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Abstract

The characterization of the elastodynamic behaviour and natural frequencies of parallel
robots is a crucial point. Accurate elastodynamic models of parallel robots are useful at
both their design and control stages in order to define their optimal dimensions and shapes
while improving their vibratory behaviour.

Several methods exist to write the elastodynamic model of manipulators. However,
those methods do not provide a straightforward way to write the Jacobian matrices related
to the kinematic constraints of parallel manipulators. Therefore, the subject of this paper is
about a systematic method for the determination of the mass and stiffness matrices of any
parallel robot in any stationary configuration. The proposed method is used to express the
mass and stiffness matrices of the NaVARo, a three-degree-of-freedom planar parallel robot
with variable actuation schemes, developed at IRCCyN. Then, its natural frequencies are
evaluated and compared with those obtained from both Cast3M software and experimentally.

1 Introduction

Parallel robots have been increasingly used in industry in the last few years for pick-and-place
applications and high-speed machining [1, 2]. This interest is mainly due to their high stiffness
and good dynamic performance compared with their serial manipulator counterparts.

Having a good knowledge of the elastodynamic behaviour of a manipulator (especially its
natural frequencies) is a crucial point. As a consequence, accurate elastodynamic models of
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parallel robots are useful at both their design [3, 4, 5] and control [6, 7, 8] stages in order to
define their optimal dimensions and shapes while improving their vibratory behaviour.

Several models have been proposed and used in order to compute the natural frequencies of a
mechanism. For instance, the following three methods are commonly used in the literature:

• Finite Element Analysis (FEA); the FEA method is proved to be the most accurate and
reliable, since the links and joints are modeled with their true dimensions and shape [9, 10].
However, its accuracy is limited by the mesh size and is usually used at the final design
stage of the robot because the meshing is time-consuming.

• Matrix Structural Analysis (MSA) method is a common technique in mechanical engineer-
ing [4, 11, 12, 13, 14]. It incorporates the main ideas of the FEA method but operates with
rather large flexible elements (beams, arcs, cables, and so on). As a result, the MSA method
is less time consuming than the FEA method, but requires good knowledge in FEA.

• Virtual joint method (VJM ) [5, 15], which is also referred to as “lumped modeling”, is based
on the expansion of the traditional rigid model by adding virtual joints (localized springs),
which describe the elastic deformations of the manipulator components (links, joints and
actuators). Lumped modeling is simpler to use but is less accurate than MSA.

Some general methodologies dealing withMSA or VJM are presented in [11, 12, 13, 15]. These
methodologies can differ from the type of elements or flexible models used. Nevertheless, all of
them require the determination of some Jacobian matrices in order to characterize kinematic
dependencies in closed-loop mechanisms. The main drawback of such methodologies is that
they are not specifically designed for parallel robots and they do not propose a systematic and
straightforward way for computing the Jacobian matrices required for closing the loops.

An approach for the systematic computation of these matrices was proposed in [4]. How-
ever, this approach is complicated and the obtained results have not been verified either with a
commercial software or experimentally. In [14], the authors proposed an interesting algorithm
to study the elastodynamic behaviour of parallel robots that considers both the joint and link
flexibilities. The way the authors close the robot loops and choose the independant coordinates
is not straightforward, resulting in a potentially asymmetrical description of the leg variables.

This paper aims at developing a simple and straightforward procedure for the computation of
mass and stiffness matrices of parallel robots in any stationary configuration. Indeed,

• a simple way to compute the Jacobian matrices required for closing the robot loops is
presented, and

• the set of independent coordinates for parallel robots with a symmetrical arrangement are
chosen cleverly.

Moreover, contrary to most of the existing methods, the proposed approach does not contain any
numerical matrix inversion, which is better to avoid numerical issues that may lead to a loss in
the result accuracy. The natural frequencies calculated using this procedure will be compared
with simulation data obtained using a FEA/MSA software and with experiments carried out on
a parallel robot.

A methodology similar to the one presented in [16] to obtain the rigid dynamic model of a
parallel robot is used. For a parallel robot composed of rigid or flexible links connected by passive
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or active joints, such as the one described in Fig. 1, the methodology is decomposed into two
steps:

1. All closed-loops are virtually opened in such a way that the platform is virtually disassem-
bled from the robot architecture (Fig. 1(b)). Each joint is virtually considered actuated
so that the robot becomes a tree structure with a free body: the platform. The mass and
stiffness matrices of the tree structure and the ones of the free platform are then computed;

2. The loops are closed using Jacobian matrices so that the mass and stiffness matrices of the
actual parallel robot can be obtained.

The paper is organized as follows. In Section 2, a method used for the computation of the
mass and stiffness matrices of one single flexible body using MSA techniques is recalled. The mass
and stiffness matrices of the virtual system composed of the tree structure and the free platform
are introduced in Section 3. A straightforward way for the computation of the Jacobian matrices
linking the Cartesian coordinates of each body to the generalized coordinates of the virtual system
is proposed. Section 4 describes the proposed method to close the loops in order to obtain the
mass and stiffness matrices of the actual parallel robot, that keeps a symmetrical description of
the leg variables. The natural frequencies of the NaVARo [17, 18] are then evaluated in Section 5.
NaVARo is a three-degree-of-freedom (dof) planar parallel manipulator with multiple actuation
modes developed at IRCCyN. Moreover, the simulation results obtained with our approach are
compared with both Cast3M software [19] and experimentations. Finally, some conclusions and
future works are proposed in Section 6.
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Figure 1: Schematic of a parallel robot for its dynamic modeling
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Figure 2: Schematics of the flexible elements into consideration

