
HAL Id: hal-01061464
https://hal.science/hal-01061464v1

Submitted on 6 Sep 2014 (v1), last revised 8 Jan 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

RSforEVN: Node Reallocation Algorithm for Virtual
Networks Adaptation

Houda Jmila, Ines Houidi, Djamal Zeghlache

To cite this version:
Houda Jmila, Ines Houidi, Djamal Zeghlache. RSforEVN: Node Reallocation Algorithm for Virtual
Networks Adaptation. 19th IEEE Symposium on Computers and Communications (IEEE ISCC 2014),
Jun 2014, Madeira, Portugal, Portugal. pp.1-8. �hal-01061464v1�

https://hal.science/hal-01061464v1
https://hal.archives-ouvertes.fr


RSforEVN: Node Reallocation Algorithm for Virtual Networks Adaptation

Houda Jmila∗, Ines Houidi† Djamal Zeghlache∗
∗ Institut Mines Telecom, Telecom SudParis and UMR5157 of CNRS, Evry, France

{houda.jmila, djamal.zeghlache}@telecom-sudparis.eu
†RedCAD Lab, Sfax University, National Engineering School of Sfax, Tunisia

{ines.houidi,wajdi.louati}@enis.rnu.tn

Abstract—This paper addresses the dynamic adaptation of
already embedded virtual network (VN) resources to respond
to increasing network services demands and load on network
nodes. The proposed algorithm focuses on the virtual nodes, of
the embedded VN, requiring more resources. The adaptation
scheme goes beyond the reallocation of the virtual nodes
by considering their topological neighborhood. The proposed
algorithm outperforms existing approaches in reallocation cost
and in execution time (or convergence time) for larger graphs.

Keywords-Virtual Network Embedding, Node reallocation,
Cloud, NaaS, QoS;

I. INTRODUCTION

Network Virtualization (NV) allows multiple virtual net-
works (VNs) to co-habit on shared physical networks (SNs,
often referred as substrate network or network infrastruc-
ture). The current state of the art has extensively addressed
the static allocation and placement problem of virtual re-
sources (nodes and links) in physical hosts (nodes and sub-
strate paths) but Cloud services and environments require the
dynamic allocation of resources (elasticity services) accord-
ing to applications and user demand resource requirements.
Beyond the traditional Infrastructure/Platform/Software as a
Service offers (IaaS/PaaS/SaaS), the need to also provide
Networks and Networking as a a service has become essen-
tial (NaaS) [1].

This paper addresses this dynamic allocation of resources
issue, especially of virtual networks, to support cloud ser-
vices according to varying applications and user resource
requirements. More specifically the paper focuses on virtual
nodes of already embedded VNs when more resources are
required from the hosting physical machine or node. The
need for more resources may have multiple reasons such as
increasing applications requirements, the need to maintain
quality of service of multiple services sharing the same
physical nodes, etc. Reacting to these dynamic changes and
growing needs may require allocation of additional resources
from the hosts themselves when feasible, or the reallocation
and optimal reshuffling of virtual resources across physical
nodes or hosts. When hosts do not have enough resources,
prior work on Virtual Networks Embedding (VNE: that
consists of mapping virtual resources onto physical resources
in terms of nodes and links) [2], [3] move the virtual nodes

requiring more resources to other physical nodes to maintain
the service. This affects the active application or service
running in the virtual resource. The service will experience a
downtime or unavailability period that needs to be taken into
account and minimized [4]. In real situations, VN users often
impose Service Level Agreements with penalties for service
disruptions caused by migration (e.g. penalty imposed to
Amazon EC2 for violating VM availability SLA) [5] [6].
Avoiding such disruptions and penalties are essential. The
migration of the virtual resource will also induce load on
the physical network links proportionally to the size of
the migrated virtual resource. In order to minimize these
impacts, we propose to select the virtual nodes in the
affected physical node that will incur the lowest cost and
load during migration. Virtual resources that are intuitively
candidates for such migration are those that are tolerant to
disruptions and/or are of small size since the migration will
be faster and will induce less load. When making migration
decisions, the selected virtual resource connectivity has to be
taken into account since it has to be maintained, actually all
the links associated with the selected virtual resource have
to be re-established.

