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Creation of chaos for a mean-field model

Pierre Del Moral∗ & Julian Tugaut†

Abstract

The article deals with the propagation of chaos for a system of inter-
acting particles. Under suitable assumptions, if the system at time t = 0
is chaotic (that is to say the particles are independent), this chaos propa-
gates as the number of particles goes to infinity. Here, we deal with a case
in which the system at time t = 0 is not chaotic and we show under easily
checked assumptions that the system becomes chaotic as the number of
particles goes to infinity together with the time. This yields the first result
of this type for mean field particle diffusion models.

Key words and phrases: Interacting particles system ; Propagation of
chaos ; McKean-Vlasov models ; Nonlinear diffusions

2000 AMS subject classifications: Primary 60J60, 60K35 ; Secondary
82C22, 35K55

1 Introduction
In the current work, we show that under suitable assumptions, there is creation
of chaos then propagation of this chaos for a mean-field system of particles
without assuming that the initial random variables are independent. In other
words, the particles become independent as the time t goes to infinity if the
number of particles is large. About propagation of chaos, we refer the reader to
[Szn91, Mél96].

The paper is organized as follows. First, we present the model of interacting
particles system that we consider. Then, we explain the idea of the propagation
of chaos and we give some classical results about it. Next paragraph is about
the hydrodynamical limit, that is the so-called McKean-Vlasov diffusion, which
can be seen as the probabilistic interpretation of a non-linear partial differential
equation, the granular media equation. Then, we give a classical coupling result
between the particles of the mean-field model and the McKean-Vlasov diffusion.
After giving the precise assumptions, we provide the main results of the article.
The following section deals with the creation of chaos for the hydrodynamical
∗Supported by University of New South Wales
†Université Jean Monnet, Saint-Étienne and Institut Camille Jordan,Lyon
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limit of the mean-field system of particles, that is not the McKean-Vlasov dif-
fusion since there is no chaos at time t = 0. Finally, we prove the main results
about the creation of chaos for the mean-field model.

1.1 Mean-field model
Let V and F be two potentials on R. The precise hypotheses are given sub-
sequently. For instance, we assume that both V and F are C2-continuous and
convex at infinity. If the number of particles, N , is finite, the system corresponds
to a classical diffusion in RN . In other words, we consider N diffusions in R with
N independent one-dimensional Wiener processes and non-independent initial
random variables. We add a friction term, that is the gradient of the external
potential V . Moreover, we assume that each particle is under the influence of
the global behaviour of the particles system. Here, we assume that each parti-
cle is attracted by any other one and that the interaction depends only on the
distance between the particles. Thus, the mean-field system that we consider
here is a random dynamical system in which each particle Xi,N satisfies the
stochastic differential equation:

Xi,N
t =Xi

0 + σBit −
∫ t

0

∇V
(
Xi,N
s

)
ds− 1

N

∫ t

0

N∑
j=1

∇F
(
Xi,N
s −Xj,N

s

)
ds , (1)

where the N Brownian motions
(
Bit
)
t∈R+

are independent and the initial ran-
dom variables

(
Xi

0

)
i
follow the law µ0.

Let us remark that the gradient in Equation (1) permits roughly speaking to
locate the particles in a compact and to have good long-time properties.

Let us stress that we do not assume any independence between the particles
X1

0 , · · · , XN
0 . In fact, we take X1

0 = X2
0 = · · · = XN

0 =: X0. Nevertheless, the
Brownian motions are independent from the random variable X0. In this paper,
we show that the particles Xi,N and Xj,N become independent as t and N are
large.

Here, the function V is called the confining potential. Indeed, it attracts each
diffusion to its minimizers. The potential F is the so-called interacting poten-
tial. Due to the assumptions on the interaction, the function x 7→ ∇F (x) is
radial.

By

ηNt :=
1

N

(
δX1,N

t
+ · · ·+ δXN,Nt

)
,

we denote the empirical measure of the particles system. We observe that the
Equation (1) can be rewritten like so:

Xi,N
t = Xi

0 + σBit −
∫ t

0

∇V
(
Xi,N
s

)
ds−

∫ t

0

∇F ∗ ηNs
(
Xi,N
s

)
ds .
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And, by using Itô formula, we obtain

d

dt
E
{∫

Rd
fηNt

}
= E

{
σ2

2

∫
Rd

∆fηNt −
∫
Rd

〈
∇f ; ∇V +∇F ∗ ηNt

〉
ηNt

}
,

for any smooth function with compact support f from R to R. Let us notice
that if a family of deterministic measures {ηt ; t ≥ 0} was satisfying the previous
equation, it would be a solution of the so-called granular media equation,

∂

∂t
µt = div

{
σ2

2
∇µt + (∇V +∇F ∗ µt)µt

}
. (2)

Heuristically, if the family of random measures
{
ηNt ; 0 ≤ t ≤ T

}
converges to a

family of deterministic measures {ηt ; 0 ≤ t ≤ T}, this deterministic family sat-
isfies the non-linear partial differential equation (2). Since we take N arbitrarily
large, it motivates to focus on this family of measures.

1.2 Propagation of chaos
In this paragraph, let us momentarily assume the following hypothesis.

Xi
0 and Xj

0 are independent for any i 6= j . (C0)

This hypothesis is equivalent to

L
(
X1

0 , · · · , XN
0

)
= µ⊗N0 . (C ′0)

We say that the system at time t = 0 is chaotic. This terminology is due to
Boltzmann. We can observe that Xi,N

t and Xj,N
t are not independent if t is

positive. Indeed, the particle Xj,N intervenes in the drift of Equation (1). So,
we do not have the property:

L
(
X1,N
t , · · · , XN,N

t

)
=
(
µNt
)⊗N

, (C ′t)

with µNt := L
(
X1,N
t

)
= · · · = L

(
XN,N
t

)
. One says that there is propagation

of chaos if the system becomes chaotic on any finite time interval, as N goes to
infinity. In other words, propagation of chaos holds if for any T > 0, we have

lim
N→∞

(
L
(
X1,N
t , · · · , Xk,N

t

))
0≤t≤T

=
(

(ηt)
⊗k
)
0≤t≤T

, (3)

ηt being a probability measure. Here, k is any integer. Another way to see the
propagation of chaos is the following. Let k be any integer and let f1, · · · , fk be
k Lipschitz-continuous functions. Then, we have:

E

{
k∏
i=1

fi

(
Xi,N
t

)}
−

k∏
i=1

E
{
fi

(
Xi,N
t

)}
−→ 0 , (4)
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as N goes to infinity. This result holds for any t ∈ [0;T ]. This means that a
finite number of particles become independent all together.

