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UNCERTAINTY QUANTIFICATION BY GEOMETRIC
CHARACTERIZATION OF SENSITIVITY SPACES

————————————

Abstract. We propose a systematic procedure for both aleatory and epistemic
uncertainty quantification of numerical simulations through geometric character-
istics of global sensitivity spaces. Two mathematical concepts are used to charac-
terize the geometry of these spaces and to identify possible impacts of variability
in data or changes in the models or solution procedures: the dimension of the
maximal free generator subspace in vector spaces and the principal angles be-
tween subspaces. We show how these characters can be used as indications on
the aleatory and epistemic uncertainties. In the case of large dimensional pa-
rameter spaces, these characterizations are established for quantile-based extreme
scenarios and a multi-point moment-based sensitivity direction permits to propose
a directional uncertainty quantification concept for directional extreme scenarios
(DES). The approach is non-intrusive and exploits in parallel the elements of ex-
isting mono-point gradient-based design platforms. The ingredients of the paper
are illustrated on a model problem with the Burgers equation with control and on
a constrained aerodynamic performance analysis problem.

1. Introduction

The classification of uncertainties in epistemic (or reducible) and aleatory (or
stochastic and non reducible) categories is now well established [1, 2, 3]. These un-
certainties have different origins. In particular, the former can be reduced improving
our models and solution procedures. Several Uncertainty Quantification approaches
exist. They belong to two main categories. Without being exhaustive, one can use
either statistical techniques directly through, for instance, Monte Carlo simulations,
knowing the Probability Density Function (PDF) of our uncertain parameters (to-
gether with variance reduction techniques), or use different intelligent sampling (e.g.
stratified, latin hypercube). Or, one can try to recast a new mathematical model
which is then solved using deterministic methods. Methods such as perturbation ex-
pansion methods for random fields or stochastic operator expansions belongs to this
category. Non-sampling expansions, such as the polynomial chaos methods [4, 5],
also belong to this class. In all cases, one can also introduce low-order models (e.g.
response surface methods) [6, 7, 8] to a priori assimilate available information and
use these reduced order models in the methods above for uncertainty quantification
instead of the initial high-fidelity models.

This work proposes a systematic way to quantify epistemic and aleatory uncer-
tainties through geometric characterizations of global sensitivity spaces. We consider
two very generic situations. In the first case we would like to analyze the sensitiv-
ity of state variables with respect to a given functioning parameter (e.g. the flow
Mach number in an aerodynamic problem). In the second case we are interested in
a situation where the simulation aims at predicting a given quantity of interest (e.g.
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the maximum value of a variable in a given area) and there are several control pa-
rameters involved in addition to the functioning parameter mentioned before. The
approach for these uncertainty quantification is through the analysis of geometric
characteristics of two global sensitivity spaces defined by the gradients of the quan-
tities of interest for a sampling of the functioning parameter range. The sensitivity
spaces are built using adequate gradients of either the state variables or a functional
with respect to different functioning parameters.

Once these global sensitivity spaces built, we analyze the dimensions of their re-
spective free generator subspaces. Previous works have shown how to use these
dimensions for adaptive sampling [17, 23]. In the presence of different modeling
or solution methods, principal angles between these sensitivity subspaces permit to
measure the deviation due a change in the modeling. Indeed, different complexity
can be envisaged for the governing equations and the equations can be solved with
different numerical schemes. Each situation provides a different set of global sensi-
tivity spaces. The dimensions of the corresponding sensitivity spaces are therefore
interesting measures for both the epistemic and aleatory (at given modeling proce-
dure) uncertainties. Indeed, if at given modeling procedure, the dimensions of the
sensitivity spaces remain unchanged when enriching the sampling of the function-
ing parameter range, this would be a first indication of the level of sensitivity of
the simulations with respect to this parameter. Once this is established, principal
angles between subspaces permit to analyze both the impact of a given evolution
of the modeling on the sensitivity spaces or an enrichment of our sampling. Even-
tually, constant dimension and low angles will clearly indicate a situation of low
uncertainty.

These ingredients can be used in a context of multi-point robust analysis of a
system to define worst-case scenarios for its functioning. To this end we combine
a multi-point search direction with the probabilistic features of the control param-
eters through their quantiles and, in particular, their Value at Risk [28, 26]. These
ingredients permit to define the concept of directional uncertainty quantification
and directional extreme scenarios (DES). Global sensitivity spaces are then built
for these extreme scenarios and the above geometric characteristics permit again to
measure the impact of the variability of the parameters of the problem. The main
interest of this construction is to account for the variability of the parameters in
large dimension without a sampling of the corresponding parameter space.

Concerning the cost of these analysis, one can say that, when using the same
calculation ingredients that for a high-fidelity simulation (i.e. without calling for
low-order models or cheaper discretizations), the best calculation complexity one
might think of for a simulation under uncertainty is when its cost is comparable
to the deterministic situation. This is clearly unreachable. Now, suppose the pro-
posed approach for uncertainty quantification is such that all the extra effort can
be achieved in a fully parallel manner and parallel to the initial deterministic calcu-
lation. This permits for the time to solution to remain unchanged for a simulation
when accounting for the presence of uncertainties. This is the case with the sam-
pling based approaches mentioned above, but those are quite expensive in large
dimensions and do not take advantage of all the available simulation environments.
In particular, when an adjoint-based optimization environment exists. This work
proposes an original way to upgrade existing platform without abandoning what
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has been built for the deterministic situations and with keeping the time to solution
unchanged in the presence of uncertainties.

The ingredients of the paper are illustrated on a model problem with a Burgers
equation with a distributed control and on a three dimensional flow problem in a
context of robust shape sensitivity analysis and design involving a complex compu-
tational environment both in terms of state equation and geometry manipulation.

2. Geometric quantification of variability in global search spaces

Let us denote by α ∈ I ⊂ IR a scalar control parameter (we call this a functioning
parameter such as the Mach or the Reynolds numbers) and by x ∈ IRn the remaining
set of control parameters (e.g. parameters in a shape parameterization model, etc).
Together, x and α describe all the functioning conditions of our system. The size n
of x is usually large. We also consider a functional j(U(α,x)) and a state variable
U(α,x) ∈ IRN with N >> n. U is solution of a state equation F (U(α,x)) = 0, also
called the governing equations. The solution of F is usually expensive.

The first situation we consider is when we would like to quantify the uncertainties
on the state U with respect to α given through its interval of variation. The work
takes place in an environment where the sensitivities ∇αU(α,x) ∈ IRN of the state
with respect to the functioning parameter α are available. Because α is scalar, these
sensitivity evaluations are easy and can be carried out by finite differences or using
the complex variable method noticing that:

U(α + iε,x) = U(α,x) + iε∇αU(α,x) + o(ε2),

which permits to access simultaneously both the state and its sensitivity:

U(α,x) = Re(U(α + iε,x)), ∇αU(α,x) = ε−1Im(U(α + iε,x)).

The complex variable method avoids the difficulty in finite differences with the choice
of ε but requires the source code to have its variables in complex instead of real.

Now, consider a multi-point evaluation of U(α+ iε,x) for a sampling of size m of
I denoted by Im ⊂ I.

A first vector space of global sensitivity can be defined as:

sm = Span(∇αU(αk,x), αk=1,...,m ∈ Im) ⊂ IRN×m.

The geometry of this space indicates the global sensitivity of the state U with respect
to α.

The second situation we consider is when the simulations aim at predicting some
quantities of importance. These can be, for instance, extreme values reached in some
area (e.g. maximum temperature on a blade or a measure of performance). These
can be seen as the evaluation of a scalar functional j.