The paper starts with the related work on virtual network
embedding in Section II when a need for additional re-
sources arises. Section III describes and formulates the prob-
lem. Section IV presents our proposed heuristic algorithm
to achieve minimum cost and service interruption when
additional resources are required. Performance evaluation of
the proposed heuristic algorithm is presented and compared
to prior art in sections V and VI.

II. RELATED WORK

Authors in [2], [3], [7] addressed the problem of evolving
resource requests in VN embedding with [2] listing four
VN evolution cases: i) adding new nodes and links to
an ongoing VN allocation ii) deleting no longer needed
resources when services end iii) releasing resources when
a task requires less resources to run iv) requesting more
resources when VN nodes or/and links require more re-
sources at specific stages of an application lifetime. The
Authors optimally reconfigure the evolving VNs using a
Mixed Integer Problem formulation with the objective of



minimizing the reconfiguration cost. Since the problem is
NP-hard, they suggest heuristic algorithms to deal with
each case to avoid exponential explosion. They unfortunately
consider exhaustively all mapping combinations to adapt a
virtual node by evaluating the cost for each substrate node
and select finally the most effective one. This strategy is
not suitable for large physical networks and can not meet
the swift and rapid adaptation required by dynamic cloud
applications and services.

In [3], authors propose an incremental re-embedding
scheme for evolving VNs requirements relying on the notion
of physical resource migration on nodes reported in [8] that
distributes virtual resources across multiple interconnected
physical resources. Their objective is to reduce the number
of virtual nodes or resources that are reallocated but this
leads to increased interconnection bandwidth usage that
limits the acceptance ratio of new requests. They do not
minimize the per-node reallocation. They minimize only the
number of reallocated nodes.

In [7], authors address VN reconfiguration when the
VN’s resource requirements change according to services
traffic patterns. Considering predictable traffic patterns, they
propose an embedding algorithm that reduces the number of
link migrations while achieving an acceptable load balancing
over substrate links. They unfortunately reallocate virtual
nodes randomly and focus only on virtual link reallocation.

In our case, we focus as mentioned on virtual nodes,
of already embedded VNs, requiring more resources, and
reduce both the per-node reallocation cost and the number of
reallocated nodes compared to [3]. In addition, we take into
account jointly the virtual node and its links as opposed to
[7] that concentrates on links. Finally, unlike most of node
reallocation solutions proposed in the VNE literature [9],
[10] where the task migration phase is ignored, our approach
minimizes service interruption during migration.

III. PROBLEM FORMULATION

This section presents a mathematical model to allocate
additional resources to active VNs hosted by shared infras-
tructures (or SNs). Fulfilling the requests for more resources
can be achieved by moving out of the physical host only the
concerned virtual nodes themselves or by migrating other
virtual nodes to other hosts. The goal is to derive from the
model an objective function that will realize the re-allocation
of virtual nodes at minimum overall adaptation cost. Re-
mapping and migration costs, downtime and optimization
performance need to be taken into account in the derivation.

A. Network Model

The SN can be represented by a weighted undirected
graph Gs = (Ns, Ls), where Ns is the set of substrate
nodes ns and Ls is the set of substrate links ls. Graph Gs is
used to represent the substrate. Let atns

denote the available
capacity of node ns (typically CPU and memory) and atls

the available bandwidth on link ls. Variable ϕ represents
a substrate path (a single or a sequence of substrate links)
between two substrate nodes. Variable Pϕ is the set of loop-
free substrate paths. The available bandwidth aϕ associated
to a substrate path ϕ can be evaluated as the smallest
available bandwidth on the links along the substrate path.