Under simple hypotheses (potential V is Lipschitz-continuous or is convex at
infinity), see for instance [Szn91] and [Mél96], the mean-field system of particles
(1) satisfies the propagation of chaos. Let us point out that the whole system of
particle is not chaotic. Indeed, even with propagation of chaos, we do not have

lim
N→∞

(
L
(
X1,N
t , · · · , XN,N

t

))
0≤t≤T

=
(

(ηt)
⊗∞
)
0≤t≤T

.

Ben Arous and Zeitouni go further than (4) by proving

E


k(N)∏
i=1

fi

(
Xi,N
t

)−
k(N)∏
i=1

E
{
fi

(
Xi,N
t

)}
−→ 0 ,

where k(N) is an integer such that k(N) goes to infinity as N goes to infinity.
The assumption on k(N) is that it is negligible to N : k(N)

N −→ 0 as N goes to
infinity.

1.3 McKean-Vlasov diffusions
Let us remind the reader that the particles are exchangeables. Consequently,
we have:

L
(
Xi,N
t

)
= L

(
Xj,N
t

)
=: µNt . (5)

Propagation of chaos means that particles become independent so that intu-
itively, by using the strong law of large number, the empirical measure ηNt
converges as N goes to infinity:

ηNt =
1

N

N∑
i=1

δXi,Nt
−→ ηt =: L

(
X1,∞
t

)
. (6)

This convergence would hold for any t > 0. However, since the drift in (1) is
∇V +∇F ∗ηNt , it converges toward ∇V +∇F ∗ηt as N goes to infinity. Equation
(1) intuitively becomes

Xi,∞
t = Xi

0 + σBit −
∫ t

0

∇V
(
Xi,∞
s

)
ds−

∫ t

0

∇F ∗ L
(
Xi,∞
s

) (
Xi,∞
s

)
ds .

This equation corresponds to the hydrodynamical limit of the mean-field system.
More rigorously, we consider the N following diffusions, the so-called McKean-
Vlasov diffusions:

Xi
t = Xi

0 + σBit −
∫ t

0

∇V
(
Xi
s

)
ds−

∫ t

0

∇F ∗ ηs
(
Xi
s

)
ds , (7)

with ηs := L
(
X1
t

)
= · · · = L

(
XN
t

)
. These McKean-Vlasov diffusions corre-

spond to the probabilistic interpretation of the granular media equation (2).
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Indeed, due to [McK66, McK67], the measure of probability L
(
Xi
t

)
is absolutely

continuous with respect to the Lebesgue measure for t > 0. By ut, we denote
its density. Then, (ut)t>0 satisfies the following partial differential equation:

∂

∂t
ut = ∇.

{
σ2

2
∇ut + (∇V +∇F ∗ ut)ut

}
. (8)

The existence and the uniqueness of a strong solution on R+ for equation (7) has
been proved in [HIP08] (Theorem 2.13). The asymptotic behaviour of the law
has been studied in [CGM08, BRV98, BCCP98, CMV03, BGG13] (for the con-
vex case) and in [Tug13a, Tug13b] in the non-convex case by using the results in
[HT10a, HT10b, HT12] about the non-uniqueness of the invariant probabilities
and their small-noise behaviour.

1.4 Coupling results
The McKean-Vlasov diffusion X1 can be seen as the limit as N goes to infinity
of the first particle in the mean-field model, X1,N . Indeed, under Hypothesis
(C0), we have the following limit:

lim
n→∞

sup
0≤t≤T

E
{∣∣∣∣∣∣Xi,N

t −Xi
t

∣∣∣∣∣∣2} = 0 . (9)

This limit holds for any integer i. We can go further. Indeed, propagation of
chaos if system is chaotic at time t = 0 is equivalent to

lim
n→∞

E
{

sup
0≤t≤T

∣∣∣∣∣∣Xi,N
t −Xi

t

∣∣∣∣∣∣2} = 0 , (10)

Remark 1.1. Let us point out that the two diffusions are defined with the same
Brownian motion.

The two limits hold if the potential F is convex and if V is identically equal
to 0, see [BRTV98]. Cattiaux, Guillin and Malrieu go further by proving a
uniform propagation of chaos if V and F are convex, not necessarily uniformly
strictly convex:

lim
n→∞

sup
t≥0

E
{∣∣∣∣∣∣Xi,N

t −Xi
t

∣∣∣∣∣∣2} = 0 , (11)

still if the system is chaotic at time t = 0.

In [Tug12a], a result which combines uniformity on time and on space has been
obtained:

lim
N→∞
σ→0

E

 sup

t∈
[
0;e

2H
σ2

]
∣∣∣∣∣∣Xi,N

t −Xi
t

∣∣∣∣∣∣2
 = 0 , (12)

where V and F are both convex. Here H > 0 does depend on V and F .
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Finally, more recently, see [DMT13], we have obtained a uniform propagation of
chaos result between the laws of X1,N

t and of X1 for the Wasserstein distance:

lim
N→∞

W2

(
L
(
X1,N
t

)
; L
(
X1
t

))
= 0 . (13)

This result holds without any hypothesis of convexity on V nor F . Nevertheless,
we require the noise to be sufficiently large. To do so, we use the rate of
convergence of the McKean-Vlasov diffusion to the unique invariant probability.

We use a similar argument in this paper: the convergence in long-time of the
law L

(
X1
t

)
to one of the invariant probabilities. However, we can not use the

exact arguments in [DMT13].

