds+

∫
E
C (γs−, θ)X

x,u
s− q (dθds) , s ≥ 0,

Xx,u
0 = x.

The operators A (γ) ∈ Rn×n are such that supγ∈E |A (γ)| ≤ a0, for some positive real constant

a0 ∈ R. The coefficient B ∈ L
∞
loc

(
Ω× R+,P

0,P0,γ0 ⊗ Leb;Rn×d
)
, that is Bt (ω) ∈ R

n×d, for
all t ≥ 0 and all ω ∈ Ω, the function B is P0− measurable and locally bounded in time (i.e.
supt∈[0,T ] |Bt|Rn×d < cT , P

0,γ0 − a.s., for some positive real constants cT and all T > 0). Particular
evolution will be imposed on B afterwards. The coefficients C (γ, θ) ∈ Rn×n, for all γ, θ ∈ E satisfy

sup
γ∈E

∫

E

|C (γ, θ)|2 λ (γ)Q (γ, dθ) <∞, for all T > 0.
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Moreover, the control process u : Ω × R+ −→ R
d is an Rd-valued, F0−progressively measurable,

locally square integrable process i.e.

E
0,γ0

[∫ T

0
|us|

2 ds

]
<∞.

The space of all such processes will be denoted by Uad and referred to as the family of admissible
control processes. The explicit structure of such processes can be found in [29, Proposition 4.2.1],
for instance. Since the control process does not (directly) intervene in the noise term, the solution
of the above system can be explicitly computed with Uad processes instead of the (more usual)
predictable processes.

In order for our model to be coherent in some/any finite time horizon T > 0, it should be
able to provide a "guess" that is not very far from the actual price at time T. In other words, by
eventually changing the control parameter u, we should be able to simulate any possible (regular)
price at time T or, equivalently, any square-integrable random variable which is measurable w.r.t.
F[0,T ] (the natural σ-field generated by the random measure p prior to time T ).

Definition 1 The system (1) is said to be approximately controllable in time T > 0 if, for every
γ0 ∈ E, every F[0,T ]-measurable, square integrable ξ ∈ L

2
(
Ω,F[0,T ],P

0,γ0 ;Rn
)
, every initial con-

dition x ∈ Rn and every ε > 0, there exists some admissible control process u ∈ Uad such that

E
0,γ0

[∣∣Xx,u
T − ξ

∣∣2
]
≤ ε.

The system (1) is said to be approximately null-controllable in time T > 0 if the previous
condition holds for ξ = 0 (P0,γ0-a.s.).

Controllability is known to be associated to observability properties for the dual (linear) back-
ward stochastic differential equation

(2)

{
dY T,ξt =

[
−A∗ (γt)Y

T,ξ
t −

∫
E
C∗ (γt, θ)Z

T,ξ
t (θ)λ (γt)Q (γt, dθ)

]
dt+

∫
E
ZT,ξt (θ) q (dθdt) ,

Y T,ξT = ξ ∈ L2
(
Ω,F[0,T ],P

0,γ0 ;Rn
)
.

The solution is a couple
(
Y T,ξ· , ZT,ξ· (·)

)
∈ L2

(
Ω× [0, T ] , P rog0,P0,γ0 ⊗ Leb;Rn

)
× L2 (p;Rn) i.e.

such that Y T,ξ· is progressively measurable and ZT,ξ· is P0 × B (E)-measurable and

E
0,γ0

[∫ T

0

∣∣∣Y T,ξs

∣∣∣
2
ds

]
+ E0,γ0

[∫ T

0

∫

E

∣∣∣ZT,ξs (θ)
∣∣∣
2
λ (γs−)Q (γs−, dθ) ds

]
<∞.

For further details on existence and uniqueness of the solution of BSDE of this type, the reader is
referred to [30], [31] (see also [32]). (Although the results in [30], are given in the one-dimensional
framework for the purpose of the cited paper, the assertions in [30, Lemmae 3.2 and 3.3, Theorems
2.2 and 3.4] hold true with no change for the multi-dimensional case. Also the assumptions in [30,
Hypothesis 3.1] are easily verified in our model.)

We get the following duality result.

Theorem 2 The system (1) is approximately controllable in time T > 0 if and only if, for every

γ0 ∈ E, the only solution
(
Y T,ξt , ZT,ξt (·)

)
of the dual system (2) for which Y T,ξt ∈ KerB∗t , P

0,γ0⊗Leb

almost everywhere on Ω× [0, T ] is the trivial (zero) solution.

The necessary and sufficient condition for approximate null-controllability of (1) is that for every

γ0 ∈ E, any solution
(
Y T,ξt , ZT,ξt (·)

)
of the dual system (2) for which Y T,ξt ∈ KerB∗t , P

0,γ0⊗Leb

almost everywhere on Ω× [0, T ] should equally satisfy Y T,ξ0 = 0.
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Proof. Let us fix T > 0 and γ0 ∈ E. As usual, one can consider the (continuous) linear operators

RT : Uad −→ L
2
(
Ω,F[0,T ],P

0,γ0 ;Rn
)
, RT (u) := X

0,u
T , for all u ∈ Uad,

IT : R
n −→ L

2
(
Ω,F[0,T ],P

0,γ0 ;Rn
)
, IT (x) = X

x,0
T , for all x∈Rn.

One notices easily that Xx,u
T = RT (u) + IT (x) , for all u ∈ Uad and all x∈R

n. Hence, approximate
controllability is equivalent to RT (Uad) being dense in L

2
(
Ω,F[0,T ],P

0,γ0 ;Rn
)
, while approximate

null-controllability is equivalent to IT (R
n) being included in the closure of RT (Uad) (w.r.t. the

usual topology on L2
(
Ω,F[0,T ],P

0,γ0 ;Rn
)
). Equivalently, this leads to

Ker (R∗T ) = {0} (resp. Ker (R
∗
T ) ⊂ Ker (I

∗
T ) ).

One easily gets, using Itô’s formula (the reader may consult [28], for example),

E
0,γ0

[〈
Xx,u
T , Y T,ξT

〉]
=
〈
x, Y T,ξ0

〉
+ E0,γ0

[∫ T

0

〈
Btut, Y

T,ξ
t

〉
dt

]
,

for all T > 0, x ∈ Rn, u ∈ Uad and all ξ ∈ L
2
(
Ω,F[0,T ],P

0,γ0 ;Rn
)
. For x = 0, one identifies

R∗T (ξ) =
(
B∗t Y

T,ξ
t

)

0≤t≤T
.

For u = 0, one gets
I∗T (ξ) = Y

T,ξ
0 .