Table I
KEY NOTATIONS

Notation Description
Network Model
Gs Substrate Network
Ns Set of substrate nodes ns

Ls Set of substrate links ls
atns

Available capacity of substrate node ns

atls Available bandwidth on substrate link ls
Pϕ Set of loop-free substrate paths ϕ
aϕ Available bandwidth associated to a substrate path ϕ
cost(ns) Unit cost of substrate node ns

cost(ls) Unit cost of substrate link ls
Request Model
Gr

v Virtual Network r of V Nt

Nr
v Set of virtual nodes nr

v of VN Gr
v

Lr
v Set of virtual links lrv of VN Gr

v

btnr
v

Minimum required capacity of virtual node nr
v

btlrv
Minimum required bandwidth on virtual link lrv

downtimer Maximum downtime imposed for nr
v

Snr
v

Star topology formed by nr
v and its connected links

minBWnr
v

Minimum required bandwidth to migrate nr
v

Mapping Model
Mt

Nr
v
: Nr

v → Ns Node mapping related to VN Gr
v

Mt
Lr

v
: Lr

v → Pϕ Link mapping related to VN Gr
v

B. VN resource Request Model

Since a VN request is composed of virtual nodes inter-
connected via virtual links, the VN request topology can be
represented by a weighted undirected graph Gv = (Nv, Lv),
where Nv is the set of required virtual nodes and Lv is the
set of required virtual links. Each virtual node nv ∈ Nv

is associated with a minimum required capacity btnv
. Each

virtual link lv ∈ Lv is associated with a minimum required
bandwidth btlv . The set of active VNs on Gs at time t is
defined as V N t and the evolving node (requiring more
resources) is represented by mi

v with i ∈ V N t and with a
new resource requirement bt+1

mi
v
> btmi

v
.

C. VN Mapping Model

For each VN request Gr
v in the substrate network, let

(M t
Nr

v
,M t

Lr
v
) describe its mapping in the substrate network

at time t such that resource constraints are respected. More
precisely, M t

Nr
v
: Nr

v → Ns describes the node mapping
and M t

Lr
v
: Lr

v → Pϕ describes the link mapping.

D. Problem formulation

1) Reallocation strategy: When an evolving node mi
v

requiring additional resources and a substrate host h with
M t

Nr
v
(mi

v) = h has insufficient resources a strategy for re-
allocation of resources is needed to maintain the service.
This may require a migration of the virtual node or other



nodes in the host. A trivial and suboptimal strategy is to
move the evolving node to another less loaded host. A more
elaborate strategy should take into account multiple criteria
such as migration and re-mapping costs. We accordingly
adopt a strategy where we reorganize and redistribute virtual
nodes in the initial host and its neighbors while minimizing
overall re-allocation cost. Intuitively, the nodes inducing the
smallest migration cost and disruptions should be selected
in priority to find a good solution.

2) Optimization objective: With this strategy in mind, we
implement the virtual node re-allocation in two phases: Re-
mapping and Migration.

The Re-mapping (remap) phase consists in finding al-
ternative substrate resources to host the reallocated compo-
nents. The virtual node would be remapped onto another
substrate node found to have enough available resources.
The links associated to the original (or source) virtual node
will be also remapped to restore connectivity with the new
hosting (destination) node. Secondly, the Migration phase
(migrate) will move tasks or jobs previously running on the
source virtual node onto the selected destination virtual node
to resume tasks. Moving tasks requires the establishment
of a temporary connection between the old and new hosts
to support task migration. This induces a transfer cost that
we take into account in the reallocation cost assessment.
The resource re-allocation incurs both a re-mapping cost
Costremap and a migration cost Costmig .