Remark 1.2. In (13), the two diffusions are not necessarily defined with the
same Brownian motion.

Here, we do not have chaos at initial time. Consequently, we do not make
the coupling with a McKean-Vlasov diffusion but with another type of diffusion
which corresponds to the hydrodynamical limit of the system of interacting
particles. We begin by defining the McKean-Vlasov diffusion Y x0 like so:{

Y x0
t = x0 + σBt −

∫ t
0
∇V (Y x0

s ) ds−
∫ t
0
∇F ∗ µs (Y x0

s ) ds
µt = L (Y x0

t )
.

The diffusion that we use here is the diffusion Y defined by Yt = Y X0
t . Indeed,

the drift of this diffusion is - as t is small - close to x 7→ ∇F (x−X0). This is
exactly the drift - still for small t - of the first particle in the system of mean-
field interacting particles.

Subsequently, we consider the diffusions Xi defined like Y with the Brownian
motions Bi.

1.5 Hypotheses
We now present the exact assumptions of the paper on the potentials V and F
and on the initial measure of probability, µ0. First, we give the hypotheses on
the confining potential V .

Assumption (A-1): V is a C2-continuous function.
Assumption (A-2): For all λ > 0, there exists Rλ > 0 such that ∇2V (x) > λ,
for any ||x|| ≥ Rλ.
The aim of this hypothesis is to confine the diffusion so that there is no explo-
sion. We can observe that under assumptions (A-1) and (A-2), there exist a
convex potential V0 and θ ∈ R such that V (x) = V0(x)− θ

2 ||x||
2.

Assumption (A-3) The gradient ∇V is slowly increasing: there exist m ∈ N∗

and C > 0 such that ||∇V (x)|| ≤ C
(

1 + ||x||2m−1
)
, for all x ∈ Rd.

This assumption together with the same kind of assumptions on F ensure us
that there is a global solution if some moments of µ0 are finite.
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Let us present now the assumptions on the interacting potential F :
Assumption (A-4): There exists a function G from R+ to R such that F (x) =
G (||x||).
In other words, the function F is radial which means that the interaction be-
tween two particles is only related to their distance.
Assumption (A-5): G is an even polynomial function such that deg(G) =:
2n ≥ 2 and G(0) = 0.
This hypothesis is used for simplifying the study of the invariant probabilities.
Indeed, see [HT10a, HT10b, HT12, Tug13c, Tug12b], the research of an in-
variant probability is equivalent to a fixed-point problem in infinite dimension.
Nevertheless, under Assumption (A-5), it reduces to a fixed-point problem in
finite dimension.
Assumption (A-6): And, lim

r→+∞
G′′(r) = +∞.

Immediately, we deduce the existence of an even polynomial and convex func-
tion G0 such that F (x) = G0(||x||)− α

2 ||x||
2, α being a real constant.

We also need hypotheses on the initial measure µ0:
Assumption (A-7) the 8q2th moment of the measure µ0 is finite with q :=
max {m,n}.
Under Assumptions (A-1)–(A-7), Equation (7) admits a unique strong solution.
Indeed, the assumptions of Theorem 2.13 in [HIP08] are satisfied: ∇V and ∇F
are locally Lipschitz, G′ is odd, ∇F grows polynomially, ∇V is continuously
differentiable and there exists a compact K such that ∇2V is uniformly positive
on Kc. Moreover, we have the following inequality for a positive M0:

max
1≤j≤8q2

sup
t∈R+

E
[
||Xt||j

]
≤M0 . (14)

In the following, we use the long-time convergence of the measure µt toward an
invariant probability µ and the rate of convergence. We need a complementary
hypothesis:
Assumption (A-8) Diffusion (7) admits a unique invariant probability µ.
Moreover, there exists Cσ > 0 such that

W2 (µt;µ) ≤ e−CσtW2 (µ0;µ)

for any initial measure µ0 which is absolutely continuous with respect to the
Lebesgue measure and with finite entropy.
We know that this property is satisfied under simple assumptions:

• If both confining potential V and interacting potential F are convex, there
is a unique invariant probability. And, we have the asked inequality. See
[BGG13].

• In the general dimension case, let us assume that there exist a strictly
convex function Θ such that Θ(y) > Θ(0) = 0 for all y ∈ Rd and p ∈ N

7



such that the following limit holds for any y ∈ Rd: lim
r→+∞

V (ry)

r2p
= Θ(y).

If p > n and if σ is large enough, Theorem 1.7 in [DMT13] ensures us that
there is a unique invariant probability. And, we have the asked inequality.

Under the Hypotheses (A-1)–(A-8), the probability measure µt converges expo-
nentially for Wasserstein distance to the unique invariant probability µ as soon
as the initial measure µ0 is absolutely continuous with respect to the Lebesgue
measure and with finite entropy.
Let us briefly justify why we can extend this inequality by starting from a Dirac
measure: µ0 = δx0

with x0 ∈ Rd. To do so, we consider a sequence of probabil-
ity measures with finite entropy

(
µ
(n)
0

)
n≥1

which converges for the Wasserstein

distance to µ0. By µt (respectively µ
(n)
t ), we denote the law at time t of the

McKean-Vlasov diffusion starting from the law µ0 (respectively the law µ
(n)
0 ).

Then, we have :

W2 (µt;µ) ≤W2

(
µt;µ

(n)
t

)
+ W2

(
µ
(n)
t ;µ

)
.

By applying the inequality in Hypothesis (A-8) to µ(n)
t , we get

W2 (µt;µ) ≤W2

(
µt;µ

(n)
t

)
+ e−CσtW2

(
µ
(n)
0 ;µ

)
.

By making a coupling, one can easily show that the quantity W2

(
µt;µ

(n)
t

)
converges to 0. Finally, since W2

(
µ
(n)
0 ;µ0

)
goes to 0 as n tends to infinity, we

obtain the formula
W2 (µt;µ) ≤ e−CσtW2 (µ0;µ) .