The assertion of our theorem follows.
Equivalent assertions are easily obtained by interpreting the system (2) as a controlled, forward

one :

(3)

{
dY y,vt = −A∗ (γt)Y

y,v
t −

∫
E
C∗ (γt, θ) vt (θ)λ (γt)Q (γt, dθ) dt+

∫
E
vt (θ) q (dθdt) ,

Y y,v0 = y ∈ Rn.

We emphasize that in this framework, the family of admissible control processes is given by v ∈
L2 (p;Rn). This remark will be of particular use for sufficiency criteria.

Theorem 3 The system (1) is approximately controllable in time T > 0 if and only if, for every
initial data γ0 ∈ E, y ∈ R

n and every predictable control process v ∈ L2 (p;Rn) such that Y y,vt ∈
KerB∗t , P

0,γ0⊗Leb almost everywhere on Ω × [0, T ] , it must hold Y y,vt = 0, P0,γ0⊗Leb-almost
everywhere on Ω× [0, T ] .

The system (1) is approximately null-controllable in time T > 0 if and only if, for every initial
data γ0 ∈ E, y ∈ R

n and every predictable control process v ∈ L2 (p;Rn) such that Y y,vt ∈ KerB∗t ,
P
0,γ0⊗Leb almost everywhere on Ω× [0, T ] , it must hold y = 0.

3 Explicit Invariance-Type Conditions

As one can easily see, the approximate (null-) controllability conditions emphasized in the previous
result involve Ker (B∗t ) . In order to obtain the (orthogonal) projection onto this space, one uses
the Moore-Penrose pseudoinverse of Bt

B+t := lim
δ→0+

(B∗tBt + δI)
−1B∗t

(given here by means of Tykhonov regularizations). However, even if Bt is continuous, B
+
t can

only have continuity properties if these matrix have the same rank. In this framework, the results
on derivation of B+given in [33] apply. To simplify the presentation (by avoiding fastidious rank
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conditions), we assume, throughout the remaining of the paper (and unless stated otherwise), B to
satisfy a linear system {

dBt = βγtBtdt
B0 = B

0 (γ0) .
,

where β ∈ R1×d and the space E to be compact. Then, one computes explicitly the predictable
process B

Bt = e
∫ t
0 βγsdsB0 (γ0) , B

+
t = e

−
∫ t
0 βγsds

(
B0 (γ0)

)+
, for all t ≥ 0.

It is clear that Rank (Bt) = Rank
(
B0 (γ0)

)
, for all t ≥ 0. Moreover, BtB

+
t = Π(Ker(B∗t ))

⊥ is the

orthogonal projector onto the orthogonal complement of the kernel of B∗t . In particular,

ΠKer(B∗t ) = I −B
0 (γ0)

(
B0 (γ0)

)+
= ΠKer[(B0(γ0))∗].

We recall the following notions of invariance (see [13], [12]).

Definition 4 We consider two linear operators A ∈Rn×n and C defined on some vector space X
and taking its values in Rn.

(a) A set V ⊂ Rn is said to be A- invariant if AV ⊂ V.

(b) A set V ⊂ Rn is said to be (A; C)- invariant if AV ⊂ V + Im C.

(c) A set V ⊂ R
n is said to be feedback (A; C)- invariant if there exists some linear operator

F : Rn −→ X such that (A+ CF)V ⊂ V (i.e. V is A+ CF- invariant).

If the space X is Rn or some functional space with values in Rn (of Lp-type, for example), one
can also define a notion of (A; C)- strict invariance by imposing that AV ⊂ V + Im (CΠV ) . Of
course, any strictly invariant space is also invariant.

We will now concentrate on some explicit algebraic conditions which are either necessary or
sufficient for the approximate (null-)controllability. These criteria apply to general systems (without
specific conditions on the coefficients). In the next section, we will discuss particular cases when
these conditions are necessary and sufficient. We equally present several examples showing to which
extent our conditions are necessary and sufficient.

3.1 Necessary Invariance Conditions

3.1.1 First Necessary Condition

We begin with some necessary invariance conditions in order to have controllability for the system
(1). Without any further assumptions on E and Q, we have the following.

Proposition 5 If the system (1) is approximately null-controllable, then, for every γ0 ∈ E, the
largest subspace of Ker

[(
B0 (γ0)

)∗]
which is A∗ (γ0) − λ (γ0)

∫
E
C∗ (γ0, θ)Q (γ0, dθ) - invariant is

reduced to the trivial subspace {0} .

Proof. Let us assume that our system is approximately null-controllable at time T > 0 and let us
fix x ∈ Rn and γ0 ∈ E. Since γ0 is fixed, we drop the dependence of γ0 in P

0,γ0 . Then, for every

ε > 0, there exists some admissible control process u ∈ Uad such that E
[∣∣Xx,u

T

∣∣2
]
≤ ε. Since u

is assumed to be progressively measurable, it can be identified prior to jump time T1, with some
deterministic borelian control still denoted by u (see, for example, [29, Proposition 4.2.1]). One
notes easily that

ε ≥ E
[∣∣Xx,u

T

∣∣2
]
≥ E

[∣∣Xx,u
T

∣∣2 1T1>T
]
= |Φγ0 (T ;x, u)|

2
P (T1 > T ) ≥ |Φγ0 (T ;x, u)|

2 e−Tc0 ,
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where c0 is an upper bound for the transition intensities λ and Φγ0 satisfies the deterministic
equation

{
dΦγ0 (s;x, u) =

[(
A (γ0)− λ (γ0)

∫
E
C (γ0, θ)Q (γ0, dθ)

)
Φγ0 (s;x, u) +B

0 (γ0)
(
eβγ0sus

)]
ds,

Φγ0 (0;x, u) = x.

Then this linear system with mode γ0 is controllable (keep in mind that since the coefficients are
time-invariant and we have finite-dimensional state space, the different notions of controllability
coincide). Kalman’s criterion of controllability yields

Rank
[
B, AB, ..., An−1B

]
= n,

where A =A (γ0)− λ (γ0)
∫
E
C (γ0, θ)Q (γ0, dθ) and B =B

0 (γ0) and this implies our conclusion.
In the next section, we shall exhibit various frameworks (continuous switching systems, cor-

responding to the case C = 0) in which this condition is equally sufficient for the approximate
null-controllability as well as counterexamples for the general setting.