Re-mapping cost:
Similar to previous work in [2], the mapping/re-mapping

cost of a VN request is equal to the sum of the costs of
allocating/re-allocating its virtual nodes and links from the
data center or infrastructure resources (physical nodes and
substrate paths). Let cost (ns) (and cost (ls)) be the cost
unit of substrate node (and substrate link) respectively. Let
nr
v ∈ Nr

v , r ∈ V N t denote a virtual node selected to be re-
allocated related to request r and let Snr

v
represent the star

topology formed by nr
v and its connected virtual links. We

define the cost of re-mapping nr
v as the sum of total substrate

resources reallocated to the node nr
v and its attached virtual

links. Formally:

Costremap (n
r
v) = bt+1

nr
v
∗ cost

(
M t+1

Nr
v

(nr)
)

+
∑

lrv∈Snr
v

∑
ls∈Mt+1

Lr
v

(lrv)

bt+1
lrv
∗ cost(ls) (1)

Where (M t+1
Nr

v
,M t+1

Lr
v
) describes the mapping of re-allocated

elements.
Migration Cost: During the migration step, migrated

tasks experience a downtime that depends on i) the migra-
tion technique [4], ii) the size of the migrated task and iii)
the bandwidth allocated for task migration. Migration is a
topic on its own that is beyond the scope of this paper. For
our study, we consider that the downtime depends primarily
on the size of the migrated task and the bandwidth available

during the migration. In our model, a maximum downtime
for each virtual node nr

v , downtimer, is imposed by each
VN end-user. To respect this condition, sufficient resources
should be allocated from the target host depending on the
size of the task to migrate. Formally, we define minBWnr

v

as the minimum required bandwidth to migrate a virtual
node nr

v :

minBWnr
v
=

bt+1
nr
v

downtimer
(2)

Where bt+1
nr
v

is the size of the re-allocated virtual node.
The cost of task migration costmig (n

r
v) is the sum of

all resources allocated (needed) for migration. Formally, if
pmig(nr

v)
∈ Pϕ denotes the substrate path used for migrating

the node nr
v , the migration cost is defined as:

costmig (n
r
v) =

∑
ls∈pmig(nr

v)

minBWnr
v
∗ cost(ls) (3)

Reallocation cost
Finally, the reallocation cost of a virtual node is the sum

of its re-mapping cost and its migration cost:

Costrealloc (n
r
v) = Costremap (n

r
v) + Costmig (n

r
v) (4)

To satisfy the demand of an evolving node mi
v for addi-

tional resources, the re-allocation of more than one vir-
tual node may be required. The global re-allocation cost
RealloCostmi

v
related to an evolving node mi

v is the sum
of all re-allocation costs:

RealloCostmi
v
=

∑
nr
v isReallocated

Costrealloc (n
r
v)

(5)
Our objective is to find the best re-allocation scheme in
order to satisfy the evolving node additional resource request
while minimizing all re-allocation costs. This leads to the
following objective function:
Objective function:

minimize(RealloCostmi
v
) (6)

IV. HEURISTIC ALGORITHM DESIGN

Finding the optimal re-allocation for an evolving node
while minimizing cost is NP-Hard [11]. We resort to a
heuristic algorithm called RSforEVN (Re-allocation Scheme
for Evolving Virtual Node request) to reduce complexity, im-
prove convergence times and to provide a scalable solution.
The heuristic algorithm must decide which virtual nodes
to reallocate and where to move them. This reorganization
should incur minimum overall reallocation and migration
cost. The heuristic algorithm proceeds in two optimization
steps. It first finds the best set of virtual nodes to reallocate
and migrate to free resources for the benefit of the evolving
node (unless the best solution is to move the evolving node
itself, in which case the objective is to find a new host for
it). In this step, the heuristic algorithm selects the minimum



Figure 1. Main Algorithm steps

number of less constraining virtual nodes (typically of small
sizes and most tolerant to disruptions and QoS degradations).
The second step consists of finding the best destination or
target hosts for the selected virtual nodes. The heuristic
algorithm will have to map efficiently nodes and links
to meet the the minimum reallocation and migration cost
objective. The two steps are described in more detail in the
sequel

