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a b s t r a c t

Maintenance decisions can be directly affected by the introduction of a new asset on the market, especially
when the new asset technology could increase the expected profit. However new technology has a high degree
of uncertainty that must be considered such as, e.g., its appearance time on the market, the expected revenue
and the purchase cost. In this way, maintenance optimization can be seen as an investment problemwhere the
repair decision is an option for postponing a replacement decision in order to wait for a potential new asset.
Technology investment decisions are usually based primarily on strategic parameters such as current
probability and expected future benefits while maintenance decisions are based on “functional” parameters
such as deterioration levels of the current system and associated maintenance costs. In this paper, we
formulate a new combined mathematical optimization framework for taking into account both maintenance
and replacement decisions when the new asset is subject to technological improvement. The decision problem
is modelled as a non-stationary Markov decision process. Structural properties of the optimal policy and
forecast horizon length are then derived in order to guarantee decision optimality and robustness over the
infinite horizon. Finally, the performance of our model is highlighted through numerical examples.

1. Introduction

Industry has a large stake in maintenance optimization as it can
reduce production costs, extend the useful life of industrial equipment
and also alter the strategy for new investments in equipment. This
interest can be observed through a steady increase in research in the
open literature which has led to the construction of maintenance
optimization models which are more advanced and better adapted to
modelling of practical industrial concerns. As demonstrated by Man-
nan [12], there are four reasons for replacing equipment: (1) it has
failed, (2) it is about to fail, (3) it has deteriorated and (4) an improved
version has become available. One of the most common assumption in
maintenance optimization is that maintenance is “perfect” and the
system can be reduced to “as good as new”. Imperfect maintenance is
less commonly considered, but can be found in several models [21].
However, neither of these assumptions considers the optimization
replacement according to the reason (4) and leads to a simplified
decision based only on the current system characteristics in a given
economic environment. In detail, based on the information of the
system degradation modes and the associated observation data, we
can evaluate the life cycle cost corresponding to the maintenance
policies and then choose the optimal policy [4].

Taking into account potential improvements in technology
increases the complexity of the maintenance decision problem in
several aspects. First, the number of possible choices is increasing
in the number of available technologies on the market. Second,
technological evolution is a highly stochastic in nature in terms of
the appearance time on the market, the purchase price and the
expected profitability. Finally, in the context of maintenance of
industrial systems, there is a significant difference in the frequency
of maintenance decisions (operational level) and the frequency
investment in new technology (strategic decision).

In the literature, maintenance decisions with technological
change are generally approached in two ways.

The first approach, in close relation to the [12] definition of the
replacement model, assumes that new technology is already
available on the market. The overall performance of this new
technology is known and the question is whether it is worth
moving to this new technology given the price of such a change. In
this context, the problem is to determine the conditions on the set
of characteristics (purchase price, reliability improvements, etc.)
which lead to move from one technology to another [3,6,7].

Borgonovo et al. [3] consider a geometric sequence model of
technology evolution, represented by the exponential decrease of
the failure rate over time. In this model, they take into account several
types of maintenance such as minimal repair, imperfect maintenance
and replacement. The impact of these actions is modelled directly on
the system failure rate. While Borgonovo et al. [3] focus on a single
component, Clavareau and Labeau [6,7] examine preventive and
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corrective replacement strategies of N identical components with the
relevant logistic policy. Nguyen et al. [17] consider a technological
innovation sequence with an uncertain appearance time but with
deterministic revenue and an estimated purchase price of new
technology.

The second approach takes into account the uncertainty in
unknown future technology and is mainly found in the management
science literature. In this context, the maintenance issue takes even
greater importance and may be considered as an economic invest-
ment policy as it allows delaying replacement with existing technol-
ogy in order to await new technology. The uncertainty of technology
breakthrough time is captured by Nair [15]. He presents a model in
which technological change is stochastic over time with a non-
stationary appearing probability. The high level of uncertainty in the
cost and the associated revenues of new technology is examined by a
number of articles such as Mauer and Ott [13], Bethuyne [2], and
Huisman and Kort [11]. Their approaches are mainly based on the
modelling of the maintenance process through cost functions such as
evolution of the operating cost [19]. These models allow managers to
determine the best time for replacement investment of equipment
under technological evolution but do not consider the maintenance
strategies as well as the impact of technology change on them. Consi-
dering maintenance, or more specifically, imperfect maintenance
actions, the system to be improved (albeit to a less than perfect state)
at a lower cost compared to a complete renewal. Imperfect mainten-
ance thus provides a useful alternative for waiting to invest in existing
or future technology. This underscores the benefit of combining opera-
tional maintenance decisions with a strategic investment context.

The objective of this paper is to quantitatively analyse of the
benefits of combining operational maintenance and strategic invest-
ment goals. We formulate an optimization model that also considers
the market flexibility in terms of revenue volatility and uncertainty in
the new technology's purchase price. Nguyen et al. [18] developed a
finite horizon model, however, the chosen time horizon can alter
substantially the optimal decision. In practice, it is essential to ensure
the consistency of the investment decision regardless of the planning
horizon. In the literature, very few articles consider the forecast
horizon for maintenance and replacement decisions under techno-
logical change. Hopp and Nair [9] proposed a method for identifying
the forecast horizon that is specially tailored to the equipment
replacement problem with the single new technology assumption.
Nair [15,16] extended the approach by considering a new technology
sequence. However, this approach cannot be utilized for the models
that take into account stochastic characteristics. In fact, they suppose
that the revenue in a decision period is known a priori, decreasing
over time and independent of the technical system performance. In
this paper we propose a method to identify the forecast horizon for a
stochastic model of technological change in the maintenance and
replacement optimization problem.