3.1.2 Second Necessary Condition

Whenever γ ∈ E, the operator C∗ (γ) ∈ L
(
L
2 (E,B (E) , λ (γ)Q (γ, ·) ;Rn) ;Rn

)
(the space of linear

operators from L
2 (E,B (E) , λ (γ)Q (γ, ·) ;Rn) to Rn) is defined by

C∗ (γ)φ =

∫

E

C∗ (γ, θ)φ (θ)λ (γ)Q (γ, dθ) ,

for all φ ∈ L2 (E,B (E) , λ (γ)Q (γ, ·) ;Rn) .
Let us now assume the set of modes E to be finite. This assumption is made in order to simplify

the arguments on the local square integrability of feedback controls in the proof of Proposition 7.
We define

Acc (k, γ0) =
{
γ ∈ E : ∃0 ≤ k′ ≤ k s.t. Qk

′ (
γ0; γ

′
)
> 0
}
,

the family of accessible modes in at most k ≥ 0 iterations starting from γ0. (In the infinite setting,
accessible states can alternatively be defined using the transition kernel). We use the obvious
convention Acc (0, γ0) = {γ0}. We set Vk to be the largest subspace V ⊂ Ker

[(
B0 (γ0)

)∗]
such

that
A∗ (γ)V ⊂ V + Im (C∗ (γ)ΠV ) = V + C

∗ (γ)
(
L
2 (E,B (E) , λ (γ)Q (γ, ·) ;V )

)
,

for all γ ∈ Acc (k, γ0) (i.e. the largest space (A
∗ (γ) ; C∗ (γ))-strictly invariant for all γ ∈ Acc (k, γ0)).

All these subspaces depend on the initial mode γ0.Whenever no confusion is at risk, this dependency
is dropped.

Remark 6 (i) The reader is invited to note that V0 is the largest subspace V ⊂ Ker
[(
B0 (γ0)

)∗]

which is (A∗ (γ0) ; C
∗ (γ0)ΠV )-invariant.

(ii) If the family of modes E is finite, then Vk = Vcard(E), for all k ≥ card (E) .

The following condition is equally necessary in order to have controllability.

Proposition 7 If the system (1) is approximately null-controllable, then the subspace V∞ := ∩
k≥0
Vk

is reduced to {0} .

Proof. It is obvious from the definition that the family (Vk)k≥0 is decreasing. We set C
∗
∞ (γ) :=

C∗ (γ)ΠV∞ , for all γ ∈ E. Then, due to the definition of V∞, one gets that V∞ is (A∗ (γ) ; C∗∞ (γ))-
invariant

A∗ (γ)V∞ ⊂ V∞ + Im C
∗
∞ (γ) ,
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for every γ ∈ ∪
k≥0
Acc (k, γ0) . Using [12, Theorem 3.2] (see also [13, Lemma 4.6]), the set V∞ is

equally (A∗ (γ) ; C∗∞ (γ))−feedback invariant. Thus, there exists some (bounded) linear operator
F (γ) : Rn −→ L

2 (E,B (E) , λ (γ)Q (γ, ·) ;Rn) such that V∞ is A∗ (γ)+ C∗ (γ)ΠV∞F (γ)- invariant.
We consider the linear stochastic system





dY y,γ0t = −
(
A∗ (γt) +

∫
E
C∗ (γt, θ)ΠV∞F (γt) (θ)λ (γt)Q (γt, dθ)

)
Y y,γ0t dt

+
∫
E
ΠV∞F (θ)Y

y,γ0
t− q (dθdt) , t ≥ 0,

Y y,γ00 = y ∈ V∞ ⊂ Rn.

Then, it is clear that Y y,γ0t = Y y,v
feedback

t , where Y y,v
feedback

t is the unique solution of (3) associated
to the feedback control

vfeedbackt (θ) := ΠV∞F (θ)Y
y,γ0
t− , t ≥ 0.

We wish to emphasize that the solution Y y,γ0· will be adapted and càdlàg and, thus, vfeedback· is
an admissible control (for details on the structure of predictable processes, we refer the reader to
[2, Equation 26.4], [29, Proposition 4.2.1] or [27, Appendix A2, Theorem T34]). For every initial
datum y ∈ V∞, it is clear that the solution Y

y,γ0
· ∈ V∞, P

0,γ0 ⊗ Leb - almost everywhere. In

particular, B∗t Y
y,vfeedback

t = 0, P0,γ0 ⊗ Leb - almost everywhere. If our system is approximately
null-controllable, due to Theorem 3, one has y = 0 and the conclusion of our proposition follows
recalling that y ∈ V∞ is arbitrary.

3.2 Sufficient Invariance Conditions

As we did for C∗ by identifying C∗ (γ, ·) with a linear operator

C∗ (γ) ∈ L
(
L
2 (E,B (E) , λ (γ)Q (γ, ·) ;Rn) ;Rn

)
,

we let I (γ) ∈ L
(
L
2 (E,B (E) , λ (γ)Q (γ, ·) ;Rn) ;Rn

)
be associated to the identity (i.e. we define

it by setting

I (γ)φ =

∫

E

φ (θ)λ (γ)Q (γ, dθ) ,

for all φ ∈ L2 (E,B (E) , λ (γ)Q (γ, ·) ;Rn)). As we have seen, the (second) necessary condition for
approximate null-controllability involves some subspace V∞ ⊂ Ker

([
B0 (γ0)

]∗)
such that

A∗ (γ)V∞ ⊂ V∞ + Im C
∗
∞ (γ) = V∞ + Im (C

∗ (γ)ΠV∞) ,

at least for γ = γ0. A slightly stronger (yet similar) condition written for γ0 turns out to imply
approximate null-controllability.

Proposition 8 If, for every γ0 ∈ E, the largest subspace
(
A∗ (γ0) ; (C

∗ (γ0) + I (γ0))ΠKer([B0(γ0)]∗)

)

- invariant included in Ker
([
B0 (γ0)

]∗)
is reduced to {0}, then the system (1) is approximately

null-controllable.

Proof. For fixed γ0 ∈ E, we drop the dependency on γ0 in P
0,γ0 . For y ∈ Rn and v ∈ L2 (p;Rn) , we

let Y y,v denote the unique controlled solution of (3). Itô’s formula (see [28] or [2, Theorem 31.3])
yields

d
[(
I −ΠKer(B∗t )

)
Y y,vt

]
=

∫

E

(
I −ΠKer(B∗t )

)
vt (θ) q (dθdt)−

(
I −ΠKer(B∗t )

)
A∗ (γt)Y

y,v
t dt

−

∫

E

(
I −ΠKer(B∗t )

)
C∗ (θ) vt (θ)λ (γt)Q (γt, dθ) dt.