Consequently, µt goes to µ as t goes to infinity.
One says that the set of Assumptions (A) is satisfied if Hypotheses (A-1)–

(A-8) are assumed.
Finally, we remind the reader that

X1
0 = X2

0 = · · · = XN
0 =: X0 .

1.6 Main results of the paper
We now end the introduction by presenting the main results of the current work.

Theorem 1.3. Let f1 and f2 be two Lipschitz-continuous functions. Under the
set of Assumptions (A), for all ε > 0, for all T > 0, there exist t0(ε) and N0(ε)
such that

sup
N≥N0(ε)

sup
t∈[t0(ε);t0(ε)+T ]

∣∣∣Cov
[
f1

(
X1,N
t

)
; f2

(
X2,N
t

)]∣∣∣ ≤ ε .
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We can remark that a small covariance implies a phenomenon of chaos. Con-
sequently, we have creation of chaos after time t0(ε). And, there is propagation
of this chaos on an interval of length T .

Theorem 1.4. Let f1 and f2 be two Lipschitz-continuous functions. Under the
set of Assumptions (A), if moreover, V and F are convex then, for all ε > 0,
there exist t0(ε) and N0(ε) such that

sup
N≥N0(ε)

sup
t≥t0(ε)

∣∣∣Cov
[
f1

(
X1,N
t

)
; f2

(
X2,N
t

)]∣∣∣ ≤ ε .
Here, we have a uniform propagation of chaos after the creation of chaos.

Let us remark that, in Theorem 1.3 and in Theorem 1.4, we consider only two
particles but we have the same result with any integer k.

Theorem 1.5. Let f1, · · · , fk be k Lipschitz-continuous functions. Under the
set of Assumptions (A), for all ε > 0, for all T > 0, there exist t0(ε) and N0(ε)
such that

sup
N≥N0(ε)

sup
t∈[t0(ε);t0(ε)+T ]

∣∣∣∣∣E
{

k∏
i=1

fi

(
Xi,N
t

)}
−

k∏
i=1

E
{
fi

(
Xi,N
t

)}∣∣∣∣∣ ≤ ε .
If moreover V and F are convex, we have

sup
N≥N0(ε)

sup
t≥t0(ε)

∣∣∣∣∣E
{

k∏
i=1

fi

(
Xi,N
t

)}
−

k∏
i=1

E
{
fi

(
Xi,N
t

)}∣∣∣∣∣ ≤ ε .
We also have results about the empirical measure of the system. In case of

chaos, this measure is close to a measure of the form ν⊗N .

Theorem 1.6. Let f1 and f2 be two Lipschitz-continuous functions. Under the
set of Assumptions (A), for all ε > 0, for all T > 0, there exist t1(ε) and N1(ε)
such that

sup
N≥N1(ε)

sup
t∈[t1(ε);t1(ε)+T ]

∣∣Cov
[
ηNt (f1) ; ηNt (f2)

]∣∣ ≤ ε
with ηNt (f) := 1

N

∑N
i=1 fi

(
Xi,N
t

)
. If, moreover, both V and F are convex, we

have
sup

N≥N1(ε)

sup
t≥t1(ε)

∣∣Cov
[
ηNt (f1) ; ηNt (f2)

]∣∣ ≤ ε
We conjecture that, bu using the same technics, one should be able to ob-

tain creation of chaos for more general mean-field models providing that the
hydrodynamical limit is stable in long-time.
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2 Creation of chaos in the hydrodynamical limit
In the following, we look at the quantity E

{
f1
(
X1
t

)
f2
(
X2
t

)}
. We remark that

E
{
f1
(
X1
t

)
f2
(
X2
t

)}
= E

{
f1
(
X1
t

)
E
[
f2
(
X2
t

)
| X1

0 ,
(
B1
s

)
0≤s≤t

]}
= E

{
f1
(
X1
t

)
E
[
f2
(
X2
t

)
| X1

0

]}
.

Consequently, to study the long-time behaviour of E
{
f1
(
X1
t

)
f2
(
X2
t

)}
requires

to study E
[
f2
(
X2
t

)
| X1

0

]
. Since X1

0 and X2
0 are not independent, we do not

have E
[
f2
(
X2
t

)
| X1

0

]
= E

[
f2
(
X2
t

)]
.

According to previous results, see [BCCP98, BGG13, BRV98, CGM08, CMV03]
for the convex case and [Tug13a, Tug13b] for the general case, we know that the
measure µt converges weakly to µ as t goes to infinity, under the assumptions
of the article. However, we do not know anything about the convergence of
E
[
f2
(
X2
t

)
| X1

0

]
as t goes to infinity. This is the purpose of next proposition.

Proposition 2.1. Let f be a Lipschitz function from R to itself. Under the set
of assumptions (A), we have:

E
{
f2
(
X2
t

)
| X1

0

}
−→

∫
R
f2(x)µ(dx) , (15)

and the convergence holds almost surely, as t goes to infinity.

Proof. For any x0, we can write

E
{
f
(
X2
t

)
| X0

}
1{X0=x0} = E {f (Y x0

t )}1{X0=x0}

Consequently, for any random variable X which follows the law µ, we have∣∣E{f (X2
t

)
| X0

}
1{X0=x0} − E {f (X)}1{X0=x0}

∣∣
≤ E {|f (Y x0

t )− f (X)|}1{X0=x0} ≤ CE {|Y
x0
t −X|}1{X0=x0} .

By taking X which minimizes, we find∣∣∣∣E{f (X2
t

)
| X0

}
1{X0=x0} −

∫
f(x)µ(dx)1{X0=x0}

∣∣∣∣
≤ CW2 (L (Y x0

t ) ;µ)1{X0=x0}

≤ Ce−CσtW2 (δx0
;µ)1{X0=x0}

≤ Ce−Cσt
√∫

R
(x− x0)

2
µ(dx)1{X0=x0} .

This tends to 0 as t goes to infinity which achieves the proof.

Let us remark that we have obtained better: the convergence is exponential.
Now, we can prove that, as time t goes to infinity, the law of the couple

(X1
t , X

2
t ) becomes the tensorial product of the marginal laws.

