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Abstract 
Modeling multimodal perception-action loops in face-to-

face interactions is a crucial step in the process of building 

sensory-motor behaviors for social robots or users-aware 

Embodied Conversational Agents (ECA). In this paper, we 

compare trainable behavioral models based on sequential 

models (HMMs) and classifiers (SVMs and Decision Trees) 

inherently inappropriate to model sequential aspects. These 

models aim at giving pertinent perception/action skills for 

robots in order to generate optimal actions given the 

perceived actions of others and joint goals. We applied these 

models to parallel speech and gaze data collected from 

interacting dyads. The challenge was to predict the gaze of 

one subject given the gaze of the interlocutor and the voice 

activity of both. We show that Incremental Discrete HMM 

(IDHMM) generally outperforms classifiers and that 

injecting input context in the modeling process significantly 

improves the performances of all algorithms. 
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INTRODUCTION 

The design of social robots/agents able to engage efficient 

and believable face-to-face conversations with human 

partners is still an open issue. Although this kind of 

communication is considered as one of the most basic and 

classic forms of communication in our daily life [23], it is a 

complex and sophisticated bi-directional multimodal 

phenomenon in which partners continually convey, 

perceive, interpret and react to the other person’s verbal and 

co-verbal displays and signals [26]. Studies on human 

behavior has confirmed for instance that co-verbal features –

such as body posture, arm/hand gestures , head movement, 

facial expressions, eye gaze– strongly participate in the 

encoding and decoding of linguistic, paralinguistic and non-

linguistic information. Several researchers have notably 

claimed that these features are largely involved in 

maintaining mutual attention and social glue [18]. 

Human interactions are paced by multi-level perception-

action loops [2]. Thus, social robots/agents aiming at 

monitoring a multimodal and natural communication should 

mimic the very aspects of this complex close-loop system. 

In concrete terms, the robot has to couple two principal 

tasks: (1) scene analysis and (2) behavior generation. A 

multimodal behavioral model is responsible for computing 

behavior generation given the scene analysis and the 

intended goals of the conversation. 

Our goal is to train statistical multimodal behavioral model 

that learns by observation of human-human interactions i.e. 

that maps perception to action. In this context, we present 

and compare three different candidate models: the first one 

is based on Hidden Markov Models (HMMs) and models 

the evolution of joint perception/action features over time. 

The two others are standard classifiers (Support Vector 

Machines and Decision Trees) that perform direct mapping 

without any explicit sequential modeling.  

The paper is organized as follows: The next section reviews 

the state-of-the art of trainable multimodal generation 

systems. The three models are introduced in section 3. 

Section 4 illustrates the application of our models on data 

collected in a previous experiment [1]. We analyze the 

impact of contextual data in section 5. Finally, we conclude 

in section 6. 

RELATED WORK 

The analysis of multi-party interaction is an interdisciplinary 

domain spanning research not only in signal and image 

processing but also in social and human science involving 

sociology, psychology and anthropology [24]. In recent 

years, it is becoming an attractive research area and there is 

an increasing awareness about its technological and 

scientific challenges. Actually, automatic conversation 

scene analysis copes with several issues, including turn 

taking, addressing, activity recognition, roles detection, 

degree of engagement or interest, state of mind, personal 

traits and dominance. Several computational models have 

been proposed to predict or generate observed multimodal 

human behavior. 

For instance, Otsuka et al. [22] proposed a Dynamic 

Bayesian Network (DBN) to estimate addressing and turn 

taking ("who responds to whom and when?"). The DBN 

http://dico.isc.cnrs.fr/dico/en/search?b=1&r=accordingly


framework is composed of three layers. The first one 

perceives speech and head gestures; the second layer 

generates gaze patterns while the third one estimates 

conversations regimes. While the first layer is observable, 

the others are latent and should be estimated. In order to 

recognize individual and group actions, Zhang et al. [30] 

suggested a two layered HMM. The first layer estimates 

personal actions taking as input raw audio-visual data. The 

second one infers group actions taking into account the 

estimations of the first layer. A Decision Tree is used in [3] 

for automatic role detection in multiparty conversations. 