9



Whenever B∗t Y
y,v
t = 0, P⊗Leb almost everywhere on Ω × [0, T ] , one easily gets (by computing

quadratic variation)

0 = E

[∫ t

0

∫

E

∣∣(I −ΠKer(B∗s )
)
vs (θ)

∣∣2 λ (γs)Q (γs, dθ) ds
]
.

We recall that v is a predictable process and (see [2, Equation 26.4], [29, Proposition 4.2.1] or [27,
Appendix A2, Theorem T34] for further details)

vt (θ) = v1 (θ, t) 1t≤T1 +
∑

n≥2

vn
(
θ, t, γ1, ..., γn−1

)
1Tn−1<t≤Tn ,

for some (deterministic) measurable functions vn. In particular, if λ (γ0) > 0 (otherwise, we have a
deterministic system), then

(4) v1 (θ, t) ∈ Ker (B
∗
t ) = Ker

([
B0 (γ0)

]∗)
,

for Q (γ0, ·) ⊗ Leb almost all (θ, t) ∈ E × R+. We recall that, up to T1, Y
y,v coincides with φy,v,

the solution of the deterministic system

{
dφy,vt =

(
−A∗ (γ0)φ

y,v
t −

∫
E
(C∗ (γ0, θ) + I) v1 (θ, t)λ (γ0)Q (γ0, dθ)

)
dt, t ≥ 0,

φy,v0 = y ∈ Rn.

As a consequence of the fact that Y y,v ∈ Ker
([
B0 (γ0)

]∗)
and T1 is exponentially distributed, it

follows that

(5)

(
A∗ (γ0)φ

y,v
t +

∫

E

(C∗ (θ) + I) v1 (θ, t)λ (γ0)Q (γ0, dθ)

)
∈ Ker (B∗t ) = Ker

([
B0 (γ0)

]∗)
,

for almost all t ≥ 0. At this point we recall the iterative construction of invariant spaces. To this
purpose, let us introduce the linear subspace

(6) V 0 =

{
y′ ∈ Ker

[(
B0 (γ0)

)∗]
: ∃u ∈ L2

(
E,B (E) , Q (γ0, dθ) ;Ker

[(
B0 (γ0)

)∗])
s.t.

A∗ (γ0) y
′ + (C∗ (γ0) + I (γ0))u ∈ Ker

[(
B0 (γ0)

)∗]
.

}

Then, (4) and (5) imply that φy,vt ∈ V 0, for almost all t ≥ 0. Hence, using the linear character of
V 0, we infer

(
A∗ (γ0)φ

y,v
t +

∫

E

(C∗ (γ0, θ) + I) v1 (θ, t)λ (γ0)Q (γ0, dθ)

)
∈ V 0,

for almost all t ≥ 0. We then define

V 1 =

{
y′ ∈ V 0 : ∃u ∈ L2

(
E,B (E) , Q (γ0, dθ) ;Ker

[(
B0 (γ0)

)∗])
s.t.

A∗ (γ0) y
′ + (C∗ (γ0) + I (γ0))u ∈ V

0.

}

and we deduce, as before, that φy,vt ∈ V 1, for almost all t ≥ 0, and so on for V i, i > 1. We
recall that V i ⊂ R

n. Hence, V := ∩
i=0,n

V i is a linear subspace of Ker
[(
B0 (γ0)

)∗]
which is

(A∗ (γ0) ; C
∗ (γ0) + I (γ0))-invariant and such that φ

y,v
t ∈ V , for almost all t ≥ 0. By assump-

tion, V = {0} . Thus, φy,vt = 0 for almost all t ≥ 0 and, due to the continuity, y = 0. In particular,
it follows that, whenever B∗t Y

y,v
t = 0, P⊗Leb almost everywhere on Ω × [0, T ], one has to have

y = 0 i.e. our system is approximately null-controllable.
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Remark 9 (i) If W is the largest subspace of Ker
[(
B0 (γ0)

)∗]
which is (A∗ (γ0) ; C

∗ (γ0))−strictly
invariant, then it is also (A∗ (γ0) ; (C

∗ (γ0) + I (γ0))ΠW ) - invariant and, hence,(
A∗ (γ0) ; (C

∗ (γ0) + I (γ0))ΠKer[(B0(γ0))∗]

)
−invariant. Under the sufficient condition described

in the previous proposition, it follows that W = {0} .
(ii) The space V 0 is what is called the viability kernel of Ker

[(
B0 (γ0)

)∗]
w.r.t. the deterministic

system (i.e. the larger set of initial data y such that the solution stays in Ker
[(
B0 (γ0)

)∗]
). We

emphasize that a solution starting from V 0 stays in V 0 (prior to jump). In other words, this viability
kernel is viable w.r.t the deterministic system. However we cannot guarantee that this is still the
case w.r.t. the stochastic equation (the controls u may not take their values in V 0).This possible
non-viability is the reason we cannot (in all generality) go any further to obtain a result similar to
the one in Proposition 7.

(iii) In the definition (6), one can replace (C∗ (γ0) + I (γ0)) by C
∗ (γ0) . However, in general,

this is no longer the case in V i when i ≥ 1.

4 Examples and Counterexamples, Equivalent Criteria

We begin this section with some simple counterexamples. We examine several cases. First, we show
that the first necessary condition (given in Proposition 5) may fail to imply the controllability of the
associated deterministic system, and, hence, of the stochastic one. In a second example we show that
it is possible that the first necessary condition (given in Proposition 5) together with the Kalman
condition for the controllability of the deterministic system should fail to imply the second necessary
condition (of Proposition 7). The third example shows that for multimode systems (i.e. non-
constant coefficients), the necessary condition of Proposition 7 may fail to imply the condition given
in Proposition 5 (and, thus, is not sufficient for the general approximate null-controllability). We
emphasize that in the last two examples the Kalman condition for controllability of the associated
deterministic system is satisfied but it does not imply the approximate null-controllability of the
initial stochastic system.

Let us consider some simple examples in which the necessary condition given in Proposition 5
is satisfied and it fails to imply the approximate null-controllability. To this purpose, we consider a
two-dimensional state space and a one-dimensional control space (n = 2, d = 1). The systems will
be bimodal governed by E = {0, 1} , the control will only act on the first component of the state

space B0 (0) = B0 (1) = B0 :=

(
1
0

)
. The control matrix Bt is set to be constant (its equation

has β = 0). The pure jump component will switch between 0 and 1 in exponential time with the
same parameter λ (0) = λ (1) = 1, Q (0, dθ) = δ1 (dθ) , Q (1, dθ) = δ0 (dθ). One easily notes that

Ker
((
B0
)∗)

=

{(
0
y

)
: y ∈ R

}
. Let us consider C (i, j) =

(
0 1

2
1
2 0

)
, for all i, j ∈ E.