2 Computation of the Stiffness and Mass Matrices of a

Flexible Body

2.1 Kinematics of a Flexible Free Body

Let us consider body j described in Fig. 2(a) to which a local frame Fj is attached at point Aj.
The flexible body is considered as the superposition of the undeformed configuration referred to
as 0, which corresponds to a rigid transformation of body j described by variable qj and the
deformed configuration related to the elastic deformation of the body. The translational velocity
of any material point Mj of this flexible body can be expressed as [20]:

vj(Mj) = vj(Aj) + ωj(Aj)× rj(Mj) + vej(Mj) (1)

where vj(Aj) and ωj(Aj) are the translational and rotational velocities of body j expressed
in frame Fj, respectively, rj(Mj) is the position vector of point Mj (of the deformed body)
expressed in frame Fj, vej(Mj) is the translational velocity due to the body elasticity that can
be parameterized as truncated series of Rayleigh-Ritz shape functions:

vej(Mj) = Φdj(M0j)q̇ej (2)

with Φdj =
[

φd1j
· · · φdNjj

]

of size (3 × Nj), φdkj
(M0j) being a three-dimensional vector con-

taining the k-th shape functions for the displacement of the flexible body at point M0j , and

q̇ej =
[

q̇e1j · · · q̇eNjj

]T

, q̇ekj being the k-th elastic generalized velocity of body j and Nj the num-

ber of considered shape functions. It should be noted that vector rj(Mj) in (1) can be expressed
as:

rj(Mj) = rj(M0j) + uej(M0j) (3)

where rj(M0j) is the position vector of point M0j expressed in frame Fj,

uej(M0j) = Φdj(M0j)qej (4)
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is the elastic displacement that transforms M0j to Mj and qej =
[

qe1j · · · qeNjj

]T

is the vector of

elastic generalized coordinates of body j.
Equation (1) can thus be written the following matrix form:

vj(Mj) =
[

I3 [rj(Mj)]
T

×
Φdj(M0j)

]





vj(Aj)
ωj(Aj)
q̇ej



 (5)

where I3 is the (3×3) identity matrix and [rj(Mj)]
×
is the cross-product matrix of vector rj(Mj).

Equations (1) to (5) define the kinematic model of flexible free body j. This model is thus
parameterized by the following set of variables:

• vj(Aj) and ωj(Aj): Cartesian velocities (Euler variables) characterizing the rigid displace-
ment of body j expressed in frame Fj;

• qej : generalized coordinates (Lagrange variables) characterizing the elastic displacements
of body j.

It should be mentioned that this description can be applied to both robot links and joints, as
long as all the shape functions can be defined.

2.2 Kinetic Energy of a Flexible Free Body

The kinetic energy of body j (denoted as Σj in the following integral) is given by:

Tj =
1

2

∫

Σj

vj(Mj)
Tvj(Mj)dm =

ρj
2

∫

Vj

vj(Mj)
Tvj(Mj)dV (6)

where ρj is the material density and Vj is the body volume.
Introducing (5) into (6) leads to:

Tj =
ρj
2

∫

Vj





vj(Aj)
ωj(Aj)
q̇ej





T 



I3
[rj(Mj)]

×

Φdj(M0j)
T





[

I3 [rj(Mj)]
T

×
Φdj(M0j)

]





vj(Aj)
ωj(Aj)
q̇ej



 dV

=
1

2





vj(Aj)
ωj(Aj)
q̇ej





T

Mj





vj(Aj)
ωj(Aj)
q̇ej





(7)

where

Mj = ρj

∫

Vj







I3 [rj(Mj)]
T

×
Φdj(M0j)

[rj(Mj)]× [rj(Mj)]× [rj(Mj)]
T

×
[rj(Mj)]×Φdj(M0j)

Φdj(M0j)
T Φdj(M0j)

T [rj(Mj)]
T

×
Φdj(M0j)

TΦdj(M0j)






dV (8)

Mj is the mass matrix of body j expressed in its frame Fj.
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2.3 Elastic Potential Energy and Stiffness Matrix of a Flexible Free

Body

The elastic potential energy of any body is given by [11]:

Vej =
1

2

∫

Vj

σT
j ItǫjdV (9)

where σj and ǫj are the six-dimensional stress and strain vectors due to the small elastic
displacement uej(M0j) in body j. It is a (6 × 6) diagonal matrix. The first three diago-
nal terms are equal to one, whereas the last three diagonal terms are equal to two, because
of the two multipliers associated with the shear strains [11]. The strain vector is defined as

ǫj =
[

ǫj11 ǫj22 ǫj33 ǫj12 ǫj13 ǫj23
]T

, where:




ǫj11 ǫj12 ǫj13
ǫj12 ǫj22 ǫj23
ǫj13 ǫj23 ǫj33



 =
1

2

(

∇uej(M0j) +
(

∇uej(M0j)
)T
)

(10)

with

∇uej(M0j) =

[

∂uej

∂x
(M0j)

∂uej

∂y
(M0j)

∂uej

∂z
(M0j)

]

=



















∂Φ1

dj

∂x
(M0j)qej

∂Φ1

dj

∂y
(M0j)qej

∂Φ1

dj

∂z
(M0j)qej

∂Φ2

dj

∂x
(M0j)qej

∂Φ2

dj

∂y
(M0j)qej

∂Φ2

dj

∂z
(M0j)qej

∂Φ3

dj

∂x
(M0j)qej

∂Φ3

dj

∂y
(M0j)qej

∂Φ3

dj

∂z
(M0j)qej



















(11)

where Φk
dj

corresponds to the k-th line of matrix Φdj , k = 1, 2, 3. As a result,

ǫj =















































∂Φ1

dj

∂x
(M0j)

∂Φ2

dj

∂y
(M0j)

∂Φ3

dj

∂z
(M0j)