Based mostly on acoustic features, the classifier assigns 

roles to each participant including effective participator, 

presenter, current information provider, and information 

consumer. In [13], Support Vectors Machines have been 

used to rate each person’s dominance in multiparty 

interactions. The results showed that, while audio modality 

remains the most relevant, visual cues contribute in 

improving the discriminative power of the classifier. More 

complete reviews on models and issues related to nonverbal 

analysis of social interaction can be found in [10] [9][29]. 

For multimodal behavior generation, several platforms have 

been proposed for virtual agents and humanoid robots. 

Cassel et al. [6] notably developed the BEAT system 

("Behavior Expression Animation Toolkit") which processes 

textual input and generates convenient and synchronized 

behaviors with speech such as intonation, eye gaze and 

iconic gestures. The synthesized nonverbal behavior is 

assigned on the basis of a contextual and linguistic analysis 

that relies on a set of rules inspired from research on 

conversational social human behavior. Later, Krenn [17] 

introduced the NECA project ("Net Environment for 

Embodied Emotional Conversational Agents") which aims 

to develop a platform for the implementation and the 

animation of conversational emotional agents for Web-

based applications. This system hosts a complete scene 

generator and has the advantage of providing an ECA with 

communicative attitudes (e.g. head nodes, eye brow raising) 

as well as non communicative attitudes (e.g. 

moving/walking in the scene, physiological breathing). 

Another major contribution of the NECA platform is 

Gesticon [16]. It consists of repository of predefined co-

verbal animations and gestures that can drive both virtual 

and physical agents. "MAX", the "Multimodal Assembly 

eXpert" developed by Kopp and colleagues [14], interacts 

with humans in a virtual reality environment and 

collaborates with them in order to achieve some tasks. MAX 

is able to ensure reactive and deliberative actions via 

synthetic speech, facial expressions, gaze, and gestures. 

Most mentioned platforms have many similarities: 

multimodal actions are selected, scheduled and integrated 

according to rules-based configurations. The SAIBA 

framework [15] has been developed to establish a unique 

platform, unify norms and accelerate advancements in the 

field. It is organized into three main components: "Intent 

planning", "Behavior planning" and "Behavior realization". 

It’s worth noticing that SAIBA offers only a general 

framework for building multimodal behavioral models. In 

fact, the modeling within each component and its internal 

processing is treated as a "black box" and it is to researchers 

to fill the boxes by specifying their own models. One 

missing aspect of SAIBA is the perception dimension. In 

[26] a specific representation of perceptual cues was 

introduced to fill this gap. Many systems have adopted the 

SAIBA framework, particularly the GRETA platform [19] 

and the SmartBody system [28].  

In the next section we will present our proposed models 

that, unlike pre-mentioned rule-based models (BEAT, 

SAIBA, etc), rely on machine learning and statistical 

modeling to intrinsically associate actions and percepts and 

to organize sequences of percepts and actions into so-called 

joint sensory-motor behaviors.  

SOCIAL BEHAVIOR MODELING 

This section presents statistical/probabilistic approaches for 

modeling jointly multimodal sensory-motor behaviors. 

Thus, these models should enable an artificial agent (1) 

estimate its cognitive state from perceptual observations 

(e.g. speech activity/gaze fixations of the partner), this state 

should reflect the joint behaviors of the conversation 

partners at that moment; (2) generate suitable actions (e.g. 

its own gaze fixations) that should reflect its current 

cognitive state and its current awareness of the evolution of 

the shared plan. 

Each situated conversation is controlled by a specific syntax 

that defines a particular sequencing of joint cognitive states 

by a sort of behavioral grammar. As matter of fact, we chose 

HMMs because they have intrinsic sequential and temporal 

modeling capabilities. We compare here their performance 

with those of two well-known powerful classifiers (SVMs 

and Decision Trees). 