Example 10 We first consider A (0) = A (1) = 0 ∈ R2×2. We get

A∗ (γ)− λ (γ)

∫

E

C∗ (γ, θ)Q (γ, dθ) = −

(
0 1

2
1
2 0

)
, for all γ ∈ E.

One notes that
(
A∗ (γ)− λ (γ)

∫
E
C∗ (γ, θ)Q (γ, dθ)

)( 0
y

)
=

(
−y
2
0

)
∈ Ker

((
B0
)∗)

if and only

if y = 0. Hence, the condition given in Proposition 5 is satisfied. The system (1) has the particular
form





dX
(x,y),u
s = d

(
x
(x,y),u
s

y
(x,y),u
s

)
=

(
us
0

)
ds+ 1

2

∫
E

(
y
(x,y),γ,u
s−

x
(x,y),γ,u
s−

)
q (dθds) , s ≥ 0,

X
(x,y),u
0 =

(
x
y

)
∈ R2.
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However, one easily notes that E
[
y
(x,y),u
s

]
= y, for all s > 0. Thus, by taking y 6= 0, the previous

system cannot be steered onto arbitrarily small neighborhoods of

(
0
0

)
.

Due to this example, the reader will get an obvious necessary condition (at least for constant
A,B0) : in order for the system (1) to be approximately controllable if B0 (γ) = B0 and A (γ) = A,
for all γ ∈ E, the associated deterministic system

{
dxx,ũs = Axx,ũs +B0ũsds, s ≥ 0

xx,ũ0 = x,

should be controllable (or, equivalently, due to Kalman’s criterion, Rank
[
B0, AB0, ..., An−1B0

]
=

n). Naturally, this condition is not satisfied in the previous example.
At this point, the reader may be interested in knowing if this supplementary necessary con-

dition (the controllability of the associated deterministic system) implies the approximate null-
controllability for the stochastic system (at least for constant A,B0, C). The answer is negative as
shown by the following.

Example 11 The coefficients B0 and C are taken as before and the framework is similar. However,

we take A (0) = A (1) = A :=

(
0 1
1 0

)
. Then, we get

A∗ (γ)− λ (γ)

∫

E

C∗ (γ, θ)Q (γ, dθ) =

(
0 1

2
1
2 0

)
, for all γ ∈ E.

and the condition given in Proposition 5 is again satisfied (as in the previous case). It is clear that

AB0 =

(
0
1

)
and, thus, the Kalman condition is also satisfied.

Nevertheless, if one considers ξ := (−1)p([0,T ],E)
(

0
e2T

)
, Yt := (−1)

p([0,t],E)

(
0
e2t

)
and Zt :=

−2Yt−, (Y,Z) is the unique solution of the BSDE (2) with final data ξ. It is clear that Yt ∈

Ker
((
B0
)∗)

for all t ∈ [0, T ] . However, Y0 =

(
0
1

)
6=

(
0
0

)
almost surely and, due to Theorem

2, the system is not approximately null-controllable. (Alternatively, one may want to note that
V∞ = V0 = Ker

[(
B0
)∗]

and apply Proposition 7 to get the same conclusion).

The examples we have seen so far show that, even for the case in which the coefficients are
constant, the necessary condition given in Proposition 5 might not be sufficient. In the same
framework, even though we have the exact controllability of the associated deterministic system,
the stochastic one might not be approximately null-controllable.

It is worth pointing out that, in particular cases (constant coefficients and Poisson random
measure-driven systems), the necessary condition given by Proposition 7 turns out to actually be
sufficient. This will be the purpose of the next Subsection. However, for general systems, this
condition may also fail to imply the approximate null-controllability. To illustrate this assertion,
we consider the following switch system.

Example 12 We let n = 3, d = 1, E = {0, 1} , B0 (0) = B0 (1) = B0 :=



1
0
0


, β = 0,

λ (0) = λ (1) = 1, Q (0, dθ) = δ1 (dθ) , Q (1, dθ) = δ0 (dθ). Moreover, we denote by e1 =

1
0
0


 , e2 =



0
1
0


 , e3 =



0
0
1


 . One easily notes that Ker

((
B0
)∗)

= span (e2, e3) . We

12



consider A (0) :=



0 0 0
1 0 0
0 1 0


 , A (1) :=



0 0 0
0 0 1
1 0 0


 , C (0, 1) :=



0 0 0
0 0 0
0 1 0


, C (1, 0) :=



0 0 0
0 0 1
0 0 0


 . The reader is invited to note that Rank

(
B0 A (0)B0 A (0)2B0

)
= 3 and, thus, the

associated deterministic system is controllable. The same assertion holds true for A (1) replacing
A (0). Moreover, A (0)∗ (ye2 + ze3) = ye1 + ze2, C (0, 1)

∗ (ye2 + ze3) = ze2. Hence, the largest

subspace of Ker
((
B0
)∗)

which is
(
A (0)∗ ;C (0, 1)∗ΠKer((B0)∗)

)
-invariant is span (e3). Similarly,

the largest subspace of Ker
((
B0
)∗)

which is
(
A (1)∗ ;C (1, 0)∗ΠKer((B0)∗)

)
-invariant is span (e2).

We deduce that the space V∞ appearing in Proposition 7 is reduced to {0} . However,

A∗ (0)− λ (0)

∫

E

C∗ (0, θ)Q (0, dθ) =



0 1 0
0 0 0
0 0 0




and the space span (e3) is A
∗ (0)−λ (0)

∫
E
C∗ (0, θ)Q (0, dθ)-invariant. Similar assertions hold true

for γ0 = 1. It follows that, although the necessary condition in 7 holds true, the necessary condition
given by Proposition 5 is not satisfied. Hence, the system is not approximately null-controllable.

4.1 The Constant Coefficients Case

Throughout the subsection, we fix γ0 ∈ E and drop the dependency of γ0 in P
0,γ0 . We consider the

following particular form of the system (1).