The remainder of this paper is structured as follows: In Section 2,
we present the classic stationary maintenance and investment
problemwithout technology change. The mathematical formulation
model for the maintenance and investment problem under tech-
nology evolution is then introduced. In Section 3, its structural
properties are derived. The method for identifying the forecast
horizon is developed in Section 4. The efficiency of the horizon
identification method and the performance of the model are high-
lighted through numerical examples in Section 5. Finally, conclu-
sions and future works are presented in Section 6.

2. Construction of the mathematical model for optimizing the
maintenance decision

We first present the maintenance optimization model under
assumption that only one major technology change will occur during

the planning horizon. Thus we consider only a breakthrough technol-
ogy and its associated investment. We assume a coherent market i.e.,
new technology is always more profitable than current technology.
We model this improvement in terms of revenue rate per time period.
In addition, we assume an increasing probability of appearance of new
technology on the market within a finite time interval. Past this time
interval, we assume that if the new technology is not yet on the
market, then it will never appear. This assumption may be seen as
restrictive, however we justify it by considering the technology
breakthrough time interval as an interval of interest after which the
impact of the decision becomes negligible. In Section 4 of this paper,
we examine the optimal length of such an interval to ensure the
robustness of decisions.

Wemodel the optimization problem as a Markov decision process
on an infinite time horizon in two steps. First, a model where
technological evolution is not considered will be constructed and
analysed. This assumption represents both the states of (1) “the new
technology will never appear” and (2) “the transition to the new
technology has already been made”. Second, the global optimization
model with potential future technological change will be considered.

2.1. Maintenance/investment problem without technology change

2.1.1. Problem statement
We consider a continuously operating system which generates

a continuous revenue stream. We assume that the revenue stream
is a function of both the asset deterioration level and the random
market in which it performs. Due to the increase in the deteriora-
tion over time, the revenue is a non-increasing process in average.
At each decision epoch, maintenance or replacement may be
performed, if necessary to improve the state of the system. Thus,
we define the optimal policy as a function of the current revenue
stream generated by the system.

2.1.2. Model formulation
We model the revenue process as geometric Brownian motion

(GBM) with drift μo0 (characterizing the decreasing technical
performance of the machine due to deterioration) and the volati-
lity per unit time s (characterizing market uncertainty).

Brownian motion is recognized as a very effective method to
model revenue/cost flow in the management science literature,
especially when considering the problem of investment in new
technology [2,11,13]. For example, in Huisman and Kort [11], the
authors use GBM to model the profit flow of the firms in a
competition game. As the article focuses on the problem of technol-
ogy adoption from a strictly economic point of view, they consider
only the profit flow that is the result of the revenue generated by
selling the product/service and the operation/maintenance cost. In
this paper, we examine the revenue flow and the maintenance cost
individually and also consider the problem in a reliability context.

Let gn be the revenue rate generated during the decision period n.
We assume that the technical performance is decreasing in the
deterioration state of the asset. In average, the revenue is decreasing
from g0, the initial revenue rate generated by a new asset, to 0 over
time. Let τ be the length of the decision interval, μj the drift, s the
volatility and Wτ �Nð0; τÞ. Given gn, the revenue rate at the begin-
ning of next period nþ1 is then

gnþ1 ¼ gn exp μ�s2

2
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τþsWτ
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The expected cumulative revenue Zn0 within a decision period n,
based on revenue rate gn at the beginning of the period, with
discount factor per unit time r, is given by the conditional



expectation on gn. We can deduce
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From Corollary 2 (Section 2.4.2, p. 33) by Yor [23], with λ¼2 and
n¼1, we have
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cν=2j is defined at the beginning of p. 32 and the function φðxÞ is
given in the equation 4.a, p. 31 [23]:
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By replacing h¼s2τ=4 and ν¼ 2ðμ�rÞ=s2�1, we obtain (2). □

To compute the one-period transition probabilities Pðg0jgÞ, we
discretize the revenue rate state as follows. gn is the first value of
Ng discrete intervals of length l on ½gmin; gmax� with gmin ¼ 0 and
gmax ¼ g0. More specifically, if the revenue rate at the beginning of
current decision period belongs to the intervals ð½0; l½;…;

½ðNg�1Þl; g0½; ½g0;1½Þ, we approximate it by gnAΘ : f0;…ðNg

�1Þl; g0g. Note that Pðg0 ¼ 0jg ¼ 0Þ ¼ 1 and Pðg0a0j g ¼ 0Þ ¼ 0.
Let m1 ¼ ðμ�s2=2Þτ, m2 ¼s

ffiffiffi
τ

p
. 8gAΘ\f0g; 8g0AΘ\f0; g0g, the

transition probability is
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At the beginning of any decision epoch n, the possible actions are:

� Do nothing ð ~DNÞ, the asset continues to operate until the next
decision epoch and generates revenue according to the

described process. Given that the value observed at the begin-
ning of epoch is gn, the expected economic reward in this
period is equal to E½Znjgn�.� Maintenance ð ~MÞ restores the asset to a better given state, gM with
gM ¼ ϱg0 and ϱo1. ϱ is called hereafter the maintenance effi-
ciency factor. The assumption of a constant deterioration state after
maintenance based repair consisting of replacing the critical com-
ponent. The maintenance cost, cM(g), is assumed to be an increas-
ing linear function of maintenance effect, as in Yeh et al. [22]:

cMðgÞ ¼ νþh1ðgM�gÞ ð3Þ
where ν, h1 are constant. The decision of maintaining can be
chosen if and only if gogM .