10



Proposition 2.2. Let f1 and f2 be two Lipschitz functions from R to itself.
Under the set of assumptions (A), we have:

E
{
f1
(
X1
t

)
f2
(
X2
t

)}
−→

(∫
R
f1(x)µ(dx)

)(∫
R
f2(x)µ(dx)

)
. (16)

The convergence holds as t goes to infinity.

Proof. We observe that

E
{
f1
(
X1
t

)
f2
(
X2
t

)}
=E

{
f1
(
X1
t

)
E
[
f2
(
X2
t

)
| X1

0 , B
1
]}

=E
{
f1
(
X1
t

)
E
[
f2
(
X2
t

)
| X1

0

]}
=

(∫
R
f2(x)µ(dx)

)
E
{
f1
(
X1
t

)}
+ E

{
f1
(
X1
t

)
At
}
,

with
At := E

{
f2
(
X2
t

)
| X1

0

}
−
∫
R
f2(x)µ(dx) .

The limit in (15) gives us the convergence almost surely of the random variable
At to 0 as t goes to infinity.

Furthermore, since f2 is Lipschitz-continuous and according to the boundedness
of the moments of X2

t , we have the following inequality:

E
(
||At||2

)
≤ 2E

[∣∣∣∣f2 (X2
t

)∣∣∣∣2]+ 2

(∫
R
f2(x)µ(dx)

)2

≤ C
{

1 + E
[∣∣∣∣X2

t

∣∣∣∣2]}
≤ Cσ .

By Lebesgue theorem, we deduce the following limit:

lim
t→∞

E
{
f1
(
X1
t

)
At
}

= 0 .

Moreover, due to the set of assumptions on the initial random variable, we have
the following convergence as t goes to infinity:

E
[
f1
(
X1
t

)]
−→

∫
R
f1(x)µ(dx) .

This achieves the proof.

Let us remark that the convergence is exponential.

In fact, we could have obtained a more general result by proceeding similarly.

11



Remark 2.3. Let f1, · · · , fk be k functions Lipschitz-continuous. Then, under
the hypotheses of Proposition 2.2, we have the convergence almost surely of

E

{
k∏
i=1

fi
(
Xi
t

)}

toward
k∏
i=1

∫
R
fi(x)µ(dx) .

By observing that
∏k
i=1 E

[
fi
(
Xi
t

)]
converges to

∏k
i=1

∫
R fi(x)µ(dx), we im-

mediately obtain the following theorem.

Theorem 2.4. Let f1 and f2 be two Lipschitz functions from R to itself. Under
the set of assumptions (A), we have:

Cov
(
f1
(
X1
t

)
; f2

(
X2
t

))
−→ 0 , (17)

as t goes to infinity.

More generally, let any k ≥ 2 and let f1, · · · , fk be k Lipschitz-continuous func-
tions. Thus, we have the following convergence almost surely as t goes to infinity:

E

{
k∏
i=1

fi
(
Xi
t

)}
−

k∏
i=1

E
{
fi
(
Xi
t

)}
−→ 0 .

Let us point out that to obtain this result, we only use the convergence in
long-time. We do not need to know anything about the rate of convergence.

However, we know that this convergence is exponential.

3 Creation of chaos in the mean-field system
We first provide a coupling result.

Proposition 3.1. We assume that V , F and µ0 satisfy the set of Hypotheses
(A). Let X0 be a random variable which follows the law µ0. Then, for any
T > 0, we have the following inequality:

sup
t∈[0;T ]

E
{∣∣∣∣∣∣Xi

t −X
i,N
t

∣∣∣∣∣∣2} ≤ C(µ0)

N
exp [2CT ] , (18)

where C(µ0) is a positive function of
∫
Rd ||x||

8q2
µ0(dx) and C is a positive

constant.
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Proof. By µt, we denote the solution of the granular media equation starting
from δX0 . By definition, for any 1 ≤ i ≤ N , we have

Xi,N
t −Xi

t =−
∫ t

0

{
∇V (Xi,N

s )−∇V (Xi
s)
}
ds

−
∫ t

0

 1

N

N∑
j=1

∇F (Xi,N
s −Xj,N

s )−∇F ∗ µs(Xi
s)

 ds .

We apply Itô formula to Xi,N
t −Xi

t with the function x 7→ ||x||2. By introducing

the notation ξi(t) :=
∣∣∣∣∣∣Xi,N

t −Xi
t

∣∣∣∣∣∣2, we obtain

dξi(t) = −2∆1(i, t)dt− 2

N
∆2(i, t)dt

with ∆1(i, t) :=
〈
Xi,N
t −Xi

t ; ∇V (Xi,N
t )−∇V

(
Xi
t

)〉
and ∆2(i, t) :=

〈
Xi,N
t −Xi

t ;

N∑
j=1

[
∇F (Xi,N

t −Xj,N
t )−∇F ∗ µt

(
Xi
t

)]〉
.

By taking the sum on the integer i running between 1 and N , we get

d

N∑
i=1

ξi(t) = −2∆1(t)dt− 2

N

N∑
i=1

N∑
j=1

(
∆2(i, j, t) + ∆3(i, j, t)

)
dt

with ∆1(t) :=

N∑
i=1

∆1(i, t) ,

∆2(i, j, t) :=
〈
∇F (Xi,N

t −Xj,N
t )−∇F (Xi

t −X
j
t ) ; Xi,N

t −Xi
t

〉
and ∆3(i, j, t) :=

〈
∇F (Xi

t −X
j
t )−∇F ∗ µt

(
Xi
t

)
; Xi,N

t −Xi
t

〉
.

According to the definition of the function F0 in Hypothesis (A-6), it is convex.
This implies 〈x− y ; ∇F0(x− y)〉 ≥ 0 for any x, y ∈ Rd. This inequality yields

1

N

N∑
i=1

N∑
j=1

(∆2(i, j, t) + ∆2(j, i, t)) ≥ −4α

N∑
i=1

∣∣∣∣∣∣Xi,N
t −Xi

t

∣∣∣∣∣∣2 .