HMMs 

For each dyad, we model each cognitive state with a single 

Discrete Hidden Markov Model (DHMM) and the whole 

interaction with a global HMM, that chains all single models 

with a task-specific grammar. The hidden states of these 

HMMs model the perception-action loop by capturing 

joined behaviors. In fact, the observations vectors are 

composed by two streams: the first stream contains the 

perceptual observations and the second stream observes 

actions. The “hidden” states are then sensory-motor. In the 

training stage, all data are available while in testing only 

perceptual observations are available. After training, two 

sub-models are thus extracted: a recognition model that will 

be responsible of estimating sensory-motor states from 

perceptual observations and a generation model that will 

generate actions from these estimated states. In our model, 

these two phases of decoding and generation are performed 

incrementally using a modified version of the Short-Time 

Viterbi algorithm [5]. Since observations here have discrete 

values, we called this model IDHMM (for Incremental 



Discrete HMM). For more details about the IDHMM model 

see [21]. 

SVMs and Decision Trees 

SVMs and Decision Trees are among the most used and 

powerful classifiers. In our context, we will train two 

distinct classifiers: the first one will estimate the most likely 

cognitive state from perceptual observations while the 

second one will directly determine the most likely actions 

from perceptual observations. 

APPLICATION TO A FACE-TO-FACE INTERACTION 

Experimental setting 

The dataset used has been collected by Bailly et al. [1]. The 

setting is shown in Figure 1. It consists of speech and gaze 

data from dyads playing a speech game via a computer-

mediated communication system that enabled eye contact 

and dual eye tracking. The gaze fixations of each one are 

estimated by positioning dispersion ellipsis on fixation 

points gathered for each experiment after compensating for 

head movements. The speech game involved an instructor 

who reads and utters a sentence that the other subject 

(respondent) should repeat immediately in a single attempt. 

Dyads exchange Semantically Unpredictable Sentences 

(SUS) that force the respondent to be highly attentive to the 

audiovisual signals. The experiment was designed to study 

adaptation: one female main speaker LN interacted with 

eight subjects (females) both as an instructor for ten 

sentences and as a respondent for another set of ten 

sentences. 

Data and models 

For each dyad, we have two observations streams: voice 

activity (v1/v2 with 2 modalities: on/off) and gaze fixations 

(g1/g2 with 5 regions of interest ROI: face/mouth/left 

eye/right eye/else) of both speakers. Seven cognitive states 

(CS) [4] have been labeled semi-automatically (‘Read’, 

‘Prephon’, ‘Speak’, ‘Wait, ‘Listen’, ‘Think’ and ‘Else’). For 

SVMs and Decisions Trees, a first classifier is used to 

estimate the CS of the principal subject LN from (v1, v2, 

g2). Then a second classifier is used to estimate her gaze 

(g1) from the same data. Similarly for the IDHMM, the 

recognition model is used to estimate the CS from 

(v1,v2,g2) and the eye fixations (g1) are synthesized using 

the generation model. 

Gaze data have been monitored by two Tobii® eyetrackers 

operating at 25Hz. Voice activity detection has been 

sampled at the same rate. 

 

 

 

 

Figure 1: Experimental setting (only female subjects are 

included in our dataset) 

 

Figure 2: Results of the three models: SVMs, Decision Trees 

and IDHMMs 

Results and comparison 

DHMMs are trained with HTK [12], the IDHMM model 

was implemented in Matlab using PMTK3 toolkit [8]. For 

SVMs/Decision Trees, the Weka java package [11] has been 

used for both training and testing. For all models, 8-fold 

cross validation was applied: 7 subjects have been used for 

training while the eighth for testing.  

Accuracy rates are used to evaluate cognitive state 

recognition, where the Levenshtein distance [20] is adopted 

for the evaluation of gaze generation because it allows more 

adequate comparison between generated and original 

signals. In fact, The Levenshtein distance is a metric for 

measuring the difference between two sequences; it 

computes the minimum number of elementary operations 

(insertions, deletions and substitutions) required to change 

one sequence into the other.  From this optimal alignment, 

recall, precision and their harmonic mean (the F-measure) 

http://en.wikipedia.org/wiki/String_metric


can be directly computed. In this paper all generation rates 

represent F-measures.  