This time the work takes place in an environment where the sensitivities∇xj(α,x) ∈
IRn of the functional with respect to the control parameters are available. This is, for
instance, the case if one uses a gradient based optimization platform with, ideally,
an adjoint formulation to make the cost of the evaluation of ∇xj(α,x) independent
of the size n of the control space. We give an example of this in section 4.

Again, we consider a multi-point evaluation of the functional j and its sensitivities
for the sampling Im. And, a second vector space of global sensitivity can be defined
as:

Sm = Span(∇xj(αk,x), αk=1,...,m ∈ Im) ⊂ IRn×m.
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To simplify the notations, we have considered a same sampling for the two situations.
But this is not a prerequisite.

Two quantities of interest are the dimensions p and q of the subspaces
sm and Sm.

In particular, a system can be said robust if the free subspaces generating sm and
Sm have dimensions p, q << m.

These dimensions depend on the sampling Im of the range of variation of α. They
also depend on the modeling (the governing equations) and the way the equations
are solved (the numerical schemes). Each situation provides a different set global
sensitivity spaces sm and Sm. p and q are therefore interesting primary quantificators
for both the aleatory and epistemic uncertainties.

2.1. Algorithm for the construction of the global sensitivity spaces. The
calculations necessary for the construction of sm and Sm can be carried out in a fully
parallel manner. Suppose we have a direct simulation chain linking the parameters
(α,x) to the state U solution of a state equation F (U(α,x)) = 0 and to a functional
j. The following parallel algorithm describes the different steps one needs to take
to build the different ingredients we need for our analysis.



Given x, Im,

-m parallel state evaluations U(αl,x), αl ∈ Im ,

-m parallel state sensitivity with respect to α: ∇αU(αl,x), αl ∈ Im ,

-m parallel evaluations of j(αl,x), αl ∈ Im ,

-m parallel solutions of the adjoint state V equation:

V tFU(U(αl,x)) = jtU , αl ∈ Im,

-m parallel evaluations of ∇xj(αl,x) = jx + (V tFx)t, αl ∈ Im .

As previously mentioned, α being scalar, ∇αU(αl,x) is built with finite differences
or with the complex variable method. Once the gradients available we can evaluate
the actual dimensions of the two vector spaces sm and Sm. This analysis is carried
out with an incomplete Gram-Schmidt orthonormalization algorithm.

2.2. Incomplete Gram-Schmidt orthonormalization. Dimensions p and q can
be estimated by Gram-Schmidt orthonormalization. Having a set of vectors {v1, ..., vm},
the dimension d = dim(Span{v1, ..., vm}) is the rank at which the rest ‖ul‖ after
successive projections is below a threshold value TOL:

(1)



{v1, ..., vm}, TOL = given,

u1 = v1,

iterations l = 1, ...,m

ul = vl −
∑l−1

j=1
<vl,uj>

<uj ,uj>
uj,

until ‖uk‖ < TOL,

d = l.

The algorithm above gives p (resp. q) with vl = ∇αU(αl,x) (resp. vl = ∇xj(αl,x)).
The choice of an approximate or incomplete Gram-Schmidt procedure is deliberate
and is made to avoid pollution by numerical noise or artifacts [25]. Indeed, a full
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orthonormalization might bring extra dimensions not containing any pertinent in-
formation. In the sequel we give several examples of such over-estimation of the
free subspace generator and also discuss this issue in section 2.3.1 in a context of
multi-point robust optimization.

But, the threshold TOL can also be seen as a multi-scale cut-off where small scales
in the fields falling below it are not taken into account in the definition of the global
sensitivity spaces. Finally, this construction also gives a level of confidence on the
sampling Im of I: if a new direction built for a new α is not linear combination of
previous directions, this new sample point should be accounted for in Im+1. Gram-
Schmidt orthonormalization has been previously used in uncertainty quantification
[27].

2.3. Link with multi-point minimization. The spaces sm and Sm represent the
global sensitivity of the problem with respect to α. In the context of multi-point
minimization this α-dependency is accounted for in the definition of the descent
direction using a vector of Sm (e.g. through a linear combination of ∇xj(αk,x)
involving weights). Let us propose a suitable choice for this construction which will
be used in section 2.4 to account for directional variability in x using the value at
risk of these control parameters.

Consider the following constrained minimization of a functional µ(x) encapsulat-
ing this dependency using a weighting which can be non uniform and target-based
[17]:

(2) min
x
µ, such that σ∗(x) ≤ σ∗0,

where

(3) µ =
1

ω

∑
αl∈Im

ωlj(αl,x), ω =
m∑
l=1

ωl,

the weights ωl account for the kind of performance we eventually want for the de-
sign: constant performance over the functioning parameters ranges. For the sake of
simplicity and without loss of generality one can consider here both the sampling
and the weighting to be uniform. As in First-Order Second Moment (FOSM) meth-
ods [20], σ∗ is to monitor the regularity of the final performance which should be as
regular as possible with respect of α:

(4) σ∗ =
1

2

∑
αl∈Im

< ∇αj(αl,x),∇αj(αl,x) >,

where <,> is the Euclidean scalar product. σ∗0 is the level of variability for the
initial design or of a reference configuration. Here also, as the size of α is usually
small (here one), ∇αj is evaluated by finite differences on Im.

Problem (2) can be solved using a descent method with the descent direction d
given by:

(5) d = ∇xµ− < ∇xµ,∇xσ∗ > ∇xσ∗ + η∇xσ∗,

where 0 < η � 1 and a = a/‖a‖ is the normalized vector a and

(6) ∇xµ =
1

ω

∑
αl∈Im

ωl∇xj(αl,x),
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Figure 1. Domain of variation for 1− ζ2 + ηζ when ζ ∈ [−1, 1] and η ∈ [0, 1].

(7) ∇xσ
∗ =

∑
αl∈Im

< ∇αj(αl,x),∇αxj(αl,x) > .

∇xαj(αl,x) is derived from ∇xj(αl,x) by finite differences on Im, component by
component. The definition of the descent direction permits to make sure that both
µ and σ∗ decrease for small descent steps. Indeed, a first order development in x
gives:

σ∗(x + δx)− σ∗(x) = ‖∇xσ
∗‖ ∇xσ∗.(δx) = −ρη‖∇xσ

∗‖ ≤ 0,

and we have

µ(x + δx)− µ(x) = ‖∇xµ‖ ∇xµ.(δx) = −ρ‖∇xµ‖ (1− ζ2 + ηζ),

where ζ =< ∇xµ,∇xσ∗ >. Therefore, µ is also decreasing as 1−ζ2 +ηζ ≥ 0 because
ζ is a cosine function and therefore |ζ| ≤ 1 and η is chosen such that 0 < η � 1 as
shown in figure 1.

2.3.1. Reducing the size of the search space. The descent direction d permits a con-
trol of both moments µ and σ∗ but to make the minimization efficient one should
not consider all elements ∇xj(αl,x) at αl ∈ Im, but only pertinent ones. These are
the q vectors (q < m << n) in the maximal free generator in Sm at given TOL
[23, 17, 25]. This gain in efficiency is related to the fact that working with only q
vectors instead of m drastically reduces the dimension of the search space, making
the underlying optimization problem simpler. Figure 2 illustrates this idea in the
context of alternate minimization by successive projections when all the m directions
are considered (split in two sets of q and m− q directions) versus a situation where
the minimization takes place only on the subspace of dimension q. This obviously
affects the convergence in a gradient based minimization.
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Figure 2. Impact of a reduction in the dimension of the search space
by considering the ’pertinent’ q directions generating Sm at given
TOL.