(7)

{
dXx,u

s = [AXx,u
s +Bus] ds+

∫
E
C (θ)Xx,u

s− q (dθds) , s ≥ 0,
Xx,u
0 = x,

where A ∈ Rn×n, B ∈ Rn×d are fixed and C (θ) ∈ Rn×n, for all θ ∈ E such that λ (γ)Q (γ, dθ)
is independent of γ ∈ E. In this case, q corresponds to a (compensated) Poisson random mea-
sure. We let p denote the Poisson random measure and ν (dθ) := λ (γ)Q (γ, dθ) be its Lévy
measure in this framework. Let us point out that more general σ-finite Lévy measures satisfy-
ing a suitable second order moment condition can be considered and the arguments are identical.
However, for coherence reasons, we work with the (finite) measure given before. We assume that
C ∈ L2 (E,B (E) , ν;Rn×n). As we have already hinted before, we interpret the system (2) as a
controlled, forward one. In this case, the system (3) takes the particular form

(8)

{
dY y,vt =

(
−A∗Y y,vt −

∫
E
C∗ (θ) vt (θ) ν (dθ)

)
dt+

∫
E
vt (θ) q (dθdt) , t ≥ 0,

Y y,v0 = y ∈ Rn.

Let us point out that, in this case, Proposition 7 yields that, whenever the system (7) is approx-
imately null-controllable in time T > 0, the largest subspace V0 ⊂ KerB∗ which is (A∗; C∗ΠV0)-
invariant is reduced to {0} (i.e. the largest subspace of KerB∗ which is (A∗; C∗)−strictly invariant
is reduced to {0}). We recall that the linear operator C∗ : L2 (E,B (E) , ν;Rn) −→ R

n is given by

C∗φ =

∫

E

C∗ (θ)φ (θ) ν (dθ) , for all φ ∈ L2 (E,B (E) , ν;Rn) .

We wish to prove that this condition is also sufficient in order to have approximate null-controllability.
In fact, in this context, we show that not only do we have approximate null-controllability, but we
actually get approximate controllability.
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A careful look at the proof of Proposition 8 and Remark 9 (ii) leads to considering

V iabloc (KerB
∗) =

{
y ∈ KerB∗ : ∃T > 0, v ∈ L2 (p;Rn) s.t.
Y y,v ∈ KerB∗, P⊗Leb− a.s. on Ω× [0, T ]

}
.

When y ∈ V iabloc (KerB
∗) , one finds a solution which is constrained to KerB∗. The control

problems with state constraints can be transformed into unconstrained ones by adding a penalty
when the constraint is not satisfied. Heuristically, in this context, one may associate to y ∈ Rn a

cost which involves a penalty term NE

[∫ T
0

∣∣∣Π[KerB∗]⊥ (Y
y,v
t )

∣∣∣
2
dt

]
and allow N → ∞. Since this

type of cost belongs to the class of LQ (linear-quadratic) control problems, it can be addressed with
the theory of Riccati equations. We consider the sequence of (deterministic) Riccati equations

{
dKN

t =
[
−KN

t A
∗ −AKN

t +NΠ[KerB∗]⊥ −K
N
t

∫
E
C∗ (θ)

(
I +KN

t

)−1
C (θ) ν (dθ)KN

t

]
dt, t ≥ 0,

KN
0 = 0.

The proof for the existence and uniqueness of the solution is quite standard. It relies on successive
iterations (see [34, Chap. 6, Cor. 2.10 and Prop. 2.12 ]) and will be omitted from the present
paper. Obviously, the sequence

(
KN

)
N≥1

is non-decreasing in the family S+n of symmetric, positive
semi-definite matrix. We get the following.

Proposition 13 If y ∈ V iabloc (KerB
∗) , then, there exists T > 0 and v ∈ L2 (p;Rn) such that

Y y,vt ∈ V iabloc (KerB
∗) , P⊗Leb− a.s. on Ω× [0, T ] .

Proof. Step 1. We claim that

V iabloc (KerB
∗) = K :=

{
ỹ ∈ Rn : ∃T̃ > 0 s.t. lim

N→∞

〈
KN

T̃
ỹ, ỹ
〉
<∞

}
.

Using the definition of V iabloc (KerB
∗), we are led to consider, for y ∈ V iabloc (KerB

∗) , some
T > 0 and v ∈ L2 (p;Rn) such that Y y,v ∈ KerB∗, P⊗Leb − a.s. on Ω × [0, T ]. Itô’s formula
applied to

〈
KN
T−sY

y,v
s , Y y,vs

〉
for s ∈ [t, T ] yields

E
[〈
KN
T−tY

y,v
t , Y y,vt

〉]
= E

[∫ T

t

∫

E

|vs (θ)|
2 ν (dθ) ds

]
+NE

[∫ T

t

∣∣∣Π[KerB∗]⊥ (Y
y,v
s )

∣∣∣
2
ds

]

− E

[∫ T

t

∫

E

∣∣∣∣
(
I +KN

T−s

) 1
2 vs− (θ)−

(
I +KN

T−s

)− 1
2 C (θ)KN

T−sY
y,v
s−

∣∣∣∣
2

ν (dθ) ds

]
.

For t = 0, it follows that

〈
KN
T y, y

〉
≤ E

[∫ T

0

∫

E

|vs (θ)|
2 ν (dθ) ds

]
, for all N ≥ 1,

hence y ∈ K. Conversely, if y ∈ K, and T > 0 is such that lim
N→∞

〈
KN
T y, y

〉
=: c <∞, one takes the

feedback control sequence vNs (θ) :=
(
I +KN

T−s

)−1
C (θ)KN

T−sY
y,v
s− to get

E

[∫ T

0

∫

E

∣∣vNs (θ)
∣∣2 ν (dθ) ds

]
+NE

[∫ T

0

∣∣∣Π[KerB∗]⊥
(
Y y,v

N

s

)∣∣∣
2
ds

]
≤ c.

Hence, one finds a (sub)sequence
(
vN , Y y,v

N
)
weakly converging to some (v∗, Y ∗) ∈ L2 (p;Rn) ×

L
2
(
[0, T ]× Ω, P rog0, Leb⊗ P;Rn

)
. Linearity arguments allow one to identify Y ∗ = Y y,v

∗
and the

14



semicontinuity of the L2-norm w.r.t. the weak topology to infer that Y y,v
∗
∈ KerB∗, P⊗Leb− a.s.

on Ω× [0, T ]. We have, thus, shown that y ∈ V iabloc (KerB
∗) .

Step 2. We proceed as in the first part of the previous step. Let us fix y ∈ V iabloc (KerB
∗) ,

T > 0 and v ∈ L2 (p;Rn) such that Y y,v ∈ KerB∗, P⊗Leb− a.s. on Ω× [0, T ]. Whenever t ≤ T ,

E
[〈
KN
T−tY

y,v
t , Y y,vt

〉]
≤ E

[∫ T

0

∫

E

|vs (θ)|
2 ν (dθ) ds

]
.

Using Fatou’s Lemma, one gets that

E

[
lim inf
N→∞

〈
KN
T−tY

y,v
t , Y y,vt

〉]
≤ E

[∫ T

0

∫

E

|vs (θ)|
2 ν (dθ) ds

]
.