13



Indeed, we have

∆2(i, j, t) + ∆2(j, i, t)

=
〈
∇F (Xi,N

t −Xj,N
t )−∇F (Xi

t −X
j
t ) ;

(
Xi,N
t −Xi

t

)
−
(
Xj,N
t −Xj

t

)〉
=
〈
∇F0(Xi,N

t −Xj,N
t )−∇F0(Xi

t −X
j
t ) ;

(
Xi,N
t −Xi

t

)
−
(
Xj,N
t −Xj

t

)〉
− α

〈
∇(Xi,N

t −Xj,N
t )− (Xi

t −X
j
t ) ;

(
Xi,N
t −Xi

t

)
−
(
Xj,N
t −Xj

t

)〉
=
〈
∇F0(Xi,N

t −Xj,N
t )−∇F0(Xi

t −X
j
t ) ;

(
Xi,N
t −Xj,N

t

)
−
(
Xi
t −X

j
t

)〉
− α

∣∣∣∣∣∣(Xi,N
t −Xj,N

t

)
−
(
Xi
t −X

j
t

)∣∣∣∣∣∣2
≥− α

∣∣∣∣∣∣(Xi,N
t −Xj,N

t

)
−
(
Xi
t −X

j
t

)∣∣∣∣∣∣2
≥− 2α

{∣∣∣∣∣∣Xi,N
t −Xi

t

∣∣∣∣∣∣2 +
∣∣∣∣∣∣Xj,N

t −Xj
t

∣∣∣∣∣∣2} .

Consequently, we have

E

− 2

N

N∑
i=1

N∑
j=1

∆2(i, j, t)

 =
1

2
E

− 2

N

N∑
1≤i,j≤N

(
∆2(i, j, t) + ∆2(j, i, t)

)
≤ 4α

N∑
i=1

∣∣∣∣∣∣Xi,N
t −Xi

t

∣∣∣∣∣∣2 . (19)

By definition of θ in Assumption (A-3), for any x, y ∈ Rd we have the inequality
〈∇V (x)−∇V (y) ; x− y〉 ≥ −θ ||x− y||2. This implies

−2

N∑
i=1

∆1(i, t) ≤ 2θ

N∑
i=1

ξi(t) . (20)

We now deal with the sum containing ∆3(i, j, t). We apply Cauchy-Schwarz
inequality:

−E

 N∑
j=1

∆3(i, j, t)

 ≤ {E [∣∣∣∣∣∣Xi,N
t −Xi

t

∣∣∣∣∣∣2]} 1
2


N∑
j=1

N∑
k=1

E
[〈
ρij(t) ; ρik(t)

〉]
1
2

with ρij(t) := ∇F (Xi
t −X

j
t )−∇F ∗ µt

(
Xi
t

)
.

Let us prove that E
[〈
ρij(t) ; ρik(t)

〉]
= 0 for any j 6= k. We use the following

conditioning:

E
[〈
ρij(t) ; ρik(t)

〉]
= E

{
E
[〈
ρij(t) ; ρik(t)

〉
| X0

]}
.

We now condition by
(
Bis
)
0≤s≤t. However, we have

E
(
∇F

(
Xi
t −Xk

t

)
|
(
Bis
)
0≤s≤t , X0

)
= ∇F ∗ µt

(
Xi
t

)
.

14



We deduce immediatly:

E
(
ρik(t) |

(
Bis
)
0≤s≤t , X0

)
= 0 ,

so that
E
{〈
ρij(t) ; ρik(t)

〉}
= 0 ,

for any j 6= k. And, if j = k, we have

E
{∣∣∣∣ρij(t)∣∣∣∣2} = E

{∣∣∣∣∣∣∇F (Xi
t −X

j
t

)
−∇F ∗ µt

(
Xi
t

)∣∣∣∣∣∣2} .

The diffusions Xi and Xj are not independent but they are independent con-
ditionally to the initial random variables. However, according to Hypothesis
(A-6), we have F (x) = G (||x||) where G is a polynomial function of degree 2n,
we have the following inequality:

E
[
||∇F (Xt − Yt)−∇F ∗ µt(Xt)||2

]
≤ C

(
1 + E

[
||Xt||4n−2

])
,

Xt and Yt being two independent random variables with common law µt and
C is a positive constant. Then, we use the control of the moments obtained in
[HIP08, Theorem 2.13] and we obtain the following majoration:

sup
t≥0

E
[
||∇F (Xt − Yt)−∇F ∗ µt(Xt)||2

]
≤ C(µ0) ,

C(µ0) being a function of the 8q2 moment of the law µ0. Consequently, we have

E
{∣∣∣∣ρij(t)∣∣∣∣2 | X0

}
≤ C(µ0) ,

for any 1 ≤ i, j ≤ N . By taking the expectation, we obtain

E
{∣∣∣∣ρij(t)∣∣∣∣2} ≤ C(µ0) ,

for any 1 ≤ i, j ≤ N . Therefore, we deduce the following inequality:

−E

 N∑
j=1

∆3(i, j, t)

 ≤
√
C(µ0)

√
NE [ξi(t)] . (21)

By combining (19), (20) and (21), we obtain

d

dt

N∑
i=1

E [ξi(t)] ≤ 2

N∑
i=1

{
(θ + 2α)E [ξi(t)] +

√
C(µ0)√
N

√
E [ξi(t)]

}
. (22)

However, the particles are exhangeables. Consequently, for any 1 ≤ i ≤ N , we
have

d

dt
E {ξi(t)} ≤ 2 (θ + 2α)E {ξi(t)}+

2
√
C(µ0)√
N

√
E [ξi(t)] .
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By introducing τi(t) :=
√
E {ξi(t)}, we obtain

τ ′i(t) ≤ (θ + 2α)

{
τi(t) +

√
C(µ0)

(θ + 2α)
√
N

}
The application of Grönwall lemma yields

E
{∣∣∣∣∣∣Xi,N

t −Xi
t

∣∣∣∣∣∣2} ≤ C(µ0)

N (θ + 2α)
2 exp [2 (θ + 2α) t] .