2.4. Value at Risk for worst-case sensitivity spaces. We showed how to in-
troduce some geometric characterizations of the global sensitivity spaces built with
the gradients of the state ∇αU(αl,x) or a functional ∇xj(αl,x) for αl ∈ Im a sam-
pling of a functioning parameter variation range. This was feasible as there are few
of such parameters in a simulation procedure (usually one or two of importance).
Now, we would like to account for the variability in the control parameter x ∈ IRn

with 1� n. Therefore, a sampling of the variability ranges of the components of x
is out of question because computationally too expensive.

In [26] we show how to introduce the Value at Risk (VaR) concept in optimization
algorithms with the aim of quantifying our confidence on the optimal solution at
low complexity without a sampling of the control space. We would like to use
this concept here and define, in combination with the direction d (5), directional
uncertainty quantification analysis for extreme scenarios.

In financial engineering, the Value at Risk (VaR) is a widely used a-quantile to
measure the risk of loss on a given asset [28]. It defines, for a given probability level
(0 < a < 1) and time horizon (typically one day), a threshold value for the loss X
on the asset:

VaRa = inf{l ∈ IR : P (X > l) ≤ 1− a}.
A given control parameter xi=1,...,n represents, with a confidence level of a, the
interval [xi + VaR−a ,xi + VaR+

a ] around xi and VaR−a ≤ 0 ≤ VaR+
a . One expresses

then possible deviations from x via two probability density functions (PDF) and
the corresponding values at risk. One can make the hypothesis that the upper and
lower bounds of the variations are symmetric, in which case VaR−a = −VaR+

a . This is
typically the case when uncertainties on a parameter follow a Gaussian distribution.
Gaussian distributions are interesting as their Values at Risk are explicitly known:
VaR0.99 = 2.33 and VaR0.95 = 1.65 for N(0, 1) and VaRα(N(0, σ)) = σVaRα(N(0, 1)).

To summarize x + VaRa(x) is a closed domain in IRn around x:

Ba(x) = {z ∈ IRn : xi + VaR−a (xi) ≤ zi ≤ xi + VaR+
a (xi), i = 1, .., n}.

Now, we would like to use this information together with the descent direction d
given by (5) to define extreme values for the local variability of the functional along
the direction d. We make the assumption that the functional is monotonic over
Ba(x), continuous and bounded. It is therefore uniformly continuous. These are
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Figure 3. Sketch of x± = d ∩ ∂Ba(x).

reasonable requirements for a robust design to be possible. The intersection of the
boundary of Ba(x) and d permits to define two extreme values for x as worst-case
scenarios:

(8) x± = d ∩ ∂Ba(x).

A sketch of this construction is given in figure 3. The assumptions above on the
functional make that its extreme values over Ba(x) are reached on the boundary
∂Ba(x). This requirement fails near critical points of the functional. In [26] we
showed how this can be linked with the notion of over-solving where it becomes use-
less to solve accurately near an optimum when the variation in a control parameter
by a descent method falls below the level of the variability for this parameter. In
other words, in the presence of uncertainties, one should not distinguish between
the points in Ba(x).

The next step is to define the global sensitivity spaces sm and Sm at points x±

following the procedures described in the previous sections using ∇αu(αl,x
±) and

∇xj(αl,x
±) for αl ∈ Im. Let us call these s±m and S±m. Their respective dimensions,

denoted by p± and q±, can be found at given TOL by incomplete Gram-Schmidt
orthonormalization of section 2.2. These give very precious information on the
impact of local variability on x on our global search spaces. And from the calculation
complexity issue, it is important that these have been built without a sampling of
our parameter space of dimension n for x.

2.5. Angles between subspaces . We discussed how to evaluate the dimension
of different sensitivity spaces in the presence of uncertainties. Another interesting
information comes with their respective positions or orientations. A natural tool to
quantity these is given by the principal angles between vector subspaces. We use the
mathematical concept of ’principal angles’ between subspaces in the Euclidean space
IRn initially introduced by C. Jordan [9]. If the maximum principle angle between
the two subspaces is small, the two are nearly linearly dependent. Geometrically,
this is the angle between two hyperplanes embedded in a higher dimensional space.

Let us briefly recall the concept of principal angles and how to practically compute
them [10, 11]. We present the approach for subspaces of the same dimension k, but
it is not necessary for the two subspaces to be of the same size in order to find
the angles between them. We need n ≥ 2k to be able to exhibit two orthogonal



10

subspaces. If n < 2k, some principal angles necessary vanish and for n = k they all
vanish.

The k principal angles θi, i = 1, ..k are between 0 and π/2. This is an important
point and will be used later to take advantage of the positivity of the cosine of the
angles. The principal angles are defined as:

cos(θi) =
< ai, bi >

‖ai‖‖bi‖
= max{< a, b >

‖a‖‖b‖
: a ⊥ am, b ⊥ bm;m = 1, .., i− 1},

where aj ∈ A and bj ∈ B. The procedure finds unit vectors a1 ∈ A and b1 ∈ B
minimizing the angle θ1 between them. It then takes the orthogonal complement
of a1 in A and b1 in B and iterates. This procedure is not useful in practice as
computationally inadequate. We would like to be able to find the angles θi from the
inner products < ai, bj > of the elements of two basis of A and B [12]1

Suppose A and B are two subspaces of dimension k of IRn, n ≥ 2k and let
{ai, i = 1, .., k} and {bi, i = 1, .., k} be two arbitrary orthonormal basis for A and B.
Orthonormal basis are easy to obtain through the Gram-Schmidt orthonormaliza-
tion procedure. Consider M being the matrix of the projection operator Pr

A
of B

on A defined by:

Pr
A

(bi) =
k∑
j=1

< bi, aj > aj, M = (< bi, aj >)i,j.

The principal angles can be linked to this operator [12] through:

M = GΣH t,

where G and H are orthogonal matrices and Σ = diag(cos(θi)).
As G and H are orthogonal matrices, this is a Singular Vector Decomposition

(SVD) of M . G and H are unknown at this point. But, we will show that we do not
need them to get the θi. Otherwise, the approach would be be again computationally
useless.

We recall that the columns of G are the left-singular vectors of M and eigenvectors
of MM t and the columns of H are the right-singular vectors of M and eigenvectors of
M tM . And most important that cos2(θi) are the eigenvalues of Prt

A
Pr

A
which writes

in matrix form as: M tM = (GΣH t)t(GΣH t) = HΣ2H t with Σ2 = diag(cos2(θi)).
Therefore, to find the principal angles between subspaces A and B, knowing an

orthonormal basis in each subspace, one should calculate M and find the eigenvalues
of M tM and take the square root of them. This last operation is valid as the angles
are between 0 and π/2, and their cosine therefore always positive. Finding the
eigenvalues of M is easy because the size of M is small. This procedure is still valid
if the subspaces have different dimensions. The projection operator can be defined
as well as its transpose and the eigenvalues of M tM are real as this is a symmetric
square matrix. In our case, n being the size of the control parameter x, it is usually
much larger than k which is the dimension of the generator subspace of Sm at given
TOL.

1This is interesting in our multi-point optimization context where we can exhibit orthonormal
basis of the global search space for the multi-point optimization problem using Gram-Schmidt
orthonormalization.
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2.6. Definition of subspaces A and B in our multi-point formulation. Let
us define subspaces A and B in the context of our multi-point formulation. In our
problem the size n is very large and is given by the dimension of the control space.
Subspaces A and B are of dimension k and we have 2k << n. For the sake of
simplicity we consider that both subspaces are of the same dimension.