1

2

(

∂Φ1

dj

∂y
(M0j) +

∂Φ2

dj

∂x
(M0j)

)

1

2

(

∂Φ1

dj

∂z
(M0j) +

∂Φ3

dj

∂x
(M0j)

)

1

2

(

∂Φ2

dj

∂z
(M0j) +

∂Φ3

dj

∂y
(M0j)

)















































qej = Φǫjqej (12)

The stress vector is expressed as:

σj =
[

σj11 σj22 σj33 σj12 σj13 σj23

]T
= Ejǫj (13)
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where matrix Ej is given by the Hooke’s law [11].
Thus, introducing (12) and (13) into (9) leads to:

Vej =
1

2
qT
ej
Kjqej (14)

where Kj is the stiffness matrix of body j and takes the form:

Kj =

∫

Vj

ΦT
ǫj
ET

j ItΦǫjdV (15)

2.4 Case of the Elastic Beam: the Bernoulli Model

The computation of the mass and stiffness matrices of 3D beams is useful for the elastodynamic
modeling of parallel manipulators.

The Bernoulli model describes the beam deformation under the assumption that the shear
effect is negligible, that the cross-sections remain perpendicular to the neutral axis and that
the rotational inertia of sections is assumed to be zero [21]. With such a model, the 3D beam
deformation uej(M0j) (see Section 2.1) can be characterized with the six shape functions φdxj

,
φdyj , φdzj , φrxj

, φryj and φrzj , i.e. Nj = 6, defined as:

φdxj
=

[

ξ 0 0 0 0 0
]

(16a)

φdyj
=

[

0 3ξ2 − 2ξ3 0 0 0 lj (ξ
3 − ξ2)

]

(16b)

φdzj
=

[

0 0 3ξ2 − 2ξ3 0 −lj (ξ
3 − ξ2) 0

]

(16c)

φrxj
=

[

0 0 0 ξ 0 0
]

(16d)

φryj
=

[

0 0 −6 (ξ − ξ2) /lj 0 3ξ2 − 2ξ 0
]

(16e)

φrzj
=

[

0 6 (ξ − ξ2) /lj 0 0 0 3ξ2 − 2ξ
]

(16f)

where ξ = x/lj and lj is the beam length.
x, y and z denote the Cartesian coordinates of point M0j expressed in the local frame Fj and

Φdj(M0j) is a (3× 6) matrix that takes the form:

Φdj(M0j) =





φdxj
− yφrzj

+ zφryj

φdyj
− zφrxj

φdzj
+ yφrxj



 (17)

Moreover, in the beam model, it is assumed that

σj22 = σj33 = σj23 = 0 (18)

ǫj22 = ǫj33 = ǫj23 = 0 (19)

σj11 = Ejǫj11 (20)

σj12 = Gjǫj12 (21)

σj13 = Gjǫj13 (22)

where Ej is the Young modulus of body j and Gj is its shear modulus.
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Introducing (16a) to (22) into (8) and (15) for qej = 0, the stiffness matrix of body j takes
the form:

Kj =
1

l3j

















EjAjl
2
j 0 0 0 0 0

0 12EjIzj 0 0 0 −6EjIzj lj
0 0 12EjIyj 0 6EjIyj lj 0
0 0 0 I0jGjl

2
j 0 0

0 0 6EjIyj lj 0 4EjIyj l
2
j 0

0 −6EjIzj lj 0 0 0 4EjIzj l
2
j

















(23)

where Aj is the beam cross-section area, Iyj and Izj are the second moments of area around axes
y and z of the local frame, I0j is the torsion constant.

Similarly, the mass matrix of body j is expressed as:

Mj =

[

M11j M12j

MT
12j

M22j

]

(24)

where

M11j =

















mj 0 0 0 mjzGj
−mjyGj

0 mj 0 −mjzGj
0 mjxGj

0 0 mj mjyGj
−mjxGj

0
0 −mjzGj

mjyGj
Jxxj

Jxyj Jxzj
mjzGj

0 −mjxGj
Jxyj Jyyj Jyzj

−mjyGj
mjxGj

0 Jxzj Jyzj Jzzj

















(25)

M12j =



































mj

2
0 0 0 0 0

0
mj

2
0 0 0

mjlj
12

0 0
mj

2
0

mjlj
12

0

0 0 0
ρjljIpj

2
0 0

0 0 −ρjIyj −
7mjlj
20

0 −
mjl

2
j

20
0

0 ρjIzj +
7mjlj
20

0 0 0 −
mjl

2
j

20



































(26)

M22j =























mj

3
0 0 0 0 0

0
13mj

35
+

6ρjIzj
5lj

0 0 0 −
11mj lj+21ρjIzj

210

0 0
13mj

35
+

6ρjIyj
5lj

0
11mj lj+21ρjIyj

210
0

0 0 0
ρj ljIpj

3
0 0

0 0
11mj lj+21ρjIyj

210
0

mj l
2
j+14ρjIyj lj

105
0

0 −
11mj lj+21ρjIzj

210
0 0 0

mj l
2
j+14ρjIzj lj

105























(27)

and

• xGj
, yGj

and zGj
are the Cartesian coordinates of the center of mass of body j expressed in

frame Fj;

8



• Jxxj
, Jyyj , Jzzj , Jxyj , Jxzj and Jyzj are the terms of the rigid inertia matrix expressed at the

origin of frame Fj;

• Ipj = Iyj + Izj is the polar moment of inertia.

