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Unsupervised and online non-stationary obstacle discovery and

modeling using a laser range finder

G. Duceux, D. Filliat

Abstract— Using laser range finders has shown its efficiency
to perform mapping and navigation for mobile robots. However,
most of existing methods assume a mostly static world and filter
away dynamic aspects while those dynamic aspects are often
caused by non-stationary objects which may be important for
the robot task. We propose an approach that makes it possible
to detect, learn and recognize these objects through a multi-view
model, using only a planar laser range finder. We show using
a supervised approach that despite the limited information
provided by the sensor, it is possible to recognize efficiently
up to 22 different object, with a low computing cost while
taking advantage of the large field of view of the sensor. We
also propose an online, incremental and unsupervised approach
that make it possible to continuously discover and learn all kind
of dynamic elements encountered by the robot including people
and objects.

I. INTRODUCTION

Simultaneous Localization And Mapping (SLAM) tech-

niques with laser range finders have proven to be efficient for

indoor navigation [18]. However, those techniques usually

assume a static environment, relying on a world model that

do not provide semantic knowledge about obstacles and

ignore or filter non-stationary objects. These objects are often

things that are interesting for the robot tasks, such as doors,

chairs or people moving. In order to perform more complex

navigation such as opening a door or moving a chair out

of the way, the robot should therefore be able to recognize

them. This problem is closely related to semantic mapping

[15] where the purpose is to build a map of the environment

with higher semantic knowledge such as rooms and objects.

It is possible to give the robot a prior knowledge of

certain objects using supervised learning techniques, but it is

impractical to do so for all possible dynamic objects it will

encounter if we imagine a long-term use of robots in homes.

Therefore it is interesting to give the robot the ability to

learn and model these objects on-line while it is performing

other tasks. Since those objects are dynamic, it is possible to

use a change detection system to discover them, and then use

the learned knowledge to recognize them later. This problem

relates to object discovery approaches [20] which involve

detecting changes between some inputs (images, maps, range

data), computing a description of this changing part, and

creating an object model by some clustering method. Typical

drawbacks of object discovery methods are to be off-line and

to be unable to handle all the objects, especially those with

changing shapes (like people).
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Most of the work on object discovery and semantic

mapping has been done using sensors such as 3D lasers

[15], color cameras [20] or RGB-D cameras [7] or working

with 3D maps [9]. Although those sensors provide a rich

information, the computation involved is often heavy. Less

work has been done using 2D laser range finder [14]. While

being aware that this sensor limits the type of objects that can

be recognized and the potential performance of the system,

we argue that a number of useful objects can be recognized,

and that even in case of confusion, it can provide a good prior

for another more computationally complex object recognition

based on a richer sensor such as an RGB-D camera.

In this paper we therefore present an object discovery

method based on laser data in a navigation context. We

assume that the robot starts by exploring an environment

and build an occupancy grid map using SLAM techniques.

This map will contain most of the static elements of the

environment, along with some dynamic elements, such as

chairs, that remain still during mapping. Afterwards, as the

robot navigates in the environment, we use the map for

localization, detect dynamic objects that are inconsistent with

the map, and build multi-view models in order to categorize

and recognize them. The multi-view model enables to deal

with different points of view as well as changing shapes,

and therefore adapts to the various kind of dynamic objects

such as objects, doors, animals or humans. Furthermore, the

map is updated in order to filter out dynamic aspects and

to include initially unknown places revealed by the moving

objects. As such the robot builds a represention of the world

consisting of both a map and object models to represent

respectively the static and dynamic aspects.

The paper is structured as follows. First, in section II we

give an overview of related works. Then, we describe our

approach in section III and present the experimental results

in section IV before discussing the relevance of our method

in section V.

II. RELATED WORK

Object discovery, following the definition of e.g. [9],

usually include two steps, a first step for detecting candidate

objects using different approaches such as a generic object

segmentation, detecting novelty or re-occurring patterns, and

a second step performing unsupervised learning to model the

objects.