Suppose we have two sets of vectors G(αl) and g(αl) for αl ∈ Im and A =
Span(G(αl), αl ∈ Im) and B = Span(g(αl), αl ∈ Im) two subspaces. The or-
thonormal basis {ai, i = 1, .., k} and {bi, i = 1, .., k} are defined by our incomplete
Gram-Schmidt orthonormalization procedure of section 2.2 applied to {G(αl), αl ∈
Im} and {g(αl), αl ∈ Im}. We have therefore A = Span(ai, i = 1, .., k) and
B = Span(bi, i = 1, .., k) but with k < m (the sampling size for α).

2.6.1. Principal angles as a measure of epistemic uncertainties. Suppose we have
two solution procedures (u, j) and (ũ, j̃) leading after linearization to two sets of
gradients:

(G(αl), g(αl)) = (∇xj(αl,x),∇xj̃(αl,x)),

(G(αl), g(αl)) = (∇αu(αl,x),∇αũ(αl,x)).

The previous procedure for each set leads to two pairs of spaces A = sm (resp.
A = Sm) and B = s̃m (resp. B = S̃m). Principal angles between the couples
of subspaces (A,B) give quantitative indications of the impact of a change in the
solution procedure on the global search spaces. In particular, putting extra effort in
a modeling or solution procedure complexity would be useless if the angles remain
small as the outcome, even if more expensive, will have no impact on a design using
this simulation procedure.

2.7. Deviation in multi-point direction . An important situation where the
calculation of the eigenvalues of M tM is not necessary is with multi-point analysis
described in section 2.3 where the direction d has been introduced. Suppose one
has two sets of gradients vectors G(αl) and g(αl) for αl ∈ Im, from the linearization

of different state equations or numerical schemes leading to d and d̃ using formula
(5). We said that we do not consider what falls below the tolerance threshold TOL.
Our incomplete Gram-Schmidt orthonormalization leads to subspaces A(G) or B(g)
of dimensions k < m (again, the dimensions can be different). As {ai, i = 1, ..., k}
and {bi, i = 1, ..., k} are orthonormal basis of A and B, projecting d on these spaces
gives:

PrA(d) =
∑

i=1,...,k

< d, ai > ai and PrB(d̃) =
∑

i=1,...,k

< d̃, bi > bi.

In a context of optimization, these are eventually the most important quantities and
the impact of a change in the modeling should be measured through the deviation
between d and d̃ instead of through the angles between A and B. Therefore, extra

modeling or numerical efforts has an impact if the angle ∠
(
PrA(d), P rB(d̃)

)
is large.

This indicator is easy to estimate during optimization iterations [25]. Even this is
only an a posteriori indicator, it is interesting as in practice a given design procedure
is often applied several times in a same context. The indicator is evaluated for the
first design and provide a confidence level for possible use of low-order models in the
further designs.
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2.8. Link with classical UQ quantificators. Before illustrating these ingredients
on our examples, let us summarize the philosophy of our approach and see where
classical UQ quantificators, through intervals or moments of the outputs, appear.

In a simulation chain, the PDF of the outputs can be uniform in which case it
can be described by an interval. It can be Gaussian and defined by its mean and
variance. Or, it can be of another type needing a posteriori identification and in-
volving more moments for its description.

Mean and variance have been defined for the aleatory variability due to the func-
tioning parameter α as described in section 2.3 on the multi-point optimization
algorithm. The multi-point direction d given by (5) permits their control. We get
different values for the moments and directions for different models or solution pro-
cedures. And their variations provide a measure for the epistemic uncertainties.

The directional extreme scenarios are built using the PDF of the control param-
eters x in large dimension. The variability in x is a posteriori and aleatory. Indeed,
once the design is made and an optimum found, one cannot be sure, for instance,
that it can be manufactured exactly following its definition and we have an uncer-
tainty here which appears a posteriori and which is not epistemic as it cannot be
reduced improving our modeling or solution procedures. But, the PDF of the uncer-
tainty is usually known, through manufacturing margin for instance. This permits
to define directional margin intervals for each of the components of x as described
in section 2.4. What makes things complex is that because the optimum depends on
the modeling and solution procedures, these intervals will be different for different
procedures. It is therefore impossible here to dissociate the aleatory and epistemic
uncertainties.

Hence, the splitting of the control parameters into α and x is not motivated by
their aleatory versus epistemic features. The splitting is motivated by the calcu-
lation complexity: α is of small dimension while x belongs to a large dimensional
space. Therefore, whatever the PDF of α is, the moments of the state U and the
functional j can be computed as a sampling of the parameter space for α (following
its PDF) can be envisaged. Here we have illustrated the approach with uniform
PDF but this is not a perquisite. On the other hand, it is not possible to proceed
in the same way to account for the variability in x because of its dimension.

The paper proposes to go beyond simple mean/variance or intervals for the quan-
tification of the outputs uncertainties. It analyzes the geometry of the global sen-
sitivity spaces. This is because one cannot be confident, even with low aleatory
and epistemic uncertainties, if the global sensitivity spaces are very different and, in
particular, if the sensitivity spaces built around the extreme scenarios deviate (e.g.
a situation of small variance with also small gradients but pointing in very different
directions).

Finally, the different estimations proposed in the paper can be made in a fully
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non-intrusive way. We use in parallel the ingredients available in an existing mono-
point optimization platform where the gradient of the functional is available through
an adjoint formulation.

3. Uncertainty quantification for the Burgers equation

Let us apply the concepts presented above for quantification of some of the uncer-
tainties for the solution of the following Burgers equation with a distributed control
in its right-hand side:

∂tu+ ∂y
u2

2
= x(y)u,

(9) u(α, t,−1) = α, u(α, t, 1) = −0.8, α ∈ I = [0.9, 1.1],

u(α, t = 0, y) = u0(α, y) = −α + 0.8

2
y +

α− 0.8

2
,

where the control x(y) = 0.3y. This simple model gathers two sources of uncer-
tainties often present in practice. α control the inlet boundary condition and can
be seen as the inflow Mach number in a flow simulation and this quantity might
only be known through a probability function (PDF) or an interval (with uni-
form PDF). Uncertainties might also be on distributed data over the domain as
in x(y) = 0.3y(1 +N (0, σ)) where a Gaussian PDF is assumed. Uncertainties over
the definition of a shape studied in section 4 is a particular case of this latter.

For σ = 0, the steady solution of (9) is piecewise parabolic and has a jump at
y = s:

u(y) = 0.15y2 + α− 0.15 for y < s,
u(y) = 0.15y2 − 0.95 for y > s,(10)

and the shock position is found by asking for the flux to have no jump:

(11) u−s = −u+
s therefore s = −

√
1.1− α

0.3
.

We solve equation (9) with a centred scheme for first and second order spatial
derivatives after introduction of a numerical viscosity given by νh = 0.5humax where
umax = max(|ui−1|, |ui|, |ui+1|) on a 100 points uniform mesh (i.e. h = 0.02). Time
integration is based on a third order Runge-Kutta scheme with local times step given
by h/umax. These are very basic choices and much sophisticated schemes could have
been envisaged but this is not central to our discussion. Figure 4 shows the solution
by this scheme versus the analytic expressions (10) for the two extreme values in α
in its domain of variation I = [0.9, 1.1]. We called this the state equation solver and
its solution the state variable U .

3.1. Global sensitivity space sm. To build the global sensitivity space sm we
need uα(αl,x) for αl ∈ Im. But u has a shock. We need, therefore, to address the
question of sensitivity evaluation in the presence of discontinuities [18, 14, 15, 13].