3 Computation of the Stiffness and Mass Matrices of a

Tree Structure Robot

Let us consider a parallel robot composed of one rigid fixed base (denoted as element 0), one
rigid moving platform and n legs, each leg being a serial kinematic chain composed of mi − 1
elements1 connected by mi joints (revolute, prismatic or fixed joints - i = 1, ..., n) located at
points Cik (k = 1, ...,mi - Fig. 1(a)). The j-th element of the i-th leg is denoted by ij. The
nominal values of the actuated variables (of the passive variables, resp.) are denoted by qa (qp,
resp.). The nominal values of the Cartesian coordinates of the platform are denoted by xp. The
dimension na of vector qa must be greater than or equal to the number of degrees of freedom
of the parallel robot. Under the assumption of an elastic deformation, the variations in those
variables are denoted by δqa, δqp and δxp, respectively.

The number of shape functions for the element ij is denoted by Nij (j = 1, ...,mi − 1). As a
result, the dimension ne of the vector of elastic variables qe is equal to

∑n

i=1

∑mi−1

j=1
Nij.

Thus, the vector of generalized coordinates of the tree-structure is given by qt =
[

qT
t1
· · · qT

tn

]T
,

where qti =
[

δqT
ai
δqT

pi
qT
ei

]T
. δqai , δqpi and qei are the vectors of the actuated, passive and elastic

generalized coordinates for the i-th leg.

3.1 Relationships between the Generalized Coordinates of a Flexible

Body and the Generalized Coordinates of the Tree Structure

The generalized velocities vij(Aij), ωij(Aij) and q̇eij of body ij are linked to the generalized
velocities2 q̇t by the relations:

[

vij(Aij)
ωij(Aij)

]

= Ji
vij
q̇ti = Jvij q̇t (28)

with

Jvij =
[

0 · · · Ji
vij

· · · 0
]

(29a)

q̇t =















q̇t1
...
q̇ti
...

q̇tn















(29b)

1Note that each robot link can be composed of one element or several elements.
2It is assumed that the generalized velocities are equal to d

dt
(δqt) = q̇t
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and
q̇eij = Jeij q̇t (30)

The foregoing equations can be rewritten in the following compact form:





vij(Aij)
ωij(Aij)
q̇eij



 = Jijq̇t (31)

with

Jij =

[

Jvij

Jeij

]

(32)

Jij is the Jacobian matrix mapping the generalized velocities q̇t of the tree structure into the
generalized velocities of the element ij. Jvij is the Jacobian matrix mapping q̇t into the twist of
the local frame attached to element ij. Jeij is a matrix composed of 0 and 1 terms that is used
to extract vector q̇eij from vector q̇t.

Matrix Jvij is expressed thanks to a generic and systematic approach described thereafter and
derived from [22].

Let us first compute the homogeneous transformation matrix Tij that defines the location and
orientation of the local frame attached to the element ij. By definition, this element is located in
the leg i and is preceded by j − 1 elements, each element ik (k = 1, ..., j) being linked to another
by a joint (revolute, prismatic or fixed) described by its nominal coordinate qik (Fig. 1(b)). Thus,
matrix Tij is defined by:

Tij = Ti
base

(

j−1
∏

k=1

(

Va(qik)T
ik
eltVe(qeik)

)

)

Va(qij)T
ij
end (33)

where

• Ti
base denotes the rigid transformation between the global base frame and the frame attached

to i-th leg;

• The matrix function Va(.) is a transformation matrix corresponding to an elementary ro-
tation or an elementary translation;

• Tik
elt denotes the rigid transformation matrix between the frame attached to element ik and

the frame attached to element i, k + 1 in the undeformed case;

• The matrix function Ve(.) represents the translations and rotations due to the deformations
of the flexible link (if the element is rigid, this matrix will be the identity matrix qeik = 0

in this case);

• T
ij
end is a matrix that allows the rotational part of Tij to be equal to the identity matrix.

Then, let us gather all variables introduced in (33) into vector

qtij =
[

qi1 q
T
ei1

· · · qT
ei,j−1

qij

]T

(34)
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and assume that for the l-th variable qtijl of vector qtij , (33) is rewritten as:

Tij = HR
ijlVijl(qtijl)H

L
ijl (35)

where the first and the third multipliers are constant homogeneous matrices while the second
multiplier is either an elementary translation matrix or an elementary rotation matrix. Then the
partial derivative of the homogeneous matrix Tij with respect to qtijl at the configuration qnomtijl

(qnomtijl
= 0 for an elastic variable and may not vanish for a joint variable) can be computed from a

similar product where the internal term is replaced by the matrix Vd
ijl(.) = ∂Vijl(qtijl)/∂qtijl that

takes a simple analytical form. For instance, for elementary translations and rotations about the
x axis, these derivatives take the form:

Vd
ijl(qtijl) =









0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0









for a translation along x axis

Vd
ijl(qtijl) =









0 0 0 0
0 − sin(qtijl) − cos(qtijl) 0
0 cos(qtijl) − sin(qtijl) 0
0 0 0 0









for a rotation about x axis

(36)

For the elementary translations and rotations about the other axes, the matrices Vd
ijl(.) can be

obtained similarly.
Only small displacements occur in the determination of the natural frequencies. Therefore,

the derivative of the homogeneous matrix Td
ij = ∂Tij/∂qtijl = HR

ijlV
d
ijl(qtijl)H

L
ijl can be expressed

as:

Td
ij =









0 −γd
zijl

γd
yijl

λd
xijl

γd
zijl

0 −γd
xijl

λd
yijl

−γd
yijl

γd
xijl

0 λd
zijl

0 0 0 0









(37)

It is noteworthy that vector 0j
qtijl
vij =

[

λd
xijl

λd
yijl

λd
zijl

γd
xijl

γd
yijl

γd
zijl

]T

, which can be obtained by

extracting the terms of matrix Td
ij defined in (37) is the column of the Jacobian matrix, corre-

sponding to variable q̇tijl . The latter maps vector qt into the velocity of the local frame attached

to body ij expressed in the global frame [22]. Let ijR0 be the (6× 6) extended rotation matrix:

ijR0 =

[

ijR0 03

03
ijR0

]