A. First step: Selection of virtual nodes for reallocation

We use the following notations to describes the selection
process: mi

v identifies the evolving node asking for addi-
tional resources and colocth the set of all virtual nodes hosted
in the same physical node h as mi

v (i.e. M t
Nr

v
(mi

v) = h).
The heuristic algorithm main idea is to re-allocate one
or more co-located virtual nodes from the substrate node,
hosting the evolving node, to free resources (or make room)
for the evolving node (needing additional resources). The
virtual nodes are selected according to their size and QoS
requirements. The size of a virtual node includes its intrinsic
size and the aggregate bandwidth of its associated links. The
QoS corresponds to the maximum acceptable downtime of
the virtual node during migration:

Reem(nr
v) = (btmr

v
+
∑

lrv∈Snr
v

btlrv ) ∗ downtimer (7)

Hence, the Reem expression is the product of two terms:
the first term represents the “size” of the virtual node,
whereas the second one is related to QoS requirements. The
purpose behind considering the ranking criterion Reem (nr

v)
is twofold. First favor reallocation of candidate virtual nodes
and their attached links that require the smallest amount

of resources to minimize re-mapping cost (1). Second re-
allocate the smaller and more QoS degradation tolerant
nodes to optimize the migration cost (3) since the amount
of bandwidth required to perform task migration will be
minimized. As a result of this ranking, all virtual nodes in
colocth are sorted in a list ~colocth in increasing order of their
Reem value.

B. Second Step: finding the best physical hosts for resources
selected for reallocation

The next step consists in re-allocating virtual nodes that
have the lowest Reem values. Thus, one or more virtual
nodes from the ranked list ~colocth should be re-allocated with
their associated virtual links. The number of virtual nodes to
re-allocate is dictated by the amount of requested additional
resources by the evolving nodes. The sum of resources to
free by migrating virtual nodes should be equal or greater
than the amount of required additional resources for the
evolving node. Virtual nodes will not be migrated if there
are enough resources in the original physical node since the
evolving node receive additional resource directly from its
host. When remaining resources are insufficient, co-located
virtual nodes will be migrated to free the needed resources
for the evolving node. If virtual nodes can not be migrated
for QoS reasons, the evolving node will be moved if possible
otherwise the request is rejected. In fact, this will be the case
each time all virtual nodes ranked ahead of the evolving node
in ~colocth vector can not offer enough resources to satisfy
the evolving node. As presented in Figure 1 our proposed
algorithm takes into account two special cases:

i) If the amount of resources that could be freed after
multiple re-allocations is not sufficient to satisfy the request,



our algorithm tries to re-allocate the evolving node. If the
re-allocation succeeds, the request is satisfied, otherwise it
is rejected.

ii) Else, our proposal remaps the first node in the ranked
list. If it succeeds, the algorithm verifies if the resources
released after this re-allocation are sufficient to satisfy mi

v’s
new demand, if it is the case, the elasticity request is
satisfied. Otherwise, the next node is selected and the process
is repeated until the elasticity request is satisfied or the
evolving node is re-allocated, as long as ~colocth is not empty
(The do-while loop in Figure 1.

C. Virtual node reallocation scheme

After selecting virtual nodes for reallocation, the algo-
rithm has to find the optimal nodes to host these selected
virtual nodes and restore their connectivity with all their
peers (pervious neighbors) by finding new substrate paths to
restore all the broken links. To reallocate a virtual node nr

v ,
the star Snr

v
(the node and its links) should be re-mapped,

and task migration should be performed. To find the best new
substrate hosts, our heuristic algorithm explores the nearest
neighbors of the initial host h to find nodes that have enough
resources and can reconstruct all the links associated with
each virtual node candidate to migration. Links must also
be established to ensure migration respecting the downtime
constraints of each virtual node. If nearth is the set of
potential (candidate) hosts for the re-allocated node, this
neighbor set nearth has to minimize migration cost (3). The
shortest path algorithm is used to find the optimal substrate
paths. The Virtual node reallocation scheme is illustrated is
Procedure1