Suppose the initial condition u(α, t = 0, y) = u0(y) has a discontinuity at s = 0
satisfying the entropy condition u−(α, 0, 0) > u+(α, 0, 0) (the velocity decreases after
a shock). Then u(α, t, y) has a discontinuity at s(t) which depends on α and propa-
gates at a velocity given by the Rankine-Hugoniot condition: ṡ = ū := (u+ + u−)/2
where u± denote its values before and after the shock.
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Let us denote by H the Heaviside function and by δ the Dirac function, its deriva-
tive such that Hα(y − s(t)) = −sα(t)δ(y − s(t)). u can be rewritten as u(α, y, t) =
u−(α, y, t) + (u+(α, y, t) − u−(α, y, t))H(y − s(t)) which after differentiation in α
gives:

(12) uα = u−α − sα(t)[u]δ(y − s(t)),
where [u] = u+ − u− is the jump of u across the shock and u−α the point-wise
derivative of u− with respect to α. In practice we get uα from a linearized version
of our simulation code for the solution of the Burgers equation (9) (see section 2).
The question is then how to link this numerical derivative to the previous analysis ?

Differentiating (9) in α we have:

(13) ∂tuα + ∂y(uuα) = x(y)uα, uα(α, y, 0) = u0
α(α, y) = −y

2
, uα(α, y = ±1, t) = 0.

From what said above one should not be allowed to do that as uuα in (13) has no
meaning at s(t) because it involves the product of a Dirac function with a discontin-
uous function. One can notice however for steady solutions (i.e. the time derivative
vanishes) and outside shocks that the equation reduces to uuy = ux(y) which gives
uy = x(y). After derivation in α we obtain uαy = 0. So uα must be constant outside
shocks and as we have u0

α = −y/2 + 1 from (9), we find uα(y) = 1 for −1 ≤ y < s
and uα(y) = 0 for s < y ≤ 1 as shown in figure 4.

In shock regions, the classical solution is to say that (12) is valid at all points
except at (t, s(t)), and that the Rankine-Hugoniot condition, differentiated, gives:

(14) ṡα(t) = ūα(s(t), t) + sα(t)∂yū(t, s(t)).

We see that the derivative of the Burgers equation has two unknowns: uα and sα.
The entropy condition insures uniqueness of uα given by (13) and a jump condition
across the shock is not necessary because the characteristics left and right of the
shock point left and right too. Once uα is computed, sα is given by the linear
ordinary differential equation (14). But, again, in practice we never proceed in that
way. In particular, sα is never evaluated and, as we said, uα is estimated, for instance,
using finite differences or the complex variable method applied to the solution of the
Burgers equation. One should therefore not have a complete confidence on uα in
these regions. Again, one situation of interest is when the solution is steady in time
and because sα = 1/2s from (11), we recover from (14) that in shock regions we
have:

(15) ūα(s) = − 1

2s
∂yū.

Figure 4 shows the comparison between this expression and the outcome by finite
differences for α = 0.9 and α = 1. One sees that the numerical gradient produces the
right sign and also nearly the right amplitude for uα. Such sensitivity analysis can
therefore be somewhat trusted in the construction of the global sensitivity space sm,
at least for steady solutions. This space is built using the algorithm in section 2.1 and
the incomplete Gram-Schmidt orthonormalization described in section 2.2. Figure
5 shows the outcome of this analysis for a m = 50 points sampling of I and for a 100
points uniform sampling of TOL ∈ [10−6, 1] in the incomplete orthonormalization.
For this 100 points mesh, the gradients uα are vectors of size 100 and one saw
from our analysis and shown in figure 4 that these take for value 0 or 1, except in
shock regions. The orthonormalization algorithm detects that and one sees that the
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Figure 4. Upper: u(α, t → ∞, y) solution of (9) vs. the analytic
expressions (10) for α = 0.9 and 1.1. Lower-right: uα for the two
simulations versus uα(y) = 1 for −1 ≤ y < s and uα(y) = 0 for
s < y ≤ 1. Lower-left: uα for α = 0.9 and α = 1 in shock regions
versus expression (15) in dashed.

dimension of sm is two over a wide range of larger values of TOL. Increasing the
accuracy (i.e. reducing TOL) in the orthonormalization permits to detect new free
dimensions up to a maximum of 9. The sampling I50 is therefore a safe choice. The
new dimensions incrementally detected by the algorithm also characterize this multi-
scale feature of solution. One difficulty here is that these extra dimension can have
unphysical origins and, in particular related to numerical noises for instance. We
discussed this in sections 2.1 and 2.3.1 and also reported in [25]. We will illustrate
it in the next section for the definition of Sm. The numerical noise might artificially
increase the size of the global sensitivity space and should also be removed when
the sensitivities are used for the definition of descent directions in a multi-point
optimization context.

3.1.1. Multidimensional α. We worked with only one functioning parameter α. In
the presence of more than one functioning parameters αi=1,..., a similar analysis
can be carried out for each of them leading to spaces si=1,...

m and a ranking can be
delivered on the variability each of these parameter can induce on the state through
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dim(si=1,...
m ). This information is interesting as the norms of the gradients alone would

not necessary imply large variability. Actually, gradients can be large and still the
global sensitivity spaces of low dimension. These constructions can be carried out
efficiently if an adjoint formulation is available as we will see in the analysis of spaces
Sm in the next section.
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3.2. Global sensitivity space Sm . Now suppose the quantity of interest j is of
the form:

(16) j(α,x(y)) =

∫ T

0

∫ 1

−1

J(α,x(y), t, y)dydt,

where the control x(y) ∈ IR100 is defined by its 100 values of the mesh points.
One typical situation in inverse problems is with J = 1

2
(u(α,x(y), t)− ud(α, y))2 to

measure the distance between the state variable and a desired state ud. We choose
for ud the piecewise parabolic solution (10). This is therefore an inverse problem
and the existence of the solution is guaranteed with xd = 0.3y for all α.

Of course, the control can be recovered knowing ud in regions where the solution
u has no shocks and where we can therefore write:

(17) udxd(y) = ∂t(ud) + ud∂y(ud) = ud∂y(ud).

The second equality is because we are looking for a control independent of the time.
So xd = ∂y(ud) which is known in regions where ud is smooth and we recover the
target control which is independent of α. But, in the context of robust design, as
described in section 2.3, this a priori information is usually unavailable.

In our model problem the size n of the control parameter x and the size N of
the state variable u are the same (i.e. ∇αu and ∇xj are both vectors of size 100).
Identification of space Sm follows the same procedure than for sm in the previous
section except that we need to introduce an adjoint formulation as the size of the
control space is n while α was a scalar and could be accessed in realistic time with
finite differences or the complex variable method. Figure 6 shows an example of
the distribution of the adjoint based ∇xj(αl,x) for αl ∈ I10 (a 10 points uniform
sampling of I) as described below.

3.2.1. The adjoint formulation. The derivative of j =
∫

(−1,1)×(0,T )
J with respect to

x writes:

∇xj =

∫
(−1,1)×(0,T )

(Jx + Juux)dtdy.

For our functional targeting ud, Jx = 0. From the linearized Burgers equation we
have (same linearization procedure than for uα in the previous section):

(18) ∂tux + ∂y(uux)− x(y)ux = 0, ux(y, t = 0) = − α

0.6
, ux(y = ±1, t) = 0.