(38)

where ijR0 is the rotation matrix between the global frame and the local frame attached to
element ij, which is evaluated in the robot undeformed configuration and can be extracted us-
ing (33). Thus, multiplying ijR0 by vector 0j

qtijl
vij yields the column j

qtijl
vij = ijR0

0j
qtijl
vij of Jacobian

matrix Jvij defined in (28) corresponding to variable q̇tijl .
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3.2 Stiffness and Mass Matrices of the Tree Structure

From (6) and (9), the Lagrangian of the tree structure system can be expressed as:

Lt =
∑

i,j

(

Tij − Veij

)

=
1

2

∑

i,j











vij(Aij)
ωij(Aij)
q̇eij





T

Mij





vij(Aij)
ωij(Aij)
q̇eij



− qT
eij
Kijqeij






(39)

Introducing (28) into (39) leads to

Lt =
1

2

∑

i,j

(

q̇T
t J

T
ijMijJijq̇t − qT

t J
T
eij
KijJeijqt

)

=
1

2

(

q̇T
t Mtq̇t − qT

t Ktqt

)

(40)

where Mt and Kt are the mass and stiffness matrices of the tree structure.
Adding the contribution of the rigid platform into (40), the Lagrangian of the total system

can be written as:

L =
1

2

(

q̇T
t Mtq̇t + ẋT

pMpẋp − qT
t Ktqt

)

=
1

2

(

[

q̇T
t ẋT

p

]

[

Mt 0

0 Mp

] [

q̇t

ẋp

]

−
[

qT
t δxT

p

]

[

Kt 0

0 0

] [

qt

δxp

])

=
1

2

(

q̇T
totMtotq̇tot − qT

totKtotqtot

)

(41)

where Mp is the mass matrix of the rigid platform. Mtot and Ktot are the total mass and stiffness

matrices of the virtual system. qtot =
[

qT
t δxT

p

]T
is the vector of all generalized coordinates of

the virtual system.

4 Computation of the Stiffness and Mass Matrices of the

Parallel Robot

The model of the virtual tree structure and of the free moving platform does not consider the
closed-loop kinematic chains. As a matter of fact, the nqtot components of vector qtot are de-
pendent. The independent components are gathered into vector q and their determination is
described thereafter.

4.1 Determination of the Generalized Coordinates of the Parallel

Robot

For determining one possible subset of generalized coordinates for the parallel robot, let us express
the relations between the vector of generalized velocities q̇ti and the twist of the last element mi

for each leg i. Using (28) for computing the twist3 ti,mi
=
[

vT
i,mi

(Ai,mi
) ωT

i,mi
(Ai,mi

)
]T

of the
extremity of each leg, it comes:

ti,mi
= Ji

vi,mi
q̇ti (42)

3Note that index ij is written i, j in this section for a better understanding of the equations.
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As the leg extremity is also linked to the rigid platform, its twist can be related to the platform
twist ẋp via the rigid body displacement relation:

ti,mi
= Ji

pẋp (43)

where

Ji
p =

i,miR0

[

I3 [pi]×
0 I3

]

(44)

in which Ji
p is a (6×6) matrix, [pi]× is the cross product matrix of vector pi that characterizes the

position of the attachement point Ci,mi
with respect to the platform centre position (Fig. 1(a))

and i,miR0 is the (6× 6) rotation matrix between the global frame and the local frame attached
to element i,mi, evaluated in the robot undeformed configuration.

Thus, expressing the twist ti,mi
for each leg as a function of the platform twist ẋp and gener-

alized coordinates q̇ti , the following set of equations is obtained:







J1
v1,m1

· · · 0
...

. . .
...

0 · · · Jn
vn,mn













q̇t1
...

q̇tn






−







J1
p
...
Jn
p






ẋp = 0 (45)

which can be equivalently written as

Jvq̇t − Jpẋp =
[

Jv −Jp

]

[

q̇t

ẋp

]

= Jtotq̇tot = 0 (46)

where Jtot is a (r n × nqtot) matrix in the case of a spatial robot, nqtot > r n (r = 6 for a spatial
robot, r = 3 for a planar robot). This means that a subset qd of r n variables in vector qtot is
linked to the others. This subset is not unique. An idea could be to put in this subset all passive
joints and platform variables, i.e., q∗

d =
[

δqT
p δxp

]

. However, for over-constrained parallel robots,
dim (q∗

d) < r n. As a result, this vector should be completed using some other elastic variables
that could be chosen arbitrarily. Meanwhile, it must be mentioned that most of parallel robots
have identical legs and that such a methodology will lead to an asymmetrical description of the
leg variables, which is not ideal. In order to avoid this problem, we had better put in qd the last

r components q
f
ti
of each vector qti that is now decomposed into two parts: qti =

[

q0T
ti

q
fT
ti

]T

.

Thus, variables qf
ti
are related to the others using (45):

−







Jf1
v1,m1

· · · 0
...

. . .
...

0 · · · Jfn
vn,mn













q̇
f
t1
...

q̇
f
tn






=







J01
v1,m1

· · · 0 −J1
p

...
. . .

...
...

0 · · · J0n
vn,mn

−Jn
p

















q̇0
t1
...

q̇0
tn

ẋp











(47)

which can be rewritten as

−Jf
v







q̇
f
t1
...

q̇
f
tn






=
[

J0
v −Jp

]











q̇0
t1
...

q̇0
tn

ẋp











(48)

13



or also






q̇
f
t1
...

q̇
f
tn






= −

(

Jf
v

)

−1 [

J0
v −Jp

]











q̇0
t1
...

q̇0
tn

ẋp











=







Jd1,1 · · · Jd1,n Jd1,n+1

...
. . .