A. Object detection

Detection can be made using differences between maps

taken at different times. The work in [9] is based on 3D
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Fig. 1. Object modelling process proposed in this paper, from robot localization to object model.

maps represented as point clouds. They compare two maps

of the same environment and use the map differences as

possible objects. A similar approach is used by [3] using 2D

occupancy grid maps.

Others work directly with sensor data. For example, [13],

[7] and [1] use plane segmentation based detection on depth

images to discover or search objects. The object are therefore

supposed to stand out of flat surfaces such as the floor or a

table. In computer vision, as the task of discovering object

without prior knowledge is difficult, statistical methods are

often used over large datasets to find re-occurring patterns

(see [20] for a review). Concerning 2D range data, [14] uses a

filtering method on range data localized by SLAM techniques

to discover novelty. This is the approach we used, as it is

simple and efficient enough for our purposes.

B. Object modelling and recognition

There are numerous approaches to model and recognize

objects. Using range data, there are mainly three:

The first is to use registration or scan matching to generate

and recognize geometrical models. In [9] and [14], they align

surfaces of an object in 3D and 2D range data respectively.

By aligning those surfaces, they obtain a model of the object

consisting of a point cloud as it would be seen by the sensor

if it could see the entire object. Those approaches are very

susceptible to noise in data sensor, and are not well suited

for modelling object with changing shapes like people.

The second is to extract invariant local features from

observations and to differentiate objects based on their set of

features. The work of [6] uses local shape descriptors with

Latent Dirichlet Distribution on 3D range data. Their method

is unsupervised but not on-line and assumes knowledge of

the number of object in a scene is known. An object is

represented in this case as a distribution of local surface

shapes. This kind of object model is more robust to noise

in sensor data and change in object appearance. They are

usually faster and more efficient than geometrical models to

learn and to recognize. The use of local features has also been

widely studied by the computer vision community. There is a

wide variety of those methods [4] which require the encoding

of certain properties of the appearance into descriptors, and

the clustering of those properties.

The third is to create multi-view object models regrouping

the views of an object from different viewpoints or different

times. This approach is used in [12] based on vision, tak-

ing advantage of object manipulation by a robot to gather

different views of the objects. Using tracking techniques to

put together different views have also been used in [14]

using laser scans. In [16], the authors model views and

their associated metadata (segments, positions, time, etc...)

in a graph. Rich object models are obtained by clustering

this graph. In order to memorize the views, an associated

descriptor can be used. Many of these exist in vision or 3D,

but far fewer for 2D range data. Nevertheless, [19] shows

that it is possible to use descriptors with laser range finder,

applied to place recognition in their case.

III. PROPOSED METHOD

In this paper, an appearance of an object, which we call

view, consists of a set of points belonging to one object

obtained from a single laser sensor reading. As these views

have different number of points depending on the distance

of the object, a view is encoded into a shape descriptor

of constant size that is invariant to distance and rotation.

Descriptors are then clustered into a dictionary which asso-

ciate for every descriptor a label called word following the

terminology of the Bag of Words approach [17]. An object

is therefore modelled as a set of possible words following

this approach. Figure 1 and the accompanying video present

our overall approach described in the following.

A. Simultaneous localization and mapping

Our system needs to build an occupancy grid map of the

static part of the environment, to update it and to localize the

robot inside during several separated runs. This grid, called

the Static Map, is maintained from one run to another. For

each run, the Hector SLAM algorithm [11] is used, starting

from an empty map each time, to produce an occupancy grid

we call the Current Map. The output trajectory of Hector

SLAM is localized in the Static Map using a particle filter.

This approach results is a much more accurate position

estimation in the static map than by localizing directly the

robot in the static map using particle filtering. The reason

is that when a lot of objects not represented in the Static



Fig. 2. A Static Map after the first run of the robot (left), and after several
runs (right).

Map are present, the robot is better localized in the Current

Map that contain these objects, and the resulting trajectory

is more precise than if the robot is localized directly in the

static map.