But, unlike with uα ∈ IRN , we need to avoid working with ux ∈ IRN×N . One
introduces therefore an adjoint state v solution of the backward equation:

(19) ∂tv + u∂yv − x(y)v = Ju, v(y, t = T ) = v(y = ±1, t) = 0,

and write

(20)

∫
(−1,1)×(0,T )

Juux =

∫
(−1,1)×(0,T )

(∂tv + u∂yv − x(y)v)ux

= −
∫ 1

−1

(u0)x v(y, t = 0) = −v(y, t = 0),

where (u0)x = δ(y) formally indicates the sensitivity with respect to the independent
variable x of the initialization of the dependency chain (α,x)→ u0 → u→ J . The
adjoint state v has no shock because its time boundary condition is continuous and
the characteristics integrated backward never cross the shock [19].
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Figure 6. Upper: ∇xj(αl,x) with adjoint formulation for αl ∈ I10.
Lower: d = ∇xµ− < ∇xµ,∇xσ∗ > ∇xσ∗+0.01∇xσ∗ defined in section
2.3.

Having in hand the set of {∇xj(αl,x), αl ∈ I100}, subspace S100 can be built and
its dimension analyzed. Figure 7 shows the history of the Gram-Schmidt orthonor-
malization for different values of TOL. One sees that the generator subspace in S100

is at most of dimension four.

3.2.2. Comparative studies between sm and Sm. We notice that q = dim(S100) <
dim(s50) = p. This characteristic is often encountered in optimization problems.
It means that the functional is less sensitive to the variability of the functioning
parameters than the state. It gives a justification for the use of reduced order
models in the solution of the optimization problems. It tells, indeed, that it should
be easier to build a low-order model for the functional than for the state. This
indicator also permits to discriminate between several outputs of a system, giving a
ranking in terms of their sensitivity to the variability of the functioning parameters
of the system.
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Figure 7. Cost function (16) with J = 1
2
(u(α,x(y), t) − ud(α, y))2.

Upper: dim(S100) during incomplete orthonormalization for different
TOL. Lower: dim(S100) vs. TOL.

Having said that, one notices however that we needed to use a 100 points sampling
of the range of α for the analysis of S100. This was necessary to be on the safe side
as the fourth dimension has been identified after more than 50 vectors considered.
Hence, the 50 points sampling used in the s50 analysis would have been insufficient.
This is puzzling. Indeed, dim(s50) > dim(S100) but we see that we need a finer
sampling to identify the free generator of the sensitivity space built with ∇xj(αl,x)
than the space built with ∇αu(αl,x). This is an indication of the care one needs to
take when building a low-order model to be used in a minimization problem for j.

In each case, we have verified that enriching more the sampling in α does not
produces any new independent direction with respect to s50 and S100 respectively.
But, it would be interesting to know if there are any a priori upper bounds for the
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size of the sampling in α. Here, the control space for x is of dimension 100 (x(yi)
on yi=1,...,100 the 100 points spatial mesh). This example shows a situation where
the necessary sampling is the one given by the worst-case theoretical bound given in
[24, 23, 17]. This bound is related to the fact that one needs n+1 independent vectors
to generate a vector space of dimension n. Fortunately, this situation is quite rare
and we show in section 4 an example where dim(Sm) << n. However, this example
suggests that when defining an optimization problem and if several formulations of
the minimization problem are available, one should advantage the functional (even
through a reformulation of the problem) for which the global sensitivity space Sm is
less sensitive to the size of the sampling. Figure 8 shows the same analysis than in
picture 7 but for a different functional where J only involves the local derivative in
space at one of the boundaries: J = (∂yu|y=−1)2. This is similar to the situation we
will have with the aerodynamic coefficients in example 4.
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dim(S100) during incomplete orthonormalization for different TOL.
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So, not only the worst-case upper bound can be avoided (which is fortunate), but
it should be. Indeed, here the size of the two gradients∇xj(αl,x) and∇αu(αl,x) are
the same and equal to the size of the mesh because the control x is distributed. But,
in a three dimensional simulation, for instance, the upper bound would suggest again
a size of the sampling proportional to the size of the spatial mesh which is simply
out of question because of the related calculation complexity. Shape optimization
problems, such as in section 4, are particular situations where the control is only
distributed on a portion of the domain: a surface plunged in it. Still the upper
bound would be too constraining.

Let us make a final remark on the comparative costs of the two constructions s50

and S100. The former requires 50 solutions of our Burgers solver and finite differences
to build gradients ∇αu(αl,x). The latter 100 solutions of our Burgers solver and
its adjoint. Without the adjoint, the construction of S100 would have requested 104

solutions of the Burgers equation which is unreasonable even for this 1D case.
We could have avoided all this discussion working with a 100 points sampling and

s100. But, we think it is important to bring into light such differences. It is clear
that we will not be able to use exhaustive sampling of the functioning parameters
ranges in real life applications (like in section 4). It is therefore important to be
aware of the risks related to a partial sampling. This weakness is present in any
sampling based statistical approach and the mentioned worst-case upper bound is
useless when the size of the control space is large.

3.3. Worst-case sensitivity spaces s±m and S±m . We showed how to introduce
dimensional geometric characterizations of the global sensitivity spaces obtained
using the gradients of the state ∇αu(αl,x) or a functional ∇xj(αl,x) for αl ∈ Im.
Now, let us introduce the Value at Risk (VaR) concept to define bounds for the
dimensions of our global sensitivity spaces in a context of directional worst-case
analysis as described in section 2.4.

Consider our Burgers equation with control where we assume the control uncertain
and described through a same Gaussian probability density function for all the
components of x ∈ IRn where n = 100 for our 100 points mesh: x(yi) = 0.3yi +
N (0, σ) with σ = 0.1.

We use this information together with the direction d given by (5) to define ex-
treme values for the local variability of the functional along d as shown in figure 3
and described in section 2.4. Global sensitivity spaces s±50 and S±100 are then at points
x± using ∇αu(αl,x

±) and ∇xj(αl,x
±) for αl respectively in I50 and I100. Figure 9

shows the dimensions p± and q± at different TOL of the free subspaces generating
s±50 and S±100. In this case, p+ and q+ appear often larger but this is not necessary
the case in general.

3.4. Variability on subspaces sm and Sm due to a change in the modeling
or solution procedure. We saw how to build subspaces sm and Sm for a given
sampling Im of the range of a functioning parameter and also how to define direc-
tional extreme scenarios (DES) leading to spaces s±m and S±m. And, we saw how to
quantify the variability of these global search spaces through the dimension of the
free generator subspaces.

But these depend on several parameters such as the numerical methods used in the
calculation of the state variables or for the definition of the gradients. Indeed, one
simple question, for instance, can be the impact on the global sensitivity spaces of
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Figure 9. Dimensions p± (upper) and q± (lower) at different TOL
of spaces s±50 and S±100, respectively generated by ∇αu(αl,x

±) and
∇xj(αl,x

±) for αl respectively in I50 and I100.

the accuracy of the gradients ∇αu(αl,x) and ∇xj(αl,x). Also, there is often large
discussions on the approach which should be adopted for their definition (often
discussed under the items linearize and discretize or discretize and linearize).

Our aim is to give a quantitative way to see how much deviation a change in the
modeling complexity or numerical scheme for larger accuracy, and therefore generally
computational complexity, brings into these global sensitivity spaces. This measure
of the deviation comes in addition to possible variations in the dimension of the
respective sensitivity spaces. Principal angles between subspaces are an interesting
instrument to quantify such deviations.

Following the procedure presented in section 2.6, figure 10 shows the angles be-
tween global search spaces sm and s̃m with first and second order accurate approxi-
mations of gradients ∇αu(αl,x) ∈ IR100 for αl ∈ I50. After orthonormalization with
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Figure 10. Principal angles between global search spaces s50 and s̃50

built respectively with first and second order accurate approximations
of ∇αu(αl,x) for αl ∈ I50.