...
...

Jdn,1
· · · Jdn,n

Jdn,n+1






q̇ (49)

where

• J0i
vi,mi

(Jfi
vi,mi

, resp.) collects the columns of matrix Ji
vi,mi

corresponding to variables q̇0
ti
(q̇f

ti
,

resp.);

• Jdij is the matrix that maps q̇0
tj
into q̇

f
ti
, j = 1, . . . , n;

• Jdi,n+1
is the matrix that maps ẋp into q̇

f
ti
.

It is noteworthy that the inversion of matrix Jf
v involves only the inversion of the (r× r) matrices

Jfi
vi,mi

, which is more efficient in terms of computational time. Moreover, when 3D beam elements

are used for leg i, if the coordinates q
f
ti
are the elastic coordinates of l-th element of this leg

(previesly denoted as qei,l), it can be proven that, as the k-th column of matrix Jfi
vil

corresponds
to a unit twist that describes the displacement of the leg extremity due to the k-th coordinate of
vector qf

ti
, Jfi

vil
is equal to [23]:

Jfi
vil

=

[

i,miRil
i,miRil [pil]×

0 i,miRil

]

(50)

where i,miRil is the rotation matrix between the local frame linked at element i,mi and the local
frame linked to element il and [pil]× is the cross product matrix of the vector pil that characterizes
the position of the leg extremity with respect to the frame linked to element il. Thus, its matrix
inverse is equal to

(

Jfi
vil

)

−1
=

[

i,miRT
il −

(

[pil]×
i,miRT

il

)

0 i,miRT
il

]

(51)

which requires few calculations and, before all, avoid any numerical inversion that could lead to
numerical issues. If 2D beam elements are used, some similar relations can be obtained.

Finally, the Jacobian matrix relating all variables q̇tot to the independent variables q̇ =
[q̇0T

t1
· · · q̇0T

tn
ẋp]

T can be obtained as:

q̇tot =



















q̇0
t1

q̇
f
t1
...

q̇0
tn

q̇
f
tn

ẋp



















=



















Ic1 · · · 0 0

Jd1,1 · · · Jd1,n Jd1,n+1

... · · ·
...

...
0 · · · Icn 0

Jdn,1
· · · Jdn,n

Jdn,n+1

0 · · · 0 I6





























q̇0
t1
...

q̇0
tn

ẋp











= Jq̇ (52)

where Ici is the (ci×ci) identity matrix, ci being the dimension of vector q̇0
ti
. Under the assumption

of small displacements, the following relation holds true:

qtot = Jq (53)
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4.2 Computation of the Natural Frequencies of the Parallel Robot

Introducing (52) and (53) into (41) leads to:

L =
1

2

(

q̇TJTMtotJq̇− qTJTKtotJq
)

=
1

2

(

q̇TMq̇− qTKq
)

(54)

Since in the natural frequency problem, matrices M and K are evaluated in the robot unde-
formed configuration, namely, for qe = 0, and as a result for δqa = 0 and δqp = 0, it turns out
that the Lagrange equations yield:

d

dt

(

∂L

∂q̇

)

−
∂L

∂q
= Mq̈+Kq = 0 (55)

A solution ql of this equation satisfies:

(

ω2

l M−K
)

ql = 0 (56)

where ωl = 2πfl, fl is the natural frequency associated with the l-th natural mode of vibrations
and ql is its associated eigenvector.

Therefore, the natural frequencies of the parallel robot are evaluated by solving the following
eigenvalue problem:

det
(

ω2

l M−K
)

= 0 (57)

In the next section, the natural frequencies of the NaVARo, a parallel robot developed at
IRCCyN [17], are computed using the proposed method and compared with the results obtained
with the Cast3M software [19] and experimentally.

5 Case Study: Computation of the Natural Frequencies

of the NaVaRo

5.1 Description of the NaVARo

The NaVARo (acronym for Nantes Variable Actuation Robot) was developed at IRCCyN and
is shown in Fig. 3(a). The NaVARo is a 3-dof planar parallel manipulator composed of three
identical legs and one moving platform made up of three segments E1P , E2P and E3P rigidly
linked at point P . The i-th leg contains four links AiBi, BiCi, CiEi, AiDi (named link 2i, link 3i,
link 4i and link 1i, respectively) connected with five revolute joints in such a way that AiBiCiDi

is a parallelogram linkage, i = 1, 2, 3. The base frame Fb (O,x0,y0, z0) (not shown in Fig. 3(b))
is defined such as point O is located at the geometric centre of the equilateral triangle A1A2A3.
Frame Fp (P,xp,yp, zp) is attached to the moving platform. In the home configuration shown in
Fig. 3, Fb and Fp coincide. (xp, yp) are the Cartesian coordinates of point P expressed in frame Fb

and θp is the orientation angle of the moving platform, namely, the angle between x0 and xp.
q1i denotes the angle between axis x0 and link 1i. q2i denotes the angle between link 1i and

link 2i. Three double clutches are mounted to the base and located at points Ai, i = 1, 2, 3, in
order to actuate either angle q1i or angle q2i. As a consequence, the NaVARo has eight actuation
modes as described in [17, 24]. Therefore, the moving platform can be moved throughout the
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(a) Prototype of the NaVARo located at IRCCyN, Nantes, France
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Figure 3: The NaVARo
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manipulator workspace without reaching any parallel singularity thanks to a judicious actuation
scheme.