The static map is then updated using the laser scans

in order to remove obstacles that disappeared and to fill

previously unperceived areas revealed because an object has

moved. However, we should not add new obstacles in known

areas as we aim at mapping only the static part of the

environment. To do so, standard occupancy grip mapping

techniques are used to update only the unknown or occupied

cells as well as their nearby unoccupied cells.

Figure 2 illustrates the map updating process. On the left

is an occupancy grid of a room seen for the first time by

the robot. On the right is the same area after several runs of

the robot. We can see that the doors have been completely

removed from the map as well as certain objects in the

middle and against the walls. The shape of some furnitures

however are still visible because they haven’t been moved.

A corridor and a second room have also been discovered by

the robot.

B. Novelty Detection and tracking

The localization provides a set of laser endpoints localized

in the Static Map reference frame that are noted xi. An

endpoint can either correspond to something static (wall,

static furniture), or to an object that can move (chair, human,

door). Points belonging to known static objects (mainly

walls) should have a small distance to occupied cells in the

Static Map. We therefore compare the distance di of each

endpoint to the closest occupied cell to a threshold in order

to detect points belonging to a non-stationary object.

The detected points are then clustered together given that

they are at a certain distance radius of a cluster center, which

is updated every time a point is added. After processing all

detected points, non-detected points are added to the clusters

with the same criterion but without updating the center this

time. We set radius to 0.5m because most of the dynamic

objects being considered are not wider than 1m.

Those clusters form the detected objects, they are then

tracked through time using the approach described in [14]. A

descriptor (described below) is computed for every detection

in every laser scan and tracking is used to put together

descriptors belonging to the same objects to form the bag

of word model.

C. Descriptor computation

Fig. 3. Illustration of descriptor building steps.

As it is rather impractical to compare directly two sets of

few points, a descriptor is computed for every view in order

to compare them quickly and to achieve some invariances

and a certain level of robustness regarding noise.

To be able to recognize non-stationary object, invariance

from point of view is required. This means that if the robot

sees the same part of an object, the resulting descriptor

should be the same, independent of where the robot sees it.

To achieve that, several steps are involved in the construction

of the descriptor. Fig. 3 illustrates those steps. To construct

the descriptor, we followed ideas from [2] and [10].

The detection provides a set of points representing a part

of an object boundary. However, as the robot gets farther to

the objects, fewer laser points will hit the object, and they

would be more separated. The first step is therefore to re-

sample the points with a fixed inter-distance in order to be

invariant to the object distance. For each pair of successive

points, we use a linear interpolation to generate new points

at regular intervals (we use 1mm), which leads to having

almost the same amount of points when the object is seen

from afar than up close.

For each pair of points in this set, the vector that goes

from one point to the other is computed in polar coordinates

(r, θ ). The θ coordinate of those vectors is dependent on

the rotation of the object in the map reference frame. In

order to have invariance to rotation, a reference angle is

computed as the maximum argument of the histogram of

the θ coordinates distribution. For every vector, a new θ

coordinate is computed relative to that angle of reference.

Finally, the descriptor is computed as an histogram of the

polar coordinates of these vectors normalized by the number

of points. The histogram is parametrized by the number of

division of both the angular coordinate (in [−π,π]) and the

distance coordinate (in [0,1]m). Those parameters have an

important role in the performances of the system.

To compare two descriptors, the Symmetric Chi-Square

metric is used. A comparison of popular metrics [5] has



shown slightly better results in our case with this one. The

distance is expressed as follows:

dχ2(I,J) =
1

2
∑

i

(Ii − Ji)
2

Ii + Ji

(1)

with I and J two descriptors, Ii and Ji the i-th element of

the descriptor I and J respectively.

D. Descriptor clustering

In order to have a compact representation of the objects,

we follow the bag of words approach as described in the

next section. For this, we need to compute a dictionary of

descriptors obtained by clustering the perceived descriptors.