Hence, lim inf
N→∞

〈
KN
T−tY

y,v
t , Y y,vt

〉
< ∞, P−a.s. and, using the first step, Y y,vt ∈ V iabloc (KerB

∗) ,

P−a.s. The conclusion follows by recalling that Y y,v· is càdlàg.

Remark 14 The definition of K can, equivalently, be given as

K =

{
ỹ ∈ Rn : ∃T̃ > 0 s.t. lim

N→∞

〈
KN
t ỹ, ỹ

〉
<∞, for all 0 ≤ t ≤ T̃

}
.

In particular, this implies that V iabloc (KerB
∗) = K is a linear subspace of KerB∗.

As a consequence, we get the following criterion for the approximate and approximate null-
controllability in the case when the coefficients are constant.

Criterion 15 The system (7) is approximately null-controllable iff it is approximately controllable.
The necessary and sufficient condition for approximate controllability is that the largest subspace
V0 ⊂ KerB

∗ which is (A∗; C∗ΠV0)-invariant be reduced to {0}.

Proof. Approximate controllability implies approximate null-controllability, which, by Proposition
7, implies that the largest subspace V0 ⊂ KerB

∗ which is (A∗; C∗ΠV0)-invariant is reduced to {0}.
For the converse we proceed as in the proof of Proposition 8. Let us just hint the modifications

needed to this proof. One begins by applying Itô’s formula to
(
I −ΠV iabloc(KerB∗)

)
Y y,vt (instead of(

I −ΠKer(B∗t )

)
Y y,vt ). Whenever B∗Y y,vt = 0, P⊗Leb almost everywhere on Ω × [0, T ] , it follows,

due to the previous result, that Y y,vt ∈ V iabloc (KerB
∗). Hence, reasoning as in Proposition 8,

0 = E

[∫ t

0

∫

E

∣∣(I −ΠV iabloc(KerB∗)
)
vs (θ)

∣∣2 ν (dθ) ds
]
.

Then vt (θ) ∈ V iabloc (KerB
∗) , P ⊗ Leb ⊗ ν almost everywhere on Ω × [0, T ] × E. Reasoning as

in Proposition 8 (but this time globally, not only prior to the first jump time), we get Y y,vt ∈ V ,
almost everywhere on Ω× [0, T ] . Here V ⊂ KerB∗ is the linear subspace

(9) V =
{
y′ ∈ KerB∗ : ∃u ∈ L2 (E,B (E) , ν;V iabloc (KerB

∗)) s.t. A∗y′ + C∗u ∈ V.
}

We recall that y is arbitrary in V iabloc (KerB
∗) to get V iabloc (KerB

∗) ⊂ V and, thus, V is included
in the largest subspace V0 of KerB

∗ which is (A∗; C∗ΠV0)-invariant. By assumption, V0 = {0} .
Hence, Y y,vt = 0, almost everywhere on Ω× [0, T ] which implies approximate controllability of (7).
The proof is now complete.

Since, in this particular framework, we are able to completely characterize the (equivalent)
approximate controllability properties, we can produce a simple example in which the condition
given by Proposition 8 is not satisfied, yet the system is approximately controllable. Hence, although
sufficient, this condition is not (always) necessary in the study of approximate controllability.
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Example 16 We let n = 3, d = 1, E = {0, 1} , B :=



1
0
0


, β = 0, λ (0) = λ (1) = 1, Q (0, dθ) =

δ1 (dθ) , Q (1, dθ) = δ0 (dθ). We denote, as before, by e1 =



1
0
0


 , e2 =



0
1
0


 , e3 =



0
0
1


 .

One easily notes that Ker (B∗) = span (e2, e3) . We let A :=



0 0 0
1 0 0
0 1 0


 , C (0) = C (1) = C :=



1 0 0
0 0 0
0 0 0


. The reader is invited to note that A∗ (ye2 + ze3) = ye1+ze2, C∗ (ye2 + ze3) = 0 and

(C∗ + I) (ye2 + ze3) = ye2 + ze3. Hence, the largest subspace V0 ⊂ KerB∗ which is (A∗; C∗ΠV0)-
invariant (i.e A∗- invariant) is V0 = {0} . It follows that the system (7) is approximately control-
lable. However, the space span (e3) is (A

∗; (C∗ + I)ΠKerB∗)-invariant and, thus, the condition of
Proposition 8 is not satisfied.

4.2 The Continuous Switching Systems

The next class of systems we address is the case in which the dynamics are only switched but no
jump takes place on the X component. In other words, following the behavior of γ, the matrix A
is different (A (γ)) , but a change in the mode γ does not induce an instantaneous change of the
process X. This corresponds to the particular choice C = 0. In this case, we consider a switch
piecewise linear system

(10)

{
dXx,u

s = [A (γs)X
x,u
s +Bsus] ds, s ≥ 0,

Xx,u
0 = x,

The reader is invited to note that whenever spikes appear, they do not modify the current X
component but merely the vector field.

The main result in this framework is the following criterion.

Criterion 17 The system (10) is approximately null-controllable if and only if the largest subspace
of Ker

[(
B0
)∗]

which is A∗ (γ0) - invariant is reduced to the trivial subspace {0} for all γ0 ∈ E.

Let us give a proof that can be adapted for piecewise linear systems with mutual influence
(i.e. in the case when the jump mechanism of the process γ equally depends on X). We refer the
interested reader to [35], [36], [37], [38] for the exact construction. We will not present the rigorous
framework but only give the proof in our case. The main difficulty in the general framework is due
to the fact that the filtration is not fixed prior to the construction of X and that γ itself would
depend on the control parameter through X. In order to get a Markov process, one would have
to use piecewise open-loop control policies (i.e., between consecutive jump times Tn and Tn+1, the
control would be of type un (t− Tn, γTn , XTn) and would not depend on (Tk, γTk , XTk)k≤n−1). In
our proof of sufficiency, we shall exhibit stabilizing controls in the open-loop feedback form.

Let us assume that the initial matrix B0 is independent of γ and that A (γ) are self-adjoint and
commute with B0

(11) A (γ) = A∗ (γ) and A (γ)B0 = B0A (γ) ,

for all γ ∈ E. This assumption is a technical one and implies, without any further considerations,
the commutativity of Gramians and, hence, the positiveness of products.