The kinematics of the i-th leg is described by the modified Denavit-Hartenberg parame-
ters (MDH ) [23] given in Table 1, in which γi = π/2 if i = 1, γi = −5π/6 if i = 2 and γi = −π/6
if i = 3. Besides, the circumradius of the moving-platform is equal to 0.2027 m, i.e., l5i = 0.2027
m.

Table 1: MDH parameters of the i-th leg

ji a(ji) σji γji bji αji dji θji rji
1i 0 0 γi 0 0 d1 = 0.4041m q1i − γi 0
2i 0 0 γi 0 0 d1 = 0.4041m q2i − γi 0
3i 2i 0 0 0 0 d3 = 0.2100m q3i 0
4i 3i 0 0 0 0 d4 = 0.2100m q4i 0
5i 4i 0 0 0 0 d5 = 0.4200m q5i 0

Each link, of rectangular cross-section, is made up of duraluminum alloy (E = 74000 MPa,
G = 28900 MPa, ρ = 2800 kg/m3). Table 2 gives the cross-section area and the moments of
inertia of the robot links.

Table 2: Characteristics of the beam cross-sections
link Aij (m

2) Iyij (m4) Izij (m4) Ipij (m4) I0ij (m4)
1i, 2i, 3i, 4i 2.4 · 10−4 1.152 · 10−8 2.000 · 10−9 1.352 · 10−8 5.902 · 10−9

5i 4 · 10−4 3.333 · 10−8 5.333 · 10−8 8.666 · 10−8 1.123 · 10−8

In the experimental setup, the rotation of links 1i and 2i about point Ai, i = 1, 2, 3, is locked
thanks to the double clutch mechanisms. The elasto-dynamic modeling of the NaVARo is complex
due to the closed-loop chain in each leg and is obtained by following those three steps:

1. Computation of the mass and stiffness matrices of the virtual system assuming that the
moving platform is cut at point P and the parallel linkages are opened at points Di, i =
1, 2, 3;

2. Computation of the mass and stiffness matrices of the legs including the closed-loop chains;

3. Computation of the mass and stiffness matrices of the NaVARo.

A single 3D beam element is used to model links 1i, 2i, 3i and 5i (see Section 2.4) while two
3D beam elements of equal lengths l (l = lCiDi

= lDiEi
) are used to model links 4i. Decomposing

links 4i into two beam elements is mandatory in order to be able to close the leg loops as mentioned
previously in the step 2. Thus, the NaVARo is modelled as a spatial mechanism and its elasto-
dynamic model contains 144 generalized coordinates: (i) 108 elastic coordinates; (ii) 12 passive
joint coordinates, i.e., four passive joint angles per leg; (iii) 18 intermediary coordinates for the
assembly of the legs; (iv) 6 coordinates for the moving-platform pose. From Sec. 4, it turns out
that there are only 90 independent coordinates amongst those 144 coordinates.

17



5.2 Numerical analysis

A Matlab code was written to compute the robot mass and stiffness matrices using the modeling
procedure presented in Secs. 2 to 4. The obtained robot mass and stiffness matrices were validated
by means of an equivalent model developed using Cast3M software [19]. Cast3M aims to determine
the elastodynamic model of structures modeled with beams. Both models give the same values
for the first 90 natural frequencies of the NaVARo. Table 3 gives the first five natural frequencies
of the NaVARo for the eight robot postures shown in Fig. 4.

The natural frequencies of the NaVARo are the same for poses 3, 5 and 7 (4, 6 and 8, resp.) as
they correspond to a rotation of the robot base frame of ±120deg with respect to pose 3 (pose 4,
resp.).

Table 3: Comparison of the natural frequencies obtained with Cast3M and the Matlab model.

(Hz) Pose 1 Pose 2 Pose 3 Pose 4 Pose 5 Pose 6 Pose 7 Pose 8
f1(Cast3M) 44.10 45.71 36.98 40.17 36.98 40.17 36.98 40.17

f1(Matlab model) 44.10 45.71 36.98 40.17 36.98 40.17 36.98 40.17
f2(Cast3M) 44.10 45.71 49.31 50.32 49.31 50.32 49.31 50.32

f2(Matlab model) 44.10 45.71 49.31 50.32 49.31 50.32 49.31 50.32
f3(Cast3M) 53.98 54.58 53.37 52.99 53.37 52.99 53.37 52.99

f3(Matlab model) 53.98 54.58 53.37 52.99 53.37 52.99 53.37 52.99
f4(Cast3M) 60.63 65.35 67.28 67.36 67.28 67.36 67.28 67.36

f4(Matlab model) 60.63 65.35 67.28 67.36 67.28 67.36 67.28 67.36
f5(Cast3M) 95.62 97.92 91.80 91.52 91.80 91.52 91.80 91.52

f5(Matlab model) 95.62 97.92 91.80 91.52 91.80 91.52 91.80 91.52

5.3 Experiments

Some experimental tests were carried out using the setup presented in Fig. 5. The application
of experimental modal testing to the NaVARo was done through impact hammer excitation,
a 3-D accelerometer response and data postprocessing, conducted using the DataBox software
developed at IRCCyN and sold by MITIS company. The points and directions of excitation were
chosen on points Bi and Ei of each leg along all axes in order to get the maximal number of
resonance frequencies. Piezoelectric triaxial accelerometers with a sensitivity of 1000 mV/g were
used to pick up the three acceleration responses. The acquisitions were performed for the eight
robot postures shown in Fig. 4. Each measurement resolution is equal to 1 Hz as the acquisition
time and the sampling time are equal to 1 s and 40 µs, respectively.