We used the incremental method presented in [8]. In this

method, a distance threshold is fixed to decide whether to

create a new word in the dictionary or not, when a new

descriptor is perceived. If the descriptor is far enough from

all the words, it is used as the center of a new word, otherwise

it is assigned to the closest word.

E. Object modeling

Objects are represented as bags of words, i.e., as his-

tograms of occurrences of the different views from a tracker.

An important problem is that the sampling of the views

around the object will depend on the robot trajectory around

it. As we want to construct the models online and be

able to recognize objects with partial information, i.e., seen

from only one side, we need to enforce a sampling of

the views that will limit the dependency on the particular

robot trajectory. To do so we filter descriptors during the

construction of the model to increase chances of having

similar models.

The filter comprises a condition on the relative position

between the object and the robot and on the word being

perceived. Indeed, since some objects might change shape,

we can’t filter only on the position. Therefore, we only add

a word to the model if it is different from the previous one

or if the relative position of the object has moved more than

a given distance (we use 10cm).

Two objects are compared using histogram intersection:

d∩(I,J) = ∑
i

min(Ii,Ji) (2)

with I, J two histogram being compared. Note that an

object histogram is normalized by its number of elements.

A comparison between popular similarities and distances

metrics [5] has shown that although the difference is slight,

the intersection gave the best results.

F. Incremental object recognition

When object are discovered incrementally during the robot

navigation a mechanism is required to decide whether a

newly perceived object is a novel object or a perception of

an already known object. To do so, we keep in memory a

set of object model clusters, each cluster corresponding to a

single physical object.

Fig. 4. The 22 different objects in the database and their associated label
for supervised tests. Two spiral trajectories have been recorded around each
object.

When a new object is tracked, a model is built according

to the previous section. When the tracking ends, the most

similar model in the memory is found. If the corresponding

similarity is higher than a threshold, the new model is added

to the same cluster as the corresponding model. If not, a new

cluster is created with the new model.

IV. EXPERIMENTAL RESULTS

We performed experiments using a Pioneer3 mobile robot

equipped with an hokuyo utm-30lx laser range finder. The

range finder has a precision of 0.03m from 0.1m to 10m and

an angular resolution of 0.25 degrees.

In order to assess the quality of our object representation,

we built a database consisting of 22 objects. To construct

the database we moved the robot around the objects and

recorded the trajectory and the laser data. Two trajectories

were recorded by objects to ensure a separate training and

test set. With this database, we performed experiments to set

the different parameters using grid search and to evaluate the

performances in an ideal case.

A. Descriptor evaluation

The first experiment was to control the efficiency of the

descriptor regarding the invariance we were expecting. In

order to do that, we generate a map of the words obtained

as a function of the position of the robot.

Fig. 5 has been made with a dictionary threshold of 0.3.

The descriptors has 6 bin on distances and 11 on angles. The

figure shows that the expected invariances are achieved on

objects with good response to laser sensor: objects 1, 7, 9,

18. Problems arise when far from an object as too few points

are obtained from it, which limits the distance at which we

can perceive it. Also, certain objects are not well perceived

by laser range data, such as black colored objects and hard

edges. In the later case, a smaller variation in the position of

the robot produce different words, so a descriptor can still be

computed and used in the recognition process but with less

robustness. For this type of object, the model needs to contain



Fig. 5. Region with the same color represent where the robot has seen
the same word in the dictionary. The number represents the object label.
The regions formed are consistent with the invariances expected from the
descriptor, except when laser data is too noisy for certain objects.

Fig. 6. Confusion matrix for object recognition with complete models.

words coming from several readings at the same place. That

is why filtering of the repartition of views are made based

on both relative position and the value of the word obtained.

Finally, some objects are really noisy, such as 8 in figure 5

which is a moving human. But even in this case we will see

that the corresponding bag of words is specific enough to

recognize it.