Figure 2 clearly shows that there is no significant variation 

between the two classifiers. However, the IDHMM model 

outperforms the two classifiers and the improvement 

provided by this model is quite significant (p<0.05). The 

IDHMM model has a rate of 89% for cognitive state 

detection and 59% for eye gaze generation. Moreover 

Figure 5 shows that the IDHMM model is more efficient in 

detecting the structure of the interaction. We can see that the 

estimated path of cognitive states reflects correctly the 

predefined syntax of the task. In comparison, the SVMs 

have more difficulty in capturing the organization of the real 

path (see Figure 5) and discard short transition states: we 

can see that the estimated states are principally « Speak », 

« Wait » and « Listen ». This is in not in contradiction with 

the 81% recognition rate because these three cognitive states 

alone represent 85% of the ground truth. This performance 

gap is mainly due to the sequential constraints afforded by 

HMMs. This lack of sequential organization impairs the 

performance of SVMs and Decision Trees that should 

exclusively exploit bottom-up information provided by the 

observations. 

MODELS WITH CONTEXTUAL ATTRIBUTES 

New models 

In order to build a generation model of demonstrative 

pronouns in dialogues of a collaborative situated task, 

Spanger et al. [27] proposed an SVM classifier that uses 

actual and historical information about the interaction. This 

idea is also used by [7] in order to generate beat gestures 

from the acoustic signal. In fact, classifier performance can 

be improved by adding memory (historical values) to each 

observation. In the previous section, at a time t, the initial 

models use only the data of that moment. In the new 

configuration, we added the same three attributes (v1,v2,g2) 

but from a previous instant t-T, T being the size of the 

memory.  Moreover we have varied this sole instant T from 

1 frame to 80 frames to find the optimal delay. 

Results and comparison 

Our tests revealed that there is no significance difference 

between SVMs and Decision Trees, thus, in the rest we will 

focus on comparative performance of SVMs vs. IDHMMs. 

Figure 3 shows that the optimal delay for this task is T= ~55 

frames (~ 2 seconds). We got the same value for Decision 

Trees. This optimal delay corresponds exactly to [25] in 

which authors demonstrate that, if a speaker looks at an 

object, 2 seconds after the listener will most likely be 

looking at the same object.  From Figure 4, we can see that 

the addition of past observations results in better 

performance (p<0.05) for both SVM recognition (91%) and 

generation (59%). This memory injection leads also to a 

better modeling of the interaction structure. In fact, in 

Figure 5 we can obviously notice the improvement of the 

recognition of cognitive states. 

Likewise, we added this past observation to the sensory 

stream of the IDHMM. As a result, we also observe a 

significant improvement in the gaze generation (59% to 

63%) while the recognition rate remains the same at a 95% 

confidence level. 

In the initial configuration, we concluded that IDHMM 

model was the most efficient due to the sequential property 

of Markov Models. In the second configuration, the results 

are generally improved; while the IDHMM is still better in 

gaze generation (63% vs. 59%), the SVM model leads to a 

higher rate (91% vs. 87%) for a 95% confidence level. 

Hence, supplying the SVM model with memory has 

relatively addressed the missing temporal aspect. 

 

Figure 3: Optimal memory instant for the SVM 

 

CONCLUSIONS 

In this paper, we presented a comparative study of three 

behavioral models designed for social robots/agents (SVMs, 

Decision Trees and IDHMMs). These models have been 

tested in two different configurations: with & without 

history features. Comparison results showed that, in both 

settings, the IDHMM, thanks to its sequential modeling 

properties, remains a robust model for cognitive state 

recognition and eye gaze generation, and that classic 

classifier like SVMs could result in high performance if a 

certain memory (~2 seconds in our case) was included in the 

input observations. 

Currently, we are studying a new scenario of a face-to face 

interaction that allows generating not only gaze but also 

deictic gestures. For the IDHMMs, we are also studying the 

influence of the number of hidden sensory-motor-states on 

the performance of each cognitive state and thus the impact 

on the generation figures. 
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(a) (b) 

Figure 4: No memory / Memory (M=55) (a) for SVMs (b) for IDHMMs 

  

(a) (b) 

  

(c) (d) 

Figure 5: Estimation of the cognitive state (CS) for a specific subject (a) using SVMs (b) using IDHMM (c) using SVMs and 

memory attributes (d) the real CS path 
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