The resonance frequencies were obtained with a fast Fourier transform of the signals given by
the triaxial accelerometer. As a result, the measured resonance frequencies between 0 and 80 Hz
for poses 1 to 4 are given in Table 4. As the results for poses 3, 5 and 7 (poses 4, 6 and 8,
resp.) are similar due to the manipulator symmetry, only the results for poses 3 and 4 are given
in Table 4 and the redundant poses were used to highlight some resonance frequencies with low
energy level.

It is noteworthy that the resonance frequencies of the NaVARo amount to its natural frequen-
cies as the damping is supposed to be negligible.
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Table 4: NaVARo natural frequencies (measured and computed using refined model) between 0
and 80 Hz.

(Hz) Pose 1 Pose 2 Pose 3 Pose 4
f1 meas. 22 19 17 18
f1 calc. 19.25 19.46 17.91 18.44
f2 meas. 24 21 19 20
f2 calc. 20.43 20.49 19.71 19.26
f3 meas. 32 – 23 22
f3 calc. 40.25 41.88 20.91 21.28
f4 meas. – 44 27 33
f4 calc. 43.16 45.55 – 36.88
f5 meas. 42 45 32 43
f5 calc. 44.10 47.05 36.88 40.60
f6 meas. 50 53 43 44
f6 calc. – – 41.86 46.13
f7 meas. 52 54 46 50
f7 calc. – 56.37 45.61 55.29
f8 meas. 62 56 48 56
f8 calc. 67.94 – 50.52 57.81
f9 meas. 66 60 57 58
f9 calc. 68.81 63.10 55.45 62.27
f10 meas. 77 – 60 66
f10 calc. 79.79 – 61.04 –
f11 meas. – – 61 –
f11 calc. – – – –
f12 meas. – – 65 –
f12 calc. – – 65.00 –
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(a) Pose 1 x = 0 m, y = 0 m,
θ = 0 rad
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(b) Pose 2 x = 0 m, y = 0 m,
θ = −π/3 rad
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(c) Pose 3 x = 0.117 m, y =
0.068 m, θ = −π/3 rad
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(d) Pose 4 x = 0.182 m, y =
0.105 m, θ = −π/3 rad
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(e) Pose 5 x = −0.117 m, y =
0.068 m, θ = −π/3 rad

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−0.4 −0.2 0 0.2 0.4 0.6

x (m)

y (m)

0.8−0.6

−0.6

0.6

0.7

(f) Pose 6 x = −0.182 m, y =
0.105 m, θ = −π/3 rad
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(g) Pose 7 x = 0 m, y = −0.135 m,
θ = −π/3 rad
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(h) Pose 8 x = 0 m, y = −0.21 m,
θ = −π/3 rad

Figure 4: The eight poses used for the experiments

It is apparent that the results given Table 4 do not match with those shown in Table 3. As
a matter of fact, the elasticity of the clutches has not been modelled and the joint masses have
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Figure 5: Experimental setup: DataBox

been omitted with Cast3M software as the latter cannot model lumped masses. Thus, a refined
Matlab model was written in order to consider joint masses (about 300 g per joint) and elasticities
in clutches (about 2000 Nm/rad).

Thus, the natural frequencies of the NaVARo computed with this refined model and the
measured frequencies are gathered in Table 4 by comparing the computed mode shapes with the
hammer impact direction and the direction of the vibration signals, the latter being measured by
the triaxial accelerometer.

We can notice that there is a good correlation between the measured frequencies and the
computed natural frequencies.

Nevertheless, few predicted frequencies do not match with the measurements and vice-versa.
Indeed, the theoretical and experimental results may differ due to the following reasons:

• The NaVARo has not been calibrated yet and there are some errors in the estimated moving
platform pose;

• The passive joint elasticity has not been considered;

• The robot links are supposed to be coplanar in the theoretical model, whereas they are not
in the prototype for collision avoidance;

• The robot links are not perfect beams as both ends are widened to insert ball bearings;

• The theoretical elastodynamic model does not consider any damping effect.

However, from those experiments, we can claim that the theoretical model is satisfactory and
the proposed modeling procedure is efficient for reproducing the real behavior of any parallel
robot.
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6 Conclusion

Parallel robots have been increasingly used in the industry in the last few years and the charac-
terization of their elastodynamic behaviour is still an issue. Accurate elastodynamic models of
parallel robots are useful at both their design and control stages in order to define their optimal
dimensions and shapes while improving their vibratory behaviour. Several models have been
proposed in the literature. However, even if they can be adapted to any type of mechanism,
they are not directly devoted to parallel manipulators and they do not provide a systematic
and straightforward way for computing the Jacobian matrices associated with the kinematic con-
straints. Moreover, they do not take into account the symmetry in the robot leg description for
choosing the independent coordinates describing the robot motion.

Therefore, a systematic method for the natural frequency computation of parallel robots has
been developed in this paper. Indeed, the Jacobian matrices related to the kinematic constraints
of the parallel robots are obtained in a straightforward way. Moreover, a way of choosing a
symmetrical set of leg variables has been proposed. Contrary to most of the existing methods,
the proposed approach does not contain any numerical matrix inversion, which is better to avoid
numerical issues that may lead to a loss in the result accuracy.

This proposed approach has been used to compute the natural frequencies of the NaVARo,
which is a planar parallel manipulator with multiple actuation modes developed at IRCCyN. The
foregoing computed natural frequencies and those obtained with Cast3M software by using an
equivalent robot model turned out to be identical. Then, some experiments have been carried
out through impact hammer excitation and measurements of the platform displacements with
a 3D accelerometer. The resonance frequencies obtained with a fast Fourier transform of the
signals given by the triaxial accelerometer have been compared with the frequencies computed
from a refined model of the robot. It appeared that there is a good correlation between the
natural frequencies of the NaVARo computed with this refined model and the measured excitation
frequencies.
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