B. Recognition with complete models

In a second experiment, we evaluated the performance of

the recognition when seeing the objects completely, i.e., from

all possible viewpoints. We constructed a set consisting of

eight complete models of each object. In order to perform

cross-validation, the set was randomly divided ten times

into a training and a validation set. Each time, one model

by object was randomly picked to go in the training set.

The remaining models were put in the validation set. Each

time a confusion matrix was computed. All the results were

accumulated in a final confusion matrix shown by Fig. 6. A

89% global recognition rate was obtained.

Results show that the method works well with complete

models. The false recognition are explained by the fact that,

with a laser range finder, some objects are perceived as

having very similar shape and size. For instance, the two

chairs are more often confused as well as the box 18 with

the box 5. However, most of the time the differences in

size and shape are sufficient to avoid confusion. Lastly, the

most confused object was the moving person. In fact, when

moving, people’s legs appearance for the laser sensor is

highly variable, which cause high variation in the resulting

models, hence more confusion.

Fig. 7. Recognition rate as a function of the length of the trajectory.

C. Recognition with partial models

In a real application though, the robot should be able to

recognize objects with partial models without performing

a full circle around the object. In order to assess this in

a controlled setup, we computed the recognition rate as

a function of the length of the trajectory sampled from

the same database. In this experiment, the training set still

consists of one complete model for each object. The test set

consists of randomly generated trajectories of varying length.

Fig. 7 shows the recognition results with two different

criteria. For the first one (in red), we have considered an

object as being recognized if the most similar object is the

correct one. As expected, the more an object is perceived,

the better it is recognized. Note that around 4 meters the

recognition rate is already strong, which correspond to seeing

about half of the object. This correspond to trajectories that

the robot would have when avoiding an obstacle or passing

by it. It suggests that recognition during the robot motion

for another task could perform well.

In the second criteria (in green), we considered a recog-

nition being successful if the right answer was in the three

best score. The performances are clearly improved with a

perfect recognition above 6 meters. This suggests that when

the system is wrong on the identity of an object, it is not

far off. For instance, when recognizing the black chair, we

have seen that the system often confuses it with the blue one,

but the similarity with the black chair would still be high.

This result indicates that we could rely on this recognition as

a good prior for mixing it with an algorithm using another

modality.

D. Incremental learning

For this experiment, we tested incremental learning using

trajectories sampled from the database in order to have a

ground truth on the object identity and be able to assess the

quality of the resulting clusters. In order to set the threshold

for integration in a cluster, we studied the behavior of the

clusters in memory when varying it. Fig. 8 shows that when

the threshold is low, few clusters are created and they are

mostly corrupted, i.e., they contain models from different

real objects. On the other hand, when the threshold is too

high, every tracking results into a cluster being added to the



Fig. 8. Number of clusters as a function of the merging threshold. In red the
number total of clusters in the memory. In blue, the number of clusters that
have been updated successfully. In green, the number of corrupted clusters
(cluster containing models coming from different objects).

Fig. 9. Number of clusters in the memory by real objects identity and
their size.

memory, and few cluster are updated. From these results, we

choose a compromise and set the threshold to 0.75.

In order to see the resulting distribution of clusters in

memory, we constructed figure 9. The database was split into

85 trackers with varying size (between 1 and 80 according

to the live experiments, see section IV-E). The matrix was

built by picking randomly one tracker from the dataset, and

adding it to the memory as explained in section III-E, until

the dataset was empty. For clarity reasons, the resulting set

of clusters was ordered. In this case, we obtained 51 clusters

with a single model and 13 clusters with multiple models,

with 1 corrupted. Some objects resulted in few clusters in the

memory (1, 7, 9, 10, 11, 15, 19, 20). Which means that the

first time the object was seen, the resulting model was a good

representation and that the object is easy to recognize. Other

objects are more difficult to recognize from partial models

and result in several clusters in the memory.

E. Live experiment

Finally the system was implemented on the robot in real-

time as shown in the accompanying video. We used 8

different trajectories in a room containing 8 different objects

that were moved between the robot trajectories. The system

resulted in 125 different models, resulting in 16 clusters,

among which 2 were corrupted.