� Investment ð~IÞ replaces the asset by a new one. Note that in this
case where new technology is not considered, investment is
exactly equivalent to a complete asset replacement. The cost of
such a replacement is given by the difference between the
purchase price of the new asset c0 and the salvage value b0ðgÞ of
the current asset. After a replacement, the system generates a
revenue rate g0.

b0ðgÞ ¼ vþh2g ð4Þ
where v is defined as the junk value and v and h2 are constant.

We assume that the action time is negligible. Let ~V ðgÞ denote the
maximum expected discounted value over infinite horizon and the
complete model formulation is given by

~V ðgÞ ¼max

~DNðgÞ ¼mgþe� rτ∑8g0Pðg0jgÞ ~V ðg0Þ
~MðgÞ1fgogMg ¼ �cMðgÞþ ~DNðgMÞ
~IðgÞ ¼ �c0þb0ðgÞþ ~V ðg00Þ

8>><>>:
9>>=>>; ð5Þ

2.1.3. Structural properties and the optimal policy
The objective of this subsection is to give the conditions for the

existence of the monotone optimal policy. To simplify notations,
we assign numerical values to the three possible actions: 1- Do
nothing, 2- Maintenance, 3- Investment.

Lemma 1. Let qðkjg; aÞ ¼∑gmax
g0 ¼ kPðg0jg; aÞ, qðkjg; aÞ is non-decreasing

in g for all k, 8gAΘ, 8aAA : f1;2;3g.

Proof. qðkjg;1Þ ¼∑gmax
g0 ¼ kPðg0jgÞ ¼ 1�Φððlnðk=gÞ�m1Þ=m2Þ, so

qðkjg;1Þ is an increasing function in g for all k.
For maintenance action, we have qðkjg;2Þ ¼∑gmax

g0 ¼ kPðg0jgMÞ.
And for replacement action qðkjg;3Þ ¼∑gmax

g0 ¼ kPðg0jg0Þ.
They are not dependent on g.
Hence, qðkjg; aÞ is a non-decreasing function in g for all k. □

From Theorem 6.2.10 of Puterman [20], there exists only one
optimal policy that is deterministic and stationary.

Theorem 1.

1. ~V ðgÞ is non-decreasing in g.
2. 8aAA : f1;2;3g, the optimal policy π ~V ðgÞ is non-increasing in g

with the two following conditions:
� π ~V ðgMÞ ¼ 1.
� mZh1Zh2 with m be the factor between the current system
state and the revenue accumulated in a decision period, h1 be the
factor between the system state and the maintenance cost, and h2
be the factor between the system state and the residual value.

Proof.

1. We proceed by induction on the steps of the value iteration
algorithm. Let ~V nðgÞ be the maximum expected discounted



value over n decision periods, and ~V ðgÞ be its asymptotic value
when n tends to infinity. Without loss of generality, let
~V 0ðgÞ ¼ 0, 8gAΘ

~V nðgÞ ¼max

~DNnðgÞ ¼mgþe� rτ∑8g0Pðg0jgÞ ~V n�1ðg0Þ
~MnðgÞ1fgogMg ¼ �cMðgÞþ ~DNn ðgMÞ
~InðgÞ ¼ �c0þb0ðgÞþ ~DNnðg0Þ

8>><>>:
9>>=>>;

First, for n¼1, we have:
� ~DN1ðgÞ ¼m � g, is non-decreasing in g.
� ~M1ðgÞ and ~I1ðgÞ are non-decreasing in g as sums of non-
decreasing functions.

We deduce ~V 1ðgÞ is non-decreasing in g.
We assume now that ~V n�1ðgÞ is non-decreasing in g.
From Lemma 1 of this paper and Lemma 4.7.2 (p. 106) of
Puterman [20], we have ∑8g0Pðg0jgÞ ~V n�1ðg0Þ is non-decreasing
in g.
So ~DNnðgÞ is non-decreasing in g, 8n.
And ~MnðgÞ and ~InðgÞ are non-decreasing in g.
Hence, the assertion is proved for all n.
Finally, ~V nðgÞ is non-decreasing in g and while n-1,
~V nðgÞ- ~V ðgÞ.

2. From Lemma 1, qðkjg; aÞ is non-decreasing in g.
Let rðg; aÞ be the reward function received in a period when the
system state is g and action a is selected, aAA : action set.

8gogM ; A¼ f1;2;3g; 8gZgM ; A¼ f1;3g
rðg; aÞ is non-decreasing in g as sums of non-decreasing functions.
Then, with assumption that mZh1Zh2, we can deduce directly
that rðg; aÞ is a sub-additive function as defined in Puterman [20].
Finally, qðkjg; aÞ is also a sub-additive function by Lemma 1.
From Theorem 6.11.6 in Puterman [20], we deduce directly that the
optimal policy π ~V ðgÞ is non-decreasing in g if π ~V ðgM Þ ¼ 1. □

From the non-increasing property of the optimal policy (Theorem
1), we can deduce the control limit structure. Let ðyM ; yIÞ be the
respective maintenance and replacement thresholds. Cost
assumptions and control limit policy existence state the following
decision rules:

� replace as soon as the revenue rate becomes lower than yI;
� maintain if the revenue rate belongs to ðyM ; yIÞ;
� do nothing if the revenue rate remains greater than yM.

2.2. The maintenance and investment problem under technological
evolution

In case of technological evolution, the decision becomes much
more complex with the anticipation and later opportunity to
invest in new technology. As mentioned previously, maintenance
can be a valuable alternative to replacement while waiting a better
investment conditions. We introduce technology evolution
directly into the model discussed in the previous section.