TOL = 10−4, the two subspaces free generators appeared being of the same dimen-
sion 7. This is not necessarily the case as we will see for the sensitivity spaces S100

and S̃100. We see that the two subspaces have two common axis but are sometimes
nearly orthogonal. This is a measure of the error one commits in the global sensi-
tivity space definition if one uses lower accuracy in the gradients. This also means
that these directions are very sensitive to small perturbations of the functioning
parameters.

Figure 11 shows the angles between global search spaces S100 and S̃100 built with
the gradients ∇xj(αl,x) respectively with a discrete adjoint approach and with first
order accurate gradients by finite differences. As discussed in section 3.2.2, this
latter is very costly even for this model problem as it requires here 104 solutions
of the direct problem (x is distributed over the 100 mesh points and we have 100
sampling points in α) while the adjoint solutions cost about 100 solutions (for 100
points sampling in α) of the direct problem and this cost is independent of the
number of the control points (here mesh points). After orthonormalization with
TOL = 10−4, the dimension of the S100 is 4 but S̃100 appears being of dimension
18. This difference is related to the regularity of the two gradients as shown in
the figure for α = 0.9. The fluctuations in the gradient by finite differences can be
reduced with a second order finite difference approximation or even removed with
the complex variable method, but our aim is to show a common situation where
they exist. This is an example of principal angles calculation between subspaces of
different dimension. Again, this permits to measure the impact of a loss in accuracy
in the solution procedure. This is also an illustration of the mentioned numerical
artifact justifying the use of incomplete Gram-Schmidt procedures [25]. One also
sees that despite the global sensitivity space S100 is of smaller dimension than s50,
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Figure 11. Upper: ∇xj(αl,x) for αl = 0.9 respectively with a dis-
crete adjoint approach (continuous) and with first order accurate gra-
dients by finite differences. Lower: principal angles between global
search spaces S100 and S̃100 built with these gradients.

its sensitivity to a loss of accuracy is larger as there is, for instance, no common axis
between S100 and S̃100. This also suggests that a robust optimization problem with
an admissible solution in the search space defined by the adjoint will not probably
be reached by a minimization method using a descent direction in S̃100.

4. Uncertainty quantification for a flow solution over an aircraft

After the model problem with the Burgers equation, we would like to apply the
different geometric uncertainty quantification ingredients to a realistic 3D simulation
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for a full aircraft in transonic cruise condition. Several sources of variability exist
for these problems due to a change in the weight of the aircraft during the flight or
due to variability in the flight conditions. One example of the latter is when the
aircraft cruises against transverse winds which are very common. Usually aircraft
are designed for a range of angle of incidence. These designs are usually realized
with the sideslip angle set to zero.

4.1. Using ingredients of a shape optimization platform. We work in the
framework of an existing shape optimization platform which has been previously
presented in [13, 17, 25]. We use, in particular, three of its simulation codes for
the shape parameterization, for the fluid dynamic calculations and for the shape
sensitivity analysis of aerodynamic coefficients. This is a very standard and generic
situation and these particular choices are not central to our discussion.

Let us briefly recall our direct dependency chain linking independent variables
(α,x) to dependent variables (Q,U) describing geometrical entities and state vari-
ables and to the cost function j and constraints Ci, i = 1, ..., nc.

(21) (α,x)→ (α,Q(x))→ U(α,Q(x))→ (j, Ci)(α,x, Q(x), U(α,Q(x))).

x denotes a CAD-free parameterization [21] which does not require a priori local
regularity assumptions on the shape as it is implicitly the case in CAD-based shape
definitions. More precisely, x represents shape deformations along the normal to the
triangular faces of the surface mesh as shown in figure 13. For the problem discussed
here this search space has a dimension n ∼ 5000. This parameterization receives
different denominations and belongs to the same class as node-based or free-form
shape definitions. In all these approaches the regularity of the deformation needs to
be controlled [29, 13].
α is the sideslip angle inducing fully 3D effects on the flow around the plane making

the consideration of a full aircraft necessary for the analysis. However, because the
airplane geometry is symmetric spanwise, it is not necessary to consider a symmetric
range for the transverse wind. We consider the sideslip angle α in I = [0, 10o]. In
our multi-point analysis, we consider a uniform sampling Im of [0, 10o] with m = 30
points. The other flow conditions are given by a Mach number of 0.8 and zero
inflow incidence. Together with the sideslip angle these parameters fully describe a
3D inviscid flow around the aircraft.
Q(x) denotes the auxiliary unstructured mesh related geometrical quantities.

U(α,Q(x), ) denotes flow variables depending also on the extra parameter α not
part of those involved in the definition of the shape. More precisely, U(α,Q(x)) =
(ρ, ρ~u, ρE)t represents the conservative flow variables solution of the Euler equations
in conservation form. Our flow solver is based on a finite volume Galerkin method
on unstructured tetrahedral meshes. The details of the implementation are available
in [13, 30]. Of course, other choices are possible for the flow solver and the literature
on numerical methods for compressible flows is huge. Let us briefly describe the
different ingredients in our solver. The Roe [31] flux is used for the approximation
of the advection operator together with MUSCL reconstruction with Van Albada
limiters [32] in presence of shocks. We target steady solutions and use time march-
ing with local time steps to reach these. The local time steps are proportional to
h/(‖~u‖ + c) with h the local mesh size and c the local speed of sound. The time
integration procedure is explicit and is based on a low-storage Runge-Kutta scheme
(RK4). To illustrate the level of convergence to the steady state we use here a
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typical convergence history is shown in figure 12. As we are interested by aerody-
namic coefficients, the sufficient level of convergence retained for the flow is when
these coefficients are considered to be converged. This is an important point as one
needs to particularly monitor the calculation complexity for our multi-point shape
optimization algorithm to be efficient, in particular if one intends to quantify the
uncertainties in reasonable time. We will see that limiting the number of forward
iterations is also useful for efficient adjoint calculation.
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Figure 12. Convergence histories during time marching to steady
state. Norm of the vector of conservation variables and Cd and Cl
aerodynamic coefficients.

We consider a classical aerodynamic problem where two main quantities of interest
are the drag Cd and lift Cl coefficients:

(22) Cd(α,x) =
1

2ρ∞(α)‖u∞(α)‖2

∫
shape(x)

p(α,Q(x))(u∞(α).n(Q(x))dγ,

where superscript ∞ indicates inflow conditions. The lift coefficient is evaluated
with formula (22) where u∞(α) is replaced by u⊥∞(α) in the boundary integral.
Aircraft performance analysis concerns its payload and range. These are directly
linked to the aerodynamic coefficients of the aircraft called the lift (conditioning
the payload) and drag (conditioning the fuel consumption) coefficients. The lift
coefficient often appears through an inequality Cl−Ctarget

l ≥ 0 or equality constraint
C1 = (Ctarget

l − Cl)2 with Ctarget a target performance. Let us consider this second
situation.

Structural efficiency and necessity of useful free volume also implies the consider-
ation of geometric criteria such as a constraint on the volume V of the aircraft or
its by-section definition. The volume of an object Ω (here the aircraft) is expressed
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through the boundary integral formula: V =
∫

Ω
1 =

∫
Ω

1
3
∇.( ~X) =

∫
∂Ω

~X.~n, where
~X = (x1, x2, x3)t is the local coordinate over the shape.