We obtain (18) by taking the supremum for t running between 0 and T .

Consequently, there exist two positive constants K,C such that, under the
set of Assumptions (A), we have the coupling result:

sup
0≤t≤T

E
{∣∣∣∣∣∣Xi,N

t −Xi
t

∣∣∣∣∣∣2} ≤ K2 e
2CT

N
, (23)

This result holds for any T > 0.

3.1 Decorrelation for two particles
We now are able to provide the proof of Theorem 1.3, that we remind the reader.

Theorem 3.2. Let f1 and f2 be two Lipschitz-continuous functions. Under the
set of Assumptions (A), for all ε > 0, for all T > 0, there exist t0(ε) and N0(ε)
such that

sup
N≥N0(ε)

sup
t∈[t0(ε);t0(ε)+T ]

∣∣∣Cov
[
f1

(
X1,N
t

)
; f2

(
X2,N
t

)]∣∣∣ ≤ ε .
Proof. Let T and ε be any positive reals. Set 0 ≤ t.
Step 1. We use the following decomposition

Cov
(
f1

(
X1,N
t

)
; f2

(
X2,N
t

))
=E

{
f1

(
X1,N
t

) [
f2

(
X2,N
t

)
− f2

(
X2
t

)]}
+ E

{
f2
(
X2
t

) [
f1

(
X1,N
t

)
− f1

(
X1
t

)]}
+ Cov

(
f1
(
X1
t

)
; f2

(
X2
t

))
+ E

{
f1
(
X1
t

)} [
E
(
f2
(
X2
t

))
− E

(
f2

(
X2,N
t

))]
+ E

{
f2

(
X2,N
t

)} [
E
(
f1
(
X1
t

))
− E

(
f1

(
X1,N
t

))]
=:T1 + T2 + T3 + T4 + T5 .

Step 2. We can control T1 in the following way.

|T1| ≤

√
E
{∣∣∣∣∣∣f1 (X1,N

t

)∣∣∣∣∣∣2}√E
{∣∣∣∣∣∣f2 (X2,N

t

)
− f2 (X2

t )
∣∣∣∣∣∣2}
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by Cauchy-Schwarz inequality. The triangular inequality provides us:∣∣∣∣∣∣f1 (X1,N
t

)∣∣∣∣∣∣2 ≤ 3 ||f1(0)||2+3
∣∣∣∣f1 (X1

t

)
− f1(0)

∣∣∣∣2+3
∣∣∣∣∣∣f1 (X1,N

t

)
− f1

(
X1
t

)∣∣∣∣∣∣2
Since f1 is a Lipschitz-continuous function, there exists ρ > 0 such that∣∣∣∣∣∣f1 (X1,N

t

)∣∣∣∣∣∣2 ≤ 3 ||f1(0)||2 + 3ρ2
∣∣∣∣X1

t

∣∣∣∣2 + 3ρ2
∣∣∣∣∣∣X1,N

t −X1
t

∣∣∣∣∣∣2 .
Due to the inequalities (14) and (23), we have∣∣∣∣∣∣f1 (X1,N

t

)∣∣∣∣∣∣2 ≤ 3ρ2
(
M0 + ||f1(0)||2 +K2 e

2Ct

N

)
Still by using the coupling result (23), we have

E
{∣∣∣∣∣∣f2 (X2,N

t

)
− f2

(
X2
t

)∣∣∣∣∣∣2} ≤ ρ2K2 e
2Ct

N
,

so that the term T1 is bounded like so

|T1| ≤ 2ρ

√
M0 + ||f1(0)||2 +K2

e2Ct

N
ρK

eCt√
N
.

We deduce that we have

|T1| ≤ 2ρ2K

√
K0 +K2

e2Ct

N

eCt√
N
.

Step 3. By proceeding similarly, we have the following boundedness of the fifth
term.

|T5| ≤ 2ρ2K

√
K0 +K2

e2Ct

N

eCt√
N
.

Step 4. By using the uniform boundedness of the moments (14), Jensen’s
inequality and the coupling result (23), we obtain the following control:

max {|T2| ; |T4|} ≤ ρ2K
√
M0

eCt√
N
.

Step 5. Finally, the limit (17) provides us the existence of a decreasing function
ϕ which limit at infinity is 0 such that

|T3| ≤ ϕ(t) .

Step 6. The triangular inequality gives us∣∣∣Cov
(
f1

(
X1,N
t

)
; f2

(
X2,N
t

))∣∣∣ ≤ |T1|+ |T2|+ |T3|+ |T4|+ |T5| .
17



Let t0(ε) be a positive real such that ϕ(t0(ε)) < ε
2 . Then, we take N0(ε) large

enough such that we have |T1|+ |T2|+ |T4|+ |T5| ≤ ε
2 . We deduce that for any

t ∈ [t0(ε); t0(ε) + T ], for any N ≥ N0(ε), we have∣∣∣Cov
[
f1

(
X1,N
t

)
; f2

(
X2,N
t

)]∣∣∣ ≤ ε .
This theorem means that, for a time and a number of particles sufficiently

large, two particles are as independent as we desire. Moreover, the convergence
in time is exponential.
We do not need neither V nor F to be convex. Nevertheless, if both potentials
V and F are convex, we know that we have a uniform coupling between the
particles and the inequality (23) becomes

sup
t≥0

E
{∣∣∣∣∣∣Xi,N

t −Xi
t

∣∣∣∣∣∣} ≤ K(µ0)2

N
, (24)

so that the four terms T1, T2, T4 and T5 (defined in the proof of Theorem 1.3)
are bounded like so

sup
t≥0

max {|T1|; |T2|; |T4|; |T5|} ≤
λ

4
√
N
.

In the previous (uniform) inequality, λ is a positive constant. Immediately, we
have the majoration:∣∣∣Cov

(
f1

(
X1,N
t

)
; f2

(
X2,N
t

))∣∣∣ ≤ ϕ(t) + λ
1√
N
.