2.2.1. Technology evolution modelling
We assume that only one new technology can appear in the

future with an increasing probability over time. This assumption is
justified under “breakthrough” conditions and commonly used in
the literature, see Hopp and Nair [9], Mauer and Ott [13] and
Huisman and Kort [11]. In fact, Hopp and Nair [9] consider the
appearance probability qn of new technology at time n. Mauer
and Ott [13] assume that technological change follows a Poisson
process with constant rate and Huisman and Kort [11] assume that

the probability distribution of appearance time of new technology
follows the exponential law:

pnþ1 ¼ 1�δκn; δ; κAð0;1Þ ð6Þ
The δ factor reflects the non-appearance probability of new technol-
ogy at the next decision epoch. Factor κ characterizes the increasing
rate of the appearance probability of new technology over time.

Technological innovation is characterized by a higher initial reve-
nue rate, g10 ðg104g00Þ and lower drift of revenue flow, μ1 ðμ0oμ1
o0Þ .

The salvage value of the asset at decision epoch n depends on
the cumulated or expected revenue at time n and on its techno-
logical generation (j¼0 or 1).

We use geometric Brownian motion to model the estimated
purchase price of new technology in order to take into account the
uncertainty of the new technology's appearance time and the
increase in the volatility of the forecast over time. Under the risk
neutral measure, the estimated purchase price of the new tech-
nology that appears at time t is described as follows:

c1;t ¼ c1;0 exp r�s2
c

2

� �
uþscWt

� �
ð7Þ

where c1;0 is the given initial purchase price of new technology. To
ensure both the profit of the manufacturer and the attractiveness of a
new technology, we assume that the fluctuation range of the new
technology purchase price belongs to ½c1 min; c1 max� within c1 min ¼ c0.
Geometric Brownian motion of c1;t is discretized similar to the
revenue process. Moreover, as mentioned previously, the new tech-
nology is assumed to be more attractive than the old one (A1). This
assumption that management is no longer interested in the old
technology and will invest directly in new technology after its
appearance on the market is also used in many references [9,14,6,7].

Assumption (A1). �c0þ ~V ðg00Þo�c1 maxþ ~V
1ðc1 max; g10Þ.

Note that ~V
1ðc1; gÞ is the optimal value function over the infinite

horizon for the new technology with initial price c1. After investment
in new technology, the problem becomes equivalent to the problem
presented in Section 2.1, thus ~V

1ðc1; gÞ has the same structural
properties as ~V ðgÞ (Theorem 1). It also has the following property:

Lemma 2. ~V
1ðc1; gÞ is non-increasing in c1, 8gAΘ,

8c1A ½c1 min; c1 max�.

Proof. We can prove Lemma 2 directly by induction. □

2.2.2. Model formulation under technological evolution
Let VN

n ðgÞ denote the maximum expected discounted value
from decision epoch n to the last epoch N given that new
technology has not yet appeared. V̂ ðc1; gÞ represents the maximum
expected discounted value given that the new technology has
appeared with the purchase price c1. Finally, the optimization
problem can be formulated as follows:

VN
n ðgÞ ¼maxfDNN

n ðgÞ;MN
n ðgÞ1fgogMg; I

N
n ðgÞg; 8noN ð8Þ

with

DNN
n ðgÞ ¼mgþe� rτ½ð1�pnþ1Þ∑

8g0
Pðg0jgÞVN

nþ1ðg0Þ:

þpnþ1 ∑
8 c1

pnþ1;c1 ∑8g0
Pðg0jgÞV̂ ðc1; g0Þ� ð9Þ

MN
n ðgÞ ¼ �cMðgÞþDNN

n ðgMÞ
INn ðgÞ ¼ �c0þb0ðgÞþDNN

n ðg00Þ



and

V̂ ðc1; gÞ ¼max

dDNðc1; gÞ ¼mgþe� rτ∑8g0Pðg0jgÞV̂ ðc1; g0Þ
M̂ðc1; gÞ1fgrgMg ¼ �cMðgÞþdDNðc1; gMÞ
Îðc1; gÞ ¼ �c1þb0ðgÞþ ~V

1ðc1; g10Þ ð1Þ

8>>><>>>:
9>>>=>>>; ð10Þ

where

� Pðg0jgÞ: probability that the old technology system generates a
revenue rate g0 at the beginning of next period given that the
revenue rate generated at the beginning of current period is g.

� pnþ1: appearance probability of the new technology during
period nþ1 if it is not yet available at n.

� pnþ1;c1 0 : probability that the purchase price of new technology
is c1 0 during the next period, given at n, new technology has not
yet appeared. It is calculated similarly as Pðg0jgÞ in Section 2.1.

(1) From Assumption (A1), we deduce the following corollary:

Corollary (C1). �c0þ V̂ ðg00Þo�c1 maxþ ~V
1ðc1 max; g10Þ. □

An investment is equivalent to replacement with the best available
technology.

On the other hand, we define a time horizon of the interest for a
new technology appearance for which, beyond this, we no longer con-
sider the probability of occurrence. Hence, we consider VN

NðgÞ ¼ ~V ðgÞ.

3. Structural properties of the maintenance and investment
problem under technological evolution

In this section, structural properties of the optimal policy are
examined and the associated necessary conditions are derived. We
first present Lemma 3 that is the foundation for studying mono-
tone properties of the optimal policies.

Lemma 3.

� V̂ ðc1; gÞ is non-decreasing in g, 8gAΘ, 8c1A ½c1 min; c1 max�.� V̂ ðc1; gÞ is non-increasing in c1, 8gAΘ, 8c1A ½c1 min; c1 max�.� VN
n ðgÞ is non-decreasing in g, 8gAΘ.

Proof.