On the trajectories that we studied we obtained a maxi-

mum of 81 words and an average of 16 words in each model,

Fig. 10. Example of trajectory and models obtained. The green line
represent the trajectory, the blues points are the laser reading on the
considered object, the circles represent where the robot registered a word
in the model for the object, the colors represent the words id.

Fig. 11. Example of clusters obtained. On the left, three models coming
from an armchair, on the right three models coming from a stool.

depending on the duration of the tracking of the objects.

Fig. 10 shows an example of a trajectory with the associated

words recorded with two different objects.

Figure 11 show two pure clusters of models constructed

for two different objects. The words of each objects are

plotted on the trajectory of the robot during its creation in

order to show the diversity of the trajectories that make it

possible to recognize an object.

For each implemented module, the mean computation

time was recorded (table I). The code was written in C++

without particular optimization. Except the dictionary (which

performs descriptor clustering) and the object manager mod-

ule (which performs object modeling and recognition), the

computation times are bounded. For the dictionary and the

object manager, the computation times depend linearly on

the number of words and clusters respectively.

Localizer 50 ms

Detector 0.7 ms

Tracking 0.1 ms

Descriptor 18 ms

Dictionary 1.2 ms with 440 words

Object manager 2.4 ms with 114 models

Total 72.4 ms after 10 runs

TABLE I

TABLE OF COMPUTATION TIMES.



V. DISCUSSION

Obstacle discovery has been largely studied using vision

sensors with various objects. In comparison, using a laser

range finder limits it to objects that are on the ground.

However, in a navigation task, most of the objects involved

are perceived by this sensor. With this limitation, we have

shown that it is possible to distinguish between a reason-

able number of objects sufficient for common household

setups and to perform unsupervised object discovery and

recognition. Moreover, because the volume of data given by

the sensor is small compared to vision, or 3D sensing, the

resulting computations are less complex and can easily be

performed in real-time.

Our modelling system, based on bag of words, creates

multi-view models. The advantage of this approach is that

it can handle objects changing shapes (such as humans or

animals), as well as ill perceived objects such as dark or

reflective surfaces whose appearance varies strongly even

from close viewpoints. The use of descriptors instead of raw

range data also improves robustness to noise. It avoids using

scan matching which is difficult if there aren’t many points

to match when an object is perceived from far away.

Beside being able to recognize objects using supervised

learning, the proposed approach can perform incremental

and non-supervised object modelling, with reasonable per-

formances even when the trajectories of the robot do not

allow to perceive completely an object. This make it possible

to adapt to an environment continuously and gather up

information on new objects introduced in the environment,

even while the robot is doing others tasks. Beyond our simple

incremental approach, this information could be treated a

posteriori with more complex techniques to refine the clus-

tering of models, and to filter out noisy models.

Finally, our system could support and enhance a camera-

based recognition system. The novelty detection and the

tracking could help segmenting objects in an image. More-

over a laser range finder field of view is wider than those of

a camera, so it is possible to recognize an object before the

camera sees it and to orient the camera toward this object to

help recognition. Even when the recognition result from the

laser is uncertain, it could then be used as a prior to improve

visual recognition.

VI. CONCLUSION AND PERSPECTIVES

We proposed an approach to perform dynamic object

discovery, modelling and recognition using only a laser

range finder commonly used to perform navigation tasks.

We showed that in ideal conditions where the robot make

complete circles around the objects, using a multi-view

object model, it is possible to recognize up to 22 different

objects of different types, including objects changing shapes

such as humans walking. Applied to incremental object

discovery, this same approach make it possible to create

coherent object models without supervision.

As a laser range finder has a wider field of view, and less

information to process, we believe that our approach is well

suited to support and enhance a camera-based recognition

system for a service robot. In future work, we therefore

plan to use this system as a first stage to a second system

following similar principles but based on a RGB-D camera

to perform more efficient object recognition.
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