1: Procedure1:One Node Reallocation steps
2: Reallocate(nr

v, RealoCostmi
v
)

3: ReallocationResult← failure
remapCostbest ←∞

4: Search neartnr
v

5: if neartnr
v

is not empty then
6: for all ns ∈ neartnr

v
do

7: map nr
v in ns

8: for all lrv ∈ Snr
v

do
9: re-map virtual link lrv onto a substrate

path ϕ using shortest path algorithm
10: end for
11: if Snr

v
’s mapping succeeds then

12: ReallocationResult← success
13: if remapCost

(
Snr

v

)
< remapCostbest

then
14: remapCostbest←remapCost(Snr

v
)

15: end if
16: end if
17: end for
18: if ReallocationResult = Success then
19: Add costmig (n

r
v) + costremap (n

r
v) to

RealoCostmi
v

20: end if
21: end if
22: return ReallocationResult

V. SIMULATION RESULTS AND EVALUATION

We compare our algorithm with relevant prior art to
assess performance with a focus on re-mapping and migra-
tion costs, execution time (or convergence time) and the
acceptance rate of requests for additional resources. We
also describe the settings, conditions and scenarios used to
conduct the evaluation.

A. Simulation environment

The GT-ITM [13] tool is used to generate random topolo-
gies of the substrate and VN networks. Similar parameter
settings and simulation conditions to existing work was
adopted to be able to compare in equivalent scenarios the
performance of our algorithm [12] [10]. The SN (Substrate
Network) size is set to 50 nodes and each pair of substrate
nodes is randomly connected with probability 0.5 (a realistic
value for typical deployed and operational networks, since
they are seldom fully meshed and often have connectivity
below 50%).The node resource capacity and edge resource
capacity are real numbers uniformly distributed between 0
and 50 in order to span reasonably the search without mak-
ing any specific assumption on the statistical characteristic of
this parameter. Without loss of generality, we set the per unit
node and edge resources costs to 1 (one)unit. The requested
VNs have between 2 and 10 virtual nodes in their topologies
with an average connectivity also set to 50%. The node
resource capacity is uniformly distributed between 0 and
20 and the edge resource capacity is uniformly distributed
between 0 and 50.

In order to initialize the scenario and start the system
from a typical situation we map the virtual nodes greedily
and follow with the shortest path algorithm to map edges.
This step leads to suboptimal embedding that can reflect or
mimic the state of a SN subject to multiple virtual nodes
evolutions.

To create a highly dynamic environment and unpredictable
states or situations, we select randomly N virtual nodes
among those hosted by the SN as nodes that require
additional resources. The increasing resource requests are
measured using the parameter “Increase Factor” (IF):

bt+1
mi

v
= IF ∗ btmi

v
(8)

Where bt+1
mi

v
is the new resource requirement of the evolving

node mi
v .

B. Simulation results

Only [2] [3] [7] deal with the problem of evolving VN.
Since the objective functions in [3] [7] differ and are not
sufficiently close to our proposed algorithm, we do not retain
them for performance comparison. In [3] authors minimize



Figure 2. Simulation Results

the number of re-allocated virtual nodes, while in [7] authors
minimize the number of virtual link reconfigurations after
a VN evolves. The authors of [2] considered the same
objective function as that of our proposal and it is more
relevant and appropriate to compare performance with their
algorithm named DVNMA NS. The algorithms compared
in our simulations are listed in Table II.

Table II
COMPARED ALGORITHMS

Notation Algorithm description
RSforEVN Makes a convenient choice of virtual nodes

to re-allocate and selects the most cost ef-
fective new host among nearest neighbors

DVNMA NS Systematically re-allocates the evolving
node, and selects the most cost effective new
host among all substrate nodes

In the simulations, the following performance metrics
are used: 1)Re-allocation Cost, that reports RealloCost of
all evolving nodes if their new demands are successfully
satisfied. 2)Migration Cost measuring the amount of re-
source (bandwidth) required to achieve task migrations to
fulfill the evolving node requests. This corresponds to the
sum of all costmig of re-allocated nodes. 3)Acceptance
ratio of elasticity requests that measures the percentage
of accepted additional resources requests for evolving nodes
4)Total execution time (or convergence time) that measure
the algorithms convergence time to assess how fast the
algorithms find a solution to fulfill the additional resource
requests.
All reported results are obtained by averaging the collected
performance from 100 independent runs for each simulation
point.