1. We can prove directly by induction (similar to Theorem 1).
2. We proceed by induction on the steps of the value iteration

algorithm. We consider V̂ nðc1; gÞ, when n-1, V̂ nðc1; gÞ-
V̂ ðc1; gÞ. Let

V̂ nðc1; gÞ ¼

dDNnðc1; gÞ ¼mgþe� rτ∑8g0Pðg0jgÞV̂ n�1ðc1; g0Þ
M̂nðc1; gÞ1fgrgMg ¼ �cMðgÞþdDNnðc1; gMÞ
Î nðc1; gÞ ¼ �c0þb0ðgÞþ ~V

1ðc1; g10Þ

8>>><>>>:
9>>>=>>>;

Without loss of generality, let V̂ 0ðc1; gÞ ¼ 0, 8gAΘ,
8c1A ½c1 min; c1 max�. V̂ 0ðc1; gÞ is non-increasing in c1, 8gAΘ,
8c1A ½c1 min; c1 max�.
Now assume that V̂ nðc1; gÞ is non-increasing in c1, 8gAΘ,
8c1A ½c1 min; c1 max�, we have:
� dDNnþ1ðc1; gÞ is non-increasing in c1 because

∑8g0Pðg0jgÞV̂ nðc1; g0Þ is non-increasing in c1.
� M̂nþ1ðc1; gÞ is non-increasing in c1 because of thedDNnþ1ðc1; gMÞ monotonic property.
� Î nþ1ðc1; gÞ is non-increasing in c1 by Lemma 2.

Hence V̂ nþ1ðc1; gÞ is non-increasing in c1. This result holds in
the limit.

3. We have VN
NðgÞ ¼ ~V ðgÞ, so VN

NðgÞ is non-decreasing in g, 8gAΘ,
8c1A ½c1 min; c1 max� (Theorem 1).
Similar to the proof of Theorem 1, we can prove that VN

n ðgÞ is a
non-decreasing function in g by induction. □

Recall that gM is the asset state after the maintenance action,
we define the respective differences in action costs for the non-
obsolescence and obsolescence cases.

8gogM ; gAΘ

d12N
n ðgÞ ¼MN

n ðgÞ�DNN
n ðgÞ

d23N
n ðgÞ ¼ INn ðgÞ�MN

n ðgÞ
Δ12ðc1; gÞ ¼ M̂ðc1; gÞ�dDNðc1; gÞ
Δ23ðc1; gÞ ¼ Îðc1; gÞ� bMðc1; gÞ

8>>>>><>>>>>:
8gAΘ

d13N
n ðgÞ ¼ INn ðgÞ�DNN

n ðgÞ
Δ13ðc1; gÞ ¼ Îðc1; gÞ�dDN ðc1; gÞ

(

Theorem 2. If the proportional factors between the system state and
the revenue accumulated in a decision period (m), or the mainte-
nance cost (h1), or the residual value (h2) follow the non-increasing
order ðmZh1Zh2Þ, then:

� 8n¼ 1;2;3… N with the action set is A¼ f1-
DNN

n ;2-MN
n ;3-INn g, the optimal policy πVN

n
ðgÞ is non-increasing

in g if πVN
n
ðgMÞ ¼ 1.

� With the action set is A¼ f1-dDN ;2-M̂ ;3-Îg, the optimal
policy πV̂ ðc1; gÞ is non-increasing in g if πV̂ ðc1; gMÞ ¼ 1.

Proof.

� (a) At n¼N, VN
NðgÞ ¼ ~V ðgÞ so πVN

N
ðgÞ is non-increasing in g

(Theorem 1).
When noN, 8g� ogþ ogM:

d12N
n ðgþ Þ�d12N

n ðg� Þ ¼ ðh1�mÞðgþ �g� Þ

þe� rτ ð1�pnþ1Þ ∑
8g0

Pðg0jg� ÞVN
nþ1ðg0Þ�∑

8g0
Pðg0jgþ ÞVN

nþ1ðg0Þ
 !"

þpnþ1 ∑
8 c1

pnþ1;c1 ∑
8 g0

Pðg0jg� ÞV̂ ðc1; g0Þ�∑
8g0

Pðg0jgþ ÞV̂ ðc1; g0Þ
 !#

From Lemma 3 of this paper and Lemma 4.7.2 of [20], we have

∑
8g0

Pðg0jg� ÞVN
nþ1ðg0Þr∑

8g0
Pðg0jgþ ÞVN

nþ1ðg0Þ

∑
8g0

Pðg0jg� ÞV̂ ðc1; g0Þr∑
8g0

Pðg0jgþ ÞV̂ ðc1; g0Þ

(b) It follows 8gogM ; gAΘ : d12N
n ðgþ Þrd12N

n ðg� Þ if h1rm.
Similarly, we can deduce

8gogM ; gAΘ : d23N
n ðgþ Þrd23N

n ðg� Þ if h2rh1: ðcÞ

8gAΘ : d13N
n ðgþ Þrd13N

n ðg� Þ if h2rm: ðdÞ

Note that 8gZgM , gAΘ : A¼ f1;3g, since (d) the optimal policy
πVN

n
ðgÞ is non-increasing in g.

(e) In addition, if πVN
n
ðgMÞ ¼ 1, so πVN

n
ðgÞ ¼ 1, 8gZgM , gAΘ.

(f) 8gogM , gAΘ, from (b)þ(c)þ(d) we can conclude that the
optimal policy πVN

n
ðgÞ is non-increasing in g.

Since (a)þ(e)þ(f), Theorem 2.1 is proved.
� Similar to the previous proof, by considering the action differ-

ence functions: Δ12ðc1; gÞ, Δ13ðc1; gÞ, Δ23ðc1; gÞ, Theorem
2.2 is deduced easily. □



Similar to Theorem 1, the non-increasing property of the optimal
policy presented in Theorem 2 allows us to deduce the control
limit structure for maintenance and replacement activities when
considering technological change.