Proof. The necessary condition follows from Proposition 5 since, in this framework, C = 0.
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For the converse, let us fix γ0 ∈ E, x0 ∈ R
n, a time horizon T > 0 and (for the time being) a

discretization step N > 0. We also drop the dependency of γ0 in P
0,γ0 . Since the largest subspace

of Ker
[(
B0
)∗]

which is A∗ (γ) - invariant is reduced to the trivial subspace {0} , it follows that the
controllability Gramian

G (γ, t) :=

∫ t

0
eA(γ)(t−s)B0

(
B0
)∗
eA

∗(γ)(t−s)ds

is invertible for all t > 0. Due to (11), one has, for every 0 ≤ t ≤ t′,

eA(γ)(t−s)B0
(
B0
)∗
eA

∗(γ)(t−s)eA(γ)(t
′−r)B0

(
B0
)∗
eA

∗(γ)(t′−r)

= eA(γ)(t
′−r)B0

(
B0
)∗
eA

∗(γ)(t′−r)eA(γ)(t−s)B0
(
B0
)∗
eA

∗(γ)(t−s).

Integrating this equality with respect to the Lebesgue measure for (s, r) ∈ [0, t]× [0, t′] , one gets

G (γ, t)G
(
γ, t′

)
= G

(
γ, t′

)
G (γ, t) .

Whenever t′ > 0, one also has

(12) G (γ, t)G−1
(
γ, t′

)
= G−1

(
γ, t′

)
G (γ, t) .

Hence, in this commutating framework, G (γ, t)G−1 (γ, t′) is also positive definite (except when
t = 0 and the product is 0). We define the (square norm) minimal action (in time T

N
)

u0 (γ, y, t) :=

(
−e−βγt

(
B0
)∗
eA

∗(γ)( TN−t)G−1
(
γ,
T

N

)
eA(γ)

T
N y

)
1t≤ T

N
+ 01t> T

N
,

for every γ ∈ E, y ∈ Rn, t ≥ 0 and consider the trajectory X associated to the control sequence(
un =

{
u0, if N ≥ n ≥ 1,
0 , otherwise

)

n≥1

, i.e. to the control

ut := u
1 (γ0, x0, t) 10≤t≤T1 +

∑

n≥2

un
(
γTn−1 , XTn−1 , t− Tn−1

)
1Tn−1<t≤Tn .

(The trajectory is constructed ω-wise between any two consecutive jump times. Obviously, with
this kind of construction, u can also act on γ, on λ and on Q. For more detailed construction, the
reader is referred to [35], [36], [37], [38], etc.). Then Xx0,u

T = 0 on
(
T1 ≥

T
N

)
∪
(
T2 − T1 ≥

T
N

)
∪ ...∪(

TN − TN−1 ≥
T
N

)
. Up to T1, the explicit solution of our equation with mode γ0 and initial data

x0 is given by

Xx0,u
t =

(
I − G (γ0, t) e

A∗(γ0)( TN−t)G−1
(
γ0,

T

N

)
eA(γ0)(

T
N
−t)
)
eA(γ0)tx01t≤T

n
∧T1
.

In view of (12) and (11), we get that

G (γ0, t) e
A∗(γ0)( TN−t)G−1

(
γ0,

T

N

)
eA(γ0)(

T
N
−t) = eA

∗(γ0)( TN−t)G (γ0, t)G
−1

(
γ0,

T

N

)
eA(γ0)(

T
N
−t)

is positive definite (or 0 is t = 0). On the other hand, since

G

(
γ0,

T

N

)
≥ eA

∗(γ0)( TN−t)G (γ0, t) e
A(γ0)( TN−t),

it follows that

0 ≤

(
I − G (γ0, t) e

A∗(γ0)( TN−t)G−1
(
γ0,

T

N

)
eA(γ0)(

T
N
−t)
)
≤ I
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which implies |Xx0,u
t | ≤ ea0t |x0| , for all t ≤

T
N
∧ T1. Here, a0 stands for an upper bound of the

norm of linear operators A (γ). Repeating this argument, it follows that

|Xx0,u
t | ≤ ea0t |x0| ,

for all t ≥ 0. We deduce that

E

[∣∣Xx0,u
T

∣∣2
]
≤ e2a0T |x0|

2
P

((
T1 <

T

N

)
∩

(
T2 − T1 <

T

N

)
∩ ... ∩

(
TN − TN−1 <

T

N

))

≤ e2a0T |x0|
2
(
1− e−

c0T
N

)
,

where c0 is an upper bound for the jump intensities λ (γ). Since N > 0 is arbitrary, it follows that
our system is approximately null-controllable and our proof is complete.

5 Conclusions and Perspectives

In this paper we have studied the approximate null-controllability property for a class of jump
Markov piecewise linear switched processes. These models are inspired by lytic cycles in biological
systems and prediction problems in mathematical finance (energy markets). We have exhibited
several necessary conditions and established specific frameworks of sufficiency of these algebraic
criteria (independent coefficients or continuous jump mechanism). Counterexamples are provided
in the general case establishing the independence of these conditions. We have tried to emphasize
the stochastic characteristics of our problem. We have shown that, as soon as jumps occur, the
controllability cannot be inferred from the analogous property of the related deterministic systems.
For the general framework, we have also proposed a sufficiency criterion again based on algebraic
invariance. Although very close to the necessary criteria, this sufficient condition can be weakened
in the case of constant coefficients (in Example 16). Our approach shows that weaker invariance is
sufficient as soon as local viability with respect to the forward system can be obtained.

In order to relax the sufficient condition (following the method described for constant coefficients
in Subsection 4.1), one would try to characterize the local viability kernel of Ker

[(
B0 (γ0)

)∗]
. To

this purpose, one would be led to consider the backward stochastic Riccati equation




dKN
t =

(
KN
t A

∗ (γt) +A (γt)K
N
t −NΠ[Ker(B∗(γt))]⊥

)
dt+

∫
E
HN
t (θ) q (dθdt)

+
∫
E
λ (γt)

(
KN
t C

∗ (θ)−HN
t (θ)

) (
I +KN

t +H
N
t (θ)

)−1 (
C (θ)KN

t −H
N
t (θ)

)
Q (γt, dθ) dt

KN
T = 0, I +KN

t +H
N
t (θ) > 0, for almost all t ∈ [0, T ]

Of course, the existence of a unique solution to this equation in the general case is quite a difficult
problem. For particular problems, we hope to be able to give a solution by aggregating deterministic
solutions (following the approach for less restrictive one-dimensional BSDE given in [39]). Since all
our counterexamples concern bimodal systems, we are currently working on algebraic conditions
which are intermediate between the necessary and sufficient criteria proposed in the present paper.
Finally, future work will concern branching piecewise linear mechanisms to respond to the intuitive
prediction method in energy markets.
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