1) Re-allocation cost for large size evolving virtual
nodes: The first simulation assesses the re-allocation cost
of our algorithm for evolving virtual nodes of large sizes
(Equation 7). To produce scenarios with large virtual nodes
instances to re-allocate, 20 virtual nodes are selected ran-
domly from the top 100 largest virtual nodes currently hosted
in the SN among a total of 214 nodes. The reallocation cost
is measured for variable Increase Factors, representing the
amount of additional resources that will be required by the
20 selected virtual nodes.

Fig2.a depicts the results of 100 averaged runs and
indicates that our algorithm (RSforEVN) outperforms the
DVNMA NS algorithm in terms of re-allocation cost by
50%. Our algorithm reduces the re-allocation cost by se-
lecting primarily small virtual nodes as candidates before
resorting to re-mapping virtual nodes of large sizes. This
also makes our algorithm less sensitive and more robust to
increasing IF values while DVNMA NS re-allocation cost
increases significantly for increasing IF values. The RS-
forEVN algorithm always selects the smallest virtual nodes
first as opposed to the DVNMA NS always re-allocates the
evolving nodes themselves and this induces high re-mapping
costs when the evolving nodes are of large size.

2) Migration cost: As depicted in Fig2.b, our algorithm,
RSforEVN, performs also much better than DVMA NS, in
migration cost as a function of downtime tolerance of the
virtual nodes. Without loss of generality, we assumed that
all virtual nodes have the same downtime in the simulations.
This is again due to the small virtual nodes selected by
RSforEVN since these smaller nodes require less bandwidth
for migration according to the downtime constraint. In addi-
tion, RSforEVN selects the nearest neighbors to the substrate
node hosting the evolving nodes that require more resources



whereas DVNMA NS searches for the best new hosting
node in the entire substrate network and has to do so for the
evolving nodes inducing high penalty and even higher cost
if the evolving nodes are large. Once the best node is found,
DVNMA NS deduces the migration substrate path using the
shortest path algorithm. Migration cost increases for both
algorithms when the downtime migration constraints become
tighter as more link resources (bandwidth) are needed (is
needed) to achieve faster migration.

3) Elasticity Request Acceptance ratio benefits for sat-
urated SN: The next set of simulations address the per-
formance of the algorithms with respect to the acceptance
ratio of requests for additional resources and their speed in
finding solutions (or execution/convergence time) to fulfill
such requests for more resources. The evaluation is con-
ducted for several scenarios as a function of the number of
involved evolving nodes, the Increase factor that measures
the amount of requested additional resources and the load
in the substrate network or the SNs.

Figures 2.c and 2.d show close performance in percentage
of accepted requests for both algorithms when the substrate
network is not heavily loaded. However, when the substrate
network is saturated our algorithm accepts 3 times more
requests than DVNMA NS that has difficulty in finding
hosts available for large evolving virtual nodes. RSforEVN
that moves smaller virtual nodes can instead find more easily
some space available in new hosts for these small resource
requests. Figure 2.e confirms that RSforEVN outperforms
DVNMA NS when the required amount of additional re-
sources increases with the RSforEVN algorithm resisting
much better the increased stress for IF = 3 compared
to IF = 1.5 (looking at Fig 2.c and Fig 2.d joinlty).
The acceptance rate for RSforEVN degrades smoothly while
that of DVNMA NS is more significant and rather abrupt.
RSforEVN performs consistently better for overloaded sub-
strate networks.