Now, we present Lemma 4 that is a key result to consider the
sensitivity of the replacement threshold after the new technology
occurrence.

Lemma 4. 8gAΘ, 8c�1 ; cþ1 A ½c1 min; c1 max� and c�1 ocþ1 : V̂ ðc�1 ; gÞ�
V̂ ðcþ1 ; gÞr ~V

1ðc�1 ; g10Þ� ~V
1ðcþ1 ; g10Þþcþ1 �c�1 .

Proof. We consider V̂ nðc1; gÞ. When n-1: V̂ nðc1; gÞ-V̂ ðc1; gÞ.
Let B be f ~V 1ðc�1 ; g10Þ� ~V

1ðcþ1 ; g10Þþcþ1 �c�1 g.
Without loss of generality, let V̂ 0ðc1; gÞ ¼ 0, 8gAΘ,

8c1A ½c1 min; c1 max�.
From Lemma 2.1, we have

V̂ 0ðc�1 ; gÞ� V̂ 0ðcþ1 ; gÞ ¼ 0oB

If V̂ n�1ðc�1 ; gÞ� V̂ n�1ðcþ1 gÞrB, 8gAΘ, thendDNnðc�1 ; gÞ�dDNnðcþ1 ; gÞ ¼ e� rτ∑
8g0

Pðg0jgÞðV̂ n�1ðc�1 ; gÞ� V̂ n�1ðcþ1 ; gÞÞ

re� rτ∑
8g0

Pðg0jgÞB

Hence, we havedDNnðc�1 ; gÞ�dDNnðcþ1 ; gÞrB

M̂nðc�1 ; gÞ�M̂nðcþ1 ; gÞrB

Înðc�1 ; gÞ� Î nðcþ1 ; gÞ ¼ B

Now we demonstrate V̂ nðc�1 ; gÞ� V̂ nðcþ1 ; gÞrB.
In fact, if V̂ nðc�1 ; gÞ ¼dDNnðc�1 ; gÞ then

V̂ nðc�1 ; gÞ� V̂ nðcþ1 ; gÞrdDNnðc�1 ; gÞ�dDNnðcþ1 ; gÞrB

Similarly, if V̂ nðc�1 ; gÞ ¼ M̂nðc�1 ; gÞ or V̂ nðc�1 ; gÞ ¼ Î nðc�1 ; gÞ
Hence, V̂ nðc�1 ; gÞ� V̂ nðcþ1 ; gÞrB, 8gAΘ.
When n-1, V̂ nðc1; gÞ-V̂ ðc1; gÞ, Lemma 4 is proved. □

Theorem 3. After the new technology appears, the replacement
threshold is non-increasing in c1.

Proof. We define the replacement threshold yIc1 such as

yIc1 ¼maxfg : Δ23ðc1; gÞZ0 and Δ13ðc1; gÞZ0g

Hence we invest in the new technology, 8gryIc1 : πc1 ðgÞ ¼ 3
8c�1 ; cþ1 A ½c1 min; c1 max� and c�1 ocþ1 :
yI
c� ðþ Þ
1

¼maxfg : Δ23ðc�ðþÞ
1 ; gÞZ0 and Δ13ðc�ðþÞ

1 ; gÞZ0g.
From Lemma 4, we have

Δ13ðc�1 ; gÞ�Δ13ðcþ1 ; gÞ
¼ ~V 1ðc�1 ; g10Þ� ~V 1ðcþ1 ; g10Þþcþ1 �c�1 �e� rτðV̂ ðc�1 ; gÞ� V̂ ðcþ1 ; gÞÞ

Zð1�e� rτÞð ~V 1ðc�1 ; g10Þ� ~V 1ðcþ1 ; g10Þþcþ1 �c�1 Þ

Then Δ13ðc�1 ; gÞZΔ13ðcþ1 ; gÞ.
Similarly, we deduce Δ23ðc�1 ; gÞZΔ23ðcþ1 ; gÞ.
On the other hand, we have Δ13ðc�1 ; gÞ, Δ23ðc�1 ; gÞ is non-

increasing in g, 8c1A ½c1 min; c1 max� (Theorem 2.2), so we can
conclude that yIc�

1
ZyIcþ

1
. □

Next, we deduce Lemma 5 that is an important result to
identify the forecast horizon in the next subsection.

Lemma 5. 8gAΘ, n¼ 1;2;3… N: ~V ðgÞrVN
n ðgÞr V̂ ðc1; gÞ.

Proof. We prove this lemma by 2 steps.

1. First, we must prove that ~V ðgÞr V̂ ðc1 max; gÞ.
This assertion is correct at the first rank:

~V 0ðgÞ ¼ 0r V̂ ðc1 max; gÞ; 8gAΘ

By induction, we can deduce ~V nðgÞr ~V ðgÞ.
In fact, assume that ~V n�1ðgÞr V̂ ðc1 max; gÞ, 8gAΘ:

∑
8g0

Pðg0jg� Þ ~V n�1ðg0Þr∑
8g0

Pðg0jg� ÞV̂ ðc1 max; g0Þ

(a) We now have ~DNnðgÞrdDNðc1 max; gÞ, 8gAΘ.
From ~DNnðgMÞrdDNðc1 max; gMÞ, we deduce

~MnðgÞrM̂ðc1 max; gÞ; 8gAΘ: ðbÞ
From Assumption (A1), we have ~IðgÞr Îðc1 max; gÞ.
(c) Hence ~InðgÞr ~IðgÞr Îðc1 max; gÞ.
(d) From (a)–(c) we can conclude ~V ðgÞr V̂ ðc1 max;

gÞr V̂ ðc1 min; gÞ.
2. Next, we must prove

~V ðgÞrVN
n ðgÞr V̂ ðc1 min; gÞ; 8gAΘ; nrN:

In fact VN
n ðgÞ ¼ ~V ðgÞr V̂ ðc1 min; gÞ.