We would like to use the ingredients of the paper and the global sensitivity space
S30 for the analysis of this aerodynamic performance problem. Two approaches
are possible. Either introduce a functional j involving the drag coefficient and the
constraint on the lift coefficient accounted for by penalty: j = Cd + aC1, a ∈ IR+

and define the sensitivity space S30 for j (as in section 3.2). Or define two global
sensitivity spaces S

Cd
30 and S

Cl
30 for each of the aerodynamic coefficients. An important

remark is that there is no need to account for geometric constraints in the analysis
as those are independent of α.

The second approach requires the solution of two adjoint problems to get ∇xCd
and ∇xCl but it gives valuable information on each of the sensitivity spaces S

Cd
30

and S
Cl
30 and their relative position. A lower dimension for one would mean that the

corresponding coefficient is less sensitive to α. In the same way larger or smaller
principal angles would tell us how antagonist the behaviors of the two coefficients
are.

In all case, because these are vector spaces and∇xj = ∇xCd+2a(Ctarget
l −Cl)∇xCl

is linear combination of vectors in S
Cd
30 and S

Cl
30 , we have:

S
Cd
30 ∪ S

Cl
30 ⊆ Sj30.

Therefore, the first approach gives upper uncertainty quantification bounds and will
be considered in the sequel.

4.2. Global sensitivity space S30. To proceed with our global sensitivity space
Sj30 (the j upper-script will be omitted in the sequel) analysis we need to provide
∇xj(αl,x) for αl ∈ I30 as in our model problem with the Burgers equation.

Functional sensitivities with respect to the shape ∇xj are computed by automatic
differentiation in reverse mode [16] using tapenade [22]. As we said, our direct Euler
solver uses time marching to steady solutions. An interesting optimization of the
reverse mode comes from the fact that, our situations of interest being stationary in
time, there is no need in storing the forward states for backward integration [33, 13].
All intermediate states can be replaced by the final converged one. Still, it is good
to keep the number of forward time iterations low as discussed earlier as this gives
also an indication of the number of backward iterations in the adjoint code.

Figure 13 shows the shape and a view of the triangular surface mesh for flow
calculations. This mesh is also considered as the parameter x. The figure also shows
four snapshots of ∇xj(x, αl) for four values of αl = 2, 5, 7 and 10o. These are some
of the gradients used to define the multi-point direction d using (5).

Figure 14 shows the impact of the sorting (from 1 to m and from m to 1) of
the vectors ∇xj(αl,x) during the incomplete Gram-Schmidt orthonormalization on
the dimension of the subspace generator in S30 for different values of the threshold
TOL. The figure also shows the histories of all orthonormalizations for the different
thresholds. As we would like to avoid the directions related to possible numerical
artifacts, the threshold retained for the analysis is TOL = 10−4 for which we have
dim(S30) = 10. These dimensions have been found rapidly during orthonormaliza-
tion. We expect therefore to be in a situation discussed in section 3.2.2 making
the size of the sampling sufficient to identify the global sensitivity space at this
threshold.
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Figure 13. Aircraft shape and a view of the triangular surface mesh
for flow calculation which also serves for the definition of the CAD-free
parameterization. ∇xj(αl,x) for four values of αl = 2, 5, 7 and 10o.

4.3. Worst-case sensitivity spaces S±30. We assume a priori local Gaussian Value
at Risk information for the shape of the aircraft x = x0 + N (0, σ(x0)) with σ(x0)
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variable in space over the shape as shown in figure 15. We recall that this is in a
space of dimension 5000 (along local unit normal vectors to the surface mesh). We
assume that this distribution is symmetric spanwise and that larger uncertainties
are along the wings and increasing spanwise. This variability can be, for instance,
related to in-flight icing or elastic deformation of the shape during flight. Hence,
at given probability, this VaR models the maximum local shape variation normal
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to the shape with respect to a reference configuration x0. We follow the approach
presented in sections 2.4 and 3.3 to see the bounds for the dimension of spaces
S±30 defined using ∇xj(αl,x

±) for αl ∈ I30 where x± is defined from (8) along the
direction d given by d = ∇xµ− < ∇xµ,∇xσ∗ > ∇xσ∗ + η∇xσ∗. This is shown in
figure 15. Because we want the shape to remain symmetric spanwise, this constraint
has been included in the definition of d.

One can notice that unlike in figure 9 where q+ = dim(S+
30) appeared often larger

that q− = dim(S−30) this is not the case here. Once the spaces S±30 identified, principal
angles between them give a second set of quantitative information on the impact of
the geometric variability on the global sensitivity space S30. Here, one sees that the
sensitivity spaces have different dimensions and that they share only one common
direction. The other directions deviate with angles up to 22 degrees. This analysis
shows the importance of including possible variability of a shape (e.g. due to its
elastic features or in-flight icing) during its design. It highlights the necessity of
proceeding with multi-disciplinary optimization in such situations [34]. These prob-
abilistic extreme values for shape deformations permit worst-case analysis for the
sensitivity of a design to possible perturbations.

4.4. Variability on S30 due to mesh refinement. One interest of the ingredients
of the paper is to permit to analyze the impact of different space or time discretiza-
tions on the solution of the state equations. Indeed, the evolution of the dimension
of S30 and the principal angles will tell us how useful the introduction of a more
sophisticated and costly numerical scheme or discretization is. Indeed, if one sees no
change in these parameters, this would mean that it is useless to spend more effort
in that direction because the outcome will have no impact on the global sensitivity
space where the design takes place.

To illustrate this discussion, we analyze the impact on the global sensitivity space
S30 of two levels of discretization. The meshes have respectively 200.000 and 400.000
elements. These are quite coarse meshes and we are probably far from mesh inde-
pendence for the flow solution. Still, this analysis permits to quantify how much a
given mesh refinement is useful for our aerodynamic performance analysis problem.
This permits to define a new mesh independence concept which is actually the truly
important one: the impact of mesh refinement on the global search space where the
design takes place. Figure 16 shows the multi-point direction d built for our two
meshes using ∇xj(αl,x) for αl ∈ I30 evaluated on each mesh. One sees that d is
much richer for the fine mesh and features small scale details which are not present
in the direction built for the coarse mesh. This explains why very large principal an-
gles are detected as the corresponding directions do not exist in the global sensitivity
space for the coarse mesh.

5. Concluding remarks

Geometric characteristics of global sensitivity spaces have been used for uncer-
tainty quantification addressing both issues of aleatory and epistemic uncertainties.
The sensitivity spaces have been built for the state variables and also when specific
quantities of interest are targeted. The impact of the variabilities on the data, the
model or the solution procedures have been measured through the variation of the
dimension of the global sensitivity spaces built for each situation. Beyond this di-
mensional analysis, the relative positions of the different spaces have been analyzed
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Figure 16. Impact of mesh refinement on S30. Upper-left: d on the
fine mesh features small scales. At the threshold chosen the dimension
of the global sensitivity space is larger and large principal angles are
detected.

and possible deviations between sensitivity spaces quantified using the concept of
principal angles between subspaces. To provide a viable solution in term of compu-
tational complexity, a sampling of the range of variation of the design parameters
has been avoided when working on large dimensional control space. This has been
made possible by the introduction of quantiles, such as the Value at Risk, and use
of directional information from a moment-based search direction. Together these in-
gredients provide a framework for directional uncertainty quantification of extreme
(worst-case) scenarios. This approach appear being suitable for the evaluation of
the pertinence of a given modeling, or an increase in the modeling or discretization
complexity, in the context of simulation under uncertainty. It is also suitable be-
cause it is non-intrusive and uses existing ingredients in mono-point optimization
platforms in a fully parallel manner.
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