Taking t and N sufficiently large yields∣∣∣Cov
(
f1

(
X1,N
t

)
; f2

(
X2,N
t

))∣∣∣ ≤ ε ,
since the function ϕ is decreasing. This ends the proof of Theorem 1.4, that we
remind the reader.

Theorem 3.3. Let f1 and f2 be two Lipschitz-continuous functions. Under the
set of assumptions (A), if moreover, V and F are convex then, for all ε > 0,
there exist t0(ε) and N0(ε) such that

sup
N≥N0(ε)

sup
t≥t0(ε)

∣∣∣Cov
[
f1

(
X1,N
t

)
; f2

(
X2,N
t

)]∣∣∣ ≤ ε .
In this paragraph, we only look at two particles for the sake of simplicity.

Remark 3.4. In fact, by proceeding similarly, we can obtain a more general
result that we now present. Let f1, · · · , fk be k Lipschitz-continuous functions.
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Then, under the set of assumptions (A), for all ε > 0, for all T > 0, there exist
t0(ε) and N0(ε) such that

sup
N≥N0(ε)

sup
t∈[t0(ε);t0(ε)+T ]

∣∣∣∣∣E
{

k∏
i=1

fi

(
Xi,N
t

)}
−

k∏
i=1

E
{
fi

(
Xi,N
t

)}∣∣∣∣∣ ≤ ε .
If moreover, both confining and interacting potentials V and F are convex, we
have

sup
N≥N0(ε)

sup
t≥t0(ε)

∣∣∣∣∣E
{

k∏
i=1

fi

(
Xi,N
t

)}
−

k∏
i=1

E
{
fi

(
Xi,N
t

)}∣∣∣∣∣ ≤ ε ,
for any ε > 0.

In [DMT13], we provide a result of propagation of chaos which is uniform
with respect to the time without assuming the convexity of V nor the one of
F . However, we can not use these results in our study since the results in
[DMT13] are with Wasserstein distance, W2. In other words, these results hold
with diffusions X1 and X1,N which are not necessarily defined with the same
Brownian motions. Consequently, we can not obtain the uniform coupling result
between the particles in the mean-field system and their hydrodynamical limit
if V or F are not convex.

3.2 Creation of chaos for the empirical measure
When the initial random variables X1

0 , · · · , XN
0 are independent, the empir-

ical measure ηNt := 1
N

∑N
j=1 δXj,Nt

converges as N goes to infinity toward
the deterministic measure µt (the law at time t of the McKean-Vlasov dif-
fusion). In particular, for any Lipschitz-continuous function f , the quantity
ηNt (f) :=

∫
R f(x)ηNt (dx) converges toward the deterministic value

∫
R f(x)µt(dx)

so that the covariance of ηNt (f1) and ηNt (f2) goes to 0 where f1 and f2 are two
Lipschitz-continuous functions.
However, due to Theorem 1.3, we have the Theorem 1.6, that we remind the
reader.

Theorem 3.5. Let f1 and f2 be two Lipschitz-continuous functions. Under the
set of assumptions (A), for all ε > 0, for all T > 0, there exists t1(ε) and N1(ε)
such that

sup
N≥N1(ε)

sup
t∈[t1(ε);t1(ε)+T ]

∣∣Cov
[
ηNt (f1) ; ηNt (f2)

]∣∣ ≤ ε
with ηNt (f) := 1

N

∑N
i=1 f

(
Xi,N
t

)
. If, moreover, both V and F are convex, we

have
sup

N≥N1(ε)

sup
t≥t1(ε)

∣∣Cov
[
ηNt (f1) ; ηNt (f2)

]∣∣ ≤ ε ,
for any ε > 0.
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Proof. By definition of ηNt (f), we have

Cov
(
ηNt (f1) ; ηNt (f2)

)
=

1

N2

∑
1≤i,j≤N

Cov
(
f1

(
Xi,N
t

)
; f2

(
Xj,N
t

))
.

Consequently, if N ≥ N0(ε) (where the integer N0(ε) has been defined in The-
orem 1.3), we have by triangular inequality:

sup
t∈[t0(ε);t0(ε)+T ]

∣∣Cov
(
ηNt (f1) ; ηNt (f2)

)∣∣
≤
(

1− 1

N0(ε)

)
ε+

1

N2

N∑
i=1

∣∣∣Cov
(
f1

(
Xi,N
t

)
; f2

(
Xi,N
t

))∣∣∣ .
Nevertheless, due to the hypotheses, we have the convergence of the quantity

Cov
(
f1
(
Xi
t

)
; f2

(
Xi
t

))
to ∫

R
f1(x)f2(x)µ(dx)−

(∫
R
f1(x)µ(dx)

)(∫
R
f2(x)µ(dx)

)
,

as t goes to infinity. Then, since f1 and f2 are Lipschitz-continuous functions,
thanks to the coupling inequality (23), we obtain that for all ε > 0, the quantity∣∣∣∣Cov

(
f1

(
Xi,N
t

)
; f2

(
Xi,N
t

))
−
[∫

R
f1f2µ−

(∫
R
f1µ

)(∫
R
f2µ

)]∣∣∣∣
is less than ε if t and N are large enough. Particularly, we deduce the bound-
edness of

∣∣∣Cov
(
f1

(
Xi,N
t

)
; f2

(
Xi,N
t

))∣∣∣:
sup
N≥1

sup
t≥0

∣∣∣Cov
(
f1

(
Xi,N
t

)
; f2

(
Xi,N
t

))∣∣∣ ≤M ,

M being a positive constant.

Taking N1(ε) := max
{
N0(ε) ; MN0(ε)

ε

}
yields

sup
t∈[t0(ε);t0(ε)+T ]

∣∣Cov
(
ηNt (f1) ; ηNt (f2)

)∣∣ ≤ ε
The second part of the theorem can be proved in a similar way so it is left to
the reader.

This result can be interpreted in the following way. The larger both N and
t are, the more deterministic is the empirical measure ηNt .
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