Now assume that ~V ðgÞrVN
nþ1ðgÞr V̂ ðc1 min; gÞ, 8gAΘ.

We can deduce

DNN
n ðgÞrdDNðc1 min; gÞ;

MN
n ðgÞrM̂ðc1 min; gÞ;

INn ðgÞr Îðc1 min; gÞ

8>><>>:
Hence VN

n ðgÞr V̂ ðc1 min; gÞ; 8gAΘ; 8nAN: ðeÞ

On the other hand, we find that

ð1�pnþ1Þ∑
8g0

Pðg0jgÞVN
nþ1ðg0ÞZ ð1�pnþ1Þ∑

8g0
Pðg0jgÞ ~V ðg0Þ

From Lemma 3.2 and (d), we deduce

pnþ1 ∑
8 c1

pnþ1;c1 ∑8g0
Pðg0jgÞV̂ ðc1; g0ÞZpnþ1∑

8 g0
Pðg0jgÞ ~V ðg0Þ

Hence DNN
n ðgÞZ ~DNðgÞ, 8gAΘ. Then, we deduce easily

VN
n ðgÞZ ~V ðgÞ; 8gAΘ; 8nAN ðfÞ

Propositions (d)–(f) imply that 8gAΘ, n¼1, 2, 3… N:
~V ðgÞrVN

n ðgÞr V̂ ðc1 min; gÞ. □

4. An algorithm for identification of the optimal forecast
horizon

The term “forecast horizon” is employed here for the time
interval denoted N where it is possible for the new technology to
appear. From a decision-maker point of view, it is essential to
estimate the conditional probability of appearance at each time in
this interval. The interval length is a function of the robustness of
the optimal decision given N, thus N becomes a decision variable.

We base the algorithm for the forecast horizon on the bounds
d12N

n ðgÞ, d13N
n ðgÞ, d23N

n ðgÞ. This method is inspired by Hopp and
Nair [9], however, they only consider the replacement investment
problem with a deterministic purchase price of new technology. In
our problem, we integrate both the maintenance option and the



uncertainty in the new technology purchase price. Let us define

VN
n ðgÞþ ¼ V̂ ðc1 min; gÞ; VN

n ðgÞ� ¼ ~V ðgÞ

VN
n ðgÞþ ¼maxfDNN

n ðgÞþ ;MN
n ðgÞþ1fgogMg; I

N
n ðgÞþ g

VN
n ðgÞ� ¼maxfDNN

n ðgÞ� ;MN
n ðgÞ�1fgogMg; I

N
n ðgÞ� g

with DNN
n ðgÞþ , MN

n ðgÞþ , INn ðgÞþ , DNN
n ðgÞ� , MN

n ðgÞ� , INn ðgÞ� describe
similarly as Eq. (9).

Then we derive the required bounds for d12N
n ðgÞ, d13N

n ðgÞ,
d23N

n ðgÞ:

8gogM ; gAΘ

d12N
n ðgÞþ ¼MN

n ðgÞþ �DNN
n ðgÞ�

d12N
n ðgÞ� ¼MN

n ðgÞ� �DNN
n ðgÞþ

d23N
n ðgÞþ ¼ INn ðgÞþ �MN

n ðgÞ�

d23N
n ðgÞ� ¼ INn ðgÞ� �MN

n ðgÞþ

8>>>>><>>>>>:
8gAΘ

d13N
n ðgÞþ ¼ INn ðgÞþ �DNN

n ðgÞ�

d13N
n ðgÞ� ¼ INn ðgÞ� �DNN

n ðgÞþ
(

Lemma 6. 8gAΘ, n¼ 1;2;3… N, for any yAf1;2g; zAf2;3g and
yoz:

1. dyzNn ðgÞþ and dyzNn ðgÞ� are upper and lower bounds for dyzNn ðgÞ.
2. dyzNn ðgÞ� and dyzNn ðgÞþ are non-decreasing and non-increasing in

N.

Proof.

1. By definition, VN
NðgÞ� rVN

NðgÞrVN
NðgÞþ .

From Lemma 5, we can easily prove by induction:

8gAΘ; 8nAN; VN
n ðgÞ� rVN

n ðgÞrVN
n ðgÞþ

Finally, Lemma 6.1 is directly given with the bounds definition.
2. We consider two forecast horizons N and Nþ1, 8gAΘ.

From Lemma 5 and the definition of VN
NðgÞ� , we have

VNþ1
N ðgÞ� Z ~V ðgÞ ¼ VN

NðgÞ�

We can prove easily by induction 8gAΘ, 8nAN:

VN
n ðgÞ� is non�decreasing in N

(a) The non-decreasing properties for DNN
n ðgÞ� , MN

n ðgÞ� and
INn ðgÞ� are deduced directly the non-decreasing property for
VN
n ðgÞ� .

(b) We can do exactly the same for proving the non-increasing
properties for VN

n ðgÞþ and DNN
n ðgÞþ , MN

n ðgÞþ , INn ðgÞþ .
Lemma 6.2 follows directly from (a)þ(b). □

Theorem 4. For all T4N where T, N are time horizons.

1. If maxfd12N
n ðgÞþ ; d13N

n ðgÞþ gr0, πVT
n
ðgÞ ¼ 1.

2. If minfd13N
n ðgÞ� ; d23N

n ðgÞ� gZ0, πVT
n
ðgÞ ¼ 3.

3. If fd12N
n ðgÞ� Z0; d23N

n ðgÞþ r0g, πVT
n
ðgÞ ¼ 2.

