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We present a new approximation of elastodynamic frictionless contact problems based both on the finite element method and on an adaptation of Nitsche's method which was initially designed for Dirichlet's condition [START_REF] Nitsche | Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind[END_REF]. The corresponding space semi-discretized weak form reads:

               Find a displacement u h : [0, T ] → V h such that for t ∈ [0, T ] : ρü h (t), v h + A Θγ h (u h (t), v h ) + Γ C 1 γ h [P γ h (u h (t))] + P Θγ h (v h ) dΓ = L(t)(v h ), ∀ v h ∈ V h , u h (0, •) = u h 0 , uh (0, •) = uh 0 . (1) 
In the above formulation V h is a finite element space built from standard Lagrange finite elements, piecewise linear or quadratic,

A Θγ h (u h , v h ) := Ω σ(u h ) : ε(v h ) dΩ - Γ C Θγ h σ n (u h )σ n (v h ) dΓ and P Θγ h (v h ) := v h n -Θγ h σ n (v h ).
The linear form L(•) stands for prescribed body and boundary forces. The domain of the elastic body is denoted by Ω and the contact boundary by Γ C ; T is the final time of simulation ; ρ is the density of the elastic material ; the notation v h n stands for the normal component on Γ C of v h , and σ n (v h ) is the normal stress on Γ C ; u h 0 (resp. uh 0 ) is an approximation of the initial displacement u 0 (resp. the initial velocity u0 ). The notation [•] + stands for the positive part of a scalar quantity, and •, • stands for the L 2 (Ω) inner product. The parameter γ h is a positive piecewise constant function on the contact interface Γ C (γ h (x) = γ 0 h T (x), where γ 0 is a positive constant and h T (x) is the size of the mesh element T ). Note the additional numerical parameter Θ which can be freely chosen in R. As in Nitsche's method for (static) unilateral contact, values of interest for Θ are -1, 0, 1 [START_REF] Chouly | Symmetric and non-symmetric variants of Nitsche's method for contact problems in elasticity: theory and numerical experiments[END_REF].

A main interesting characteristic is that this approximation produces well-posed space semi-discretizations, for any value of γ 0 > 0, contrary to standard finite element discretizations. We study associated energy conservation properties and manage to prove that :

d dt E h Θ (t) = (Θ -1) Γ C 1 γ h [P γ h (u h (t))] + uh n (t) dΓ where E h Θ (t) := E h (t)-ΘR h (t)
is an augmented energy associated to the semi-discrete solution u h (t). The mechanical energy is given by

E h (t) := 1 2 ρ uh (t) 2 0,Ω + 1 2 a(u h (t), u h (t)) and R h (t) := 1 2 γ h 1 2 σ n (u h (t)) 2 0,Γ C -γ h -1 2 [P γ h (u h (t))] + 2 0
,Γ C is an extra term, which represents, roughly speaking, the non-fulfillment of the contact conditions at the semidiscrete level. Note in particular that the symmetric variant (Θ = 1) conserves the discrete augmented energy E h Θ .

Various time-discretizations for (1) are then considered, with the families of θ-schemes and Newmark schemes. We also introduce a new hybrid scheme which is second-order accurate and numerically stable without any restriction on the time-step in the case Θ = 1. This new scheme is inspired from [START_REF] Gonzalez | Exact energy and momentum conserving algorithms for general models in nonlinear elasticity[END_REF][START_REF] Hauret | Energy-controlling time integration methods for nonlinear elastodynamics and low-velocity impact[END_REF], and introduces much less dissipation than unconditionally stable variants of θ-schemes and Newmark schemes. We study theoretically the well-posedness of each discrete scheme as well as its energy conservation properties. We finally achieve the corresponding numerical experiments.