4) Reduced execution time, especially for large Substrate
Networks: The convergence time of the algorithm also
matters in terms of swift response to additional resources
requests since some applications require elasticity services
and high availability and can thus put very stringent
requirements on extended resource allocations. Figure 2.f
and 2.g present the collected required time to find a solution
for the resource requests for both algorithms and depict
better performance in convergence time for the RSforEVN
algorithm that finds solutions 2 to 3 times faster for the
simulated scenarios with increasing number of substrate
and evolving nodes. Figures 2.f and 2.g corresponding to
SN = 50 and SN = 100 respectively for involved virtual
nodes ranging from 5 to 50 nodes. This gap in speed
performance for DVNMA NS is expected as it searches
for new hosting nodes amongst all substrate nodes while
SFforEVN searches only in the vicinity or neighborhood of

the host currently hosting the evolving nodes. RSforEVN
does in addition favors migration of smaller virtual nodes.
In fact when analyzing all the performance results for
the simulated scenarios and settings, RSforEVN performs
consistently better and provides the best trade-offs in
reallocation cost, migration cost, downtime and speed of
convergence.

VI. CONCLUSION AND FUTURE WORKS

This paper addresses the allocation of additional resources
for virtual nodes in virtual networks provided by shared
substrate networks and proposes an algorithm that offers the
best trade-off in terms of re-mapping and migration costs,
service downtime and convergence speed when compared
to prior art. The performance of the proposed algorithm,
RSforEVN, is compared to the DVNMA NS and shown
to be consistently superior in all reported performance
metrics. Future work will explore simultaneous or concur-
rent requests for additional resources from multiple virtual
networks to address sub-graphs rather than nodes only.

REFERENCES

[1] P. Costa, M. Migliavacca, P. Pietzuch, and A. L. Wolf, “Naas:
Network-as-a-service in the cloud,” in Hot-ICE, 2012.

[2] G. Sun, H. Yu, V. Anand, and L. Li, “A cost efficient
framework and algorithm for embedding dynamic virtual
network requests,” Future Generation Comp. Syst., 2013.

[3] Y. Zhou, X. Yang, Y. Li, D. Jin, L. Su, and L. Zeng, “In-
cremental re-embedding scheme for evolving virtual network
requests,” Communications Letters, IEEE, 2013.

[4] D. Kapil, E. Pilli, and R. Joshi, “Live virtual machine migra-
tion techniques: Survey and research challenges,” in IACC,
2013.

[5] M. Zhani, Q. Zhang, G. Simon, and R. Boutaba, “Vdc plan-
ner: Dynamic migration-aware virtual data center embedding
for clouds,” in IM, 2013.

[6] [Online]. Available: http://aws.amazon.com/fr/ec2/
[7] A. Blenk and W. Kellerer, “Traffic pattern based virtual

network embedding,” in Student Workshop, 2013.
[8] Y. Zhou, Y. Li, D. Jin, L. Su, and L. Zeng, “A virtual

network embedding scheme with two-stage node mapping
based on physical resource migration,” in ICCS, 2010.

[9] N. Farooq Butt, M. Chowdhury, and R. Boutaba, “Topology-
awareness and reoptimization mechanism for virtual network
embedding,” in NETWORKING 2010, 2010.

[10] I. Fajjari, N. Aitsaadi, G. Pujolle, and H. Zimmermann,
“Vnr algorithm: A greedy approach for virtual networks
reconfigurations,” in GLOBECOM. IEEE, 2011, pp. 1–6.

[11] Z. Cai, F. Liu, N. Xiao, Q. Liu, and Z. Wang, “Virtual
network embedding for evolving networks.” GLOBECOM,
2010.

[12] M. Chowdhury, M. Rahman, and R. Boutaba, “Vineyard:
Virtual network embedding algorithms with coordinated node
and link mapping,” Networking, IEEE/ACM Transactions on,
2012.

[13] E. Zegura, K. Calvert, and S. Bhattacharjee, How to model
an internetwork, in Proc. IEEE INFOCOM, 1996.