Proof. πN
Vn
ðgÞ ¼ arg maxfaAAgfDNN

n ðgÞ;MN
n ðgÞ1fgrgMg; I

N
n ðgÞg.

From Lemma 6, we can deduce directly Theorem 4. □

With Theorem 4 and the control limit structure of the optimal
policy, we present the following algorithm:

Algorithm for identifying the forecast horizon
Step 0: N¼0
Step 1: N¼Nþ1
Step 2: For all decision period n on forecast horizon N,

Step
2.1:

Calculate the upper and lower bounds d12N
n ðgÞ� ðþ Þ,

d13N
n ðgÞ� ðþ Þ, d23N

n ðgÞ�ðþ Þ for all g.
Step
2.2:

Determine the optimal action among A¼ f1;2;3g at
the
revenue rate state g, πVN

n
ðgÞ, if one of three conditions

in Theorem 4 is satisfied.
Step 3: Determine yI, the replacement threshold such that:

πVN
n
ðgÞa3, 8g4yI and πVN

n
ðyIÞ ¼ 3.

Step 4: If the optimal action for all g: yIrgogM are
determined,
STOP. N is the forecast horizon for the optimal
decision at period n. If not, go to step one.

5. Numerical examples

In this section, we present numerical examples to illustrate the
performance of the forecast horizon algorithm and discuss the
sensitivity of some of the parameters. For the following examples
we use a day as the time unit, a decision period of one month and
a discount factor, r¼3�10�4. Note that the selection of these
parameters is arbitrary and made without loss of generality.

5.1. Identification of the forecast horizon

The additional input parameters for Example 1 are given in Table 1,
for a purchase price of new technology c1 belongs to [300, 1837].

Table 2 shows a sequence of finite horizon solutions for the
decision at the first period in Example 1 under the forecast given
N. Notice that these decisions and the forecast horizon depend on
the system states g. We find that:

� For any N lower than 6, we cannot determine the optimal
choice for all system states because none of the conditions in
Theorem 4 are satisfied.

� When the forecast horizon is N¼8, the optimal decision is to
invest in a new system for gA ½0;0:31�, to do nothing for
gA ½8;10� while, for any gA ½0:32;7:99�, we do not have enough
information for a decision.

� The optimal policy for all system states is not determined until
N reaches 15 and does not change where N415. It prescribes
that we invest in a new system for states gA ½0;5:06�, maintain
for states gA ½5:07;7:31� and do nothing for states gA ½7:32;10�.

Therefore, the non-decreasing property in g of the optimal policy
is also illustrated.

A comparison of the decision thresholds in the case without new
technology highlights the importance of the maintenance option. It
allows postponing the investment decision for the opportunity to
benefit from a potential better technology in the near future.

Table 1
The input parameters for Example 1.

Appearance
prob.

Maintenance Salvage
value

Purchase price Revenue process

δ¼0.9 ϱ¼ 0:8 v¼5 sc ¼ 1:9� 10�3 s¼ 6:3� 10�3

κ¼0.9 ν¼20 Old tech: Old tech: Old tech:
h1 ¼ 20 h20 ¼ 10 c0 ¼ 300 g00 ¼ 10

μ0 ¼ �3� 10�3

New tech: New tech: New tech:
h21 ¼ 12 c1;0 ¼ 315 g10 ¼ 10:5

μ1 ¼ �2:7� 10�3



In the obsolescence case, new technology has appeared rendering
existing technology obsolete (Table 3), the new technology has appe-
ared with purchase price c1, and we find that the higher the purchase
price is, the lower the replacement threshold in new technology is
(Theorem 3). If c1 is very high, the model tends to take advantage of
the current system by extending its useful life through maintenance.

5.2. Impact of the new technology appearance probability on the
optimal policy

With the parameters of Table 1, we consider the probability
process of the new technology's appearance time with the same
increasing rate (κ¼0.9) and different initial values δ. Fig. 1 shows
the impact of the appearance probability of a new technology on
the maintenance threshold for the three first decision periods. We
find that this threshold is non-increasing when the probability is
increasing. However, this impact is less significant than the case of
replacement threshold (Fig. 2). In fact, if the initial value is
increasing in the interval ½0:01;0:5�, the maintenance thresholds
in the first decision period decrease in the interval g¼ ½7:34;7:19�
while the replacement thresholds reduce from g¼5.59 to g¼3.28.

Moreover, the significance of the maintenance option value
increases with the appearance probability of new technology.
Indeed, in Fig. 3, we find that the maintenance area (the interval
of revenue rate state where maintenance is performed) expands in
the initial value of the new technology appearance probability.

5.3. Impact of maintenance efficiency on the replacement threshold

With the parameters of Table 1, we examine the effect of
maintenance efficiency that changes in the interval ½0:8;0:86� on
the replacement threshold. In the non-obsolescence case, the impact
of the maintenance efficiency on the replacement threshold is
monotone. The replacement threshold decreases with the mainte-
nance efficiency. This tendency is shown clearly in Fig. 4. Consider,
for example, that if maintenance efficiency is high, ϱ¼ 0:86, the
investment in new technology is not optimal at n¼2, 3. At the first
decision epoch, while the maintenance efficiency raises from ϱ¼ 0:8
to ϱ¼ 0:86, the replacement threshold decreases from g¼5.06 to
g¼0.14.

In the obsolescence case, we lose the advantage of extending
the economic life of the system through maintenance when the
decision-maker can take advantage of the new technology. This is
illustrated in Fig. 5 with an anticipation of system replacement
when maintenance efficiency increases. If the purchase price of

Table 2
The optimal decision at first decision period for Example 1.

Optimal action

N Unknown Invest Maintain Do nothing

6 8gAΘ

8 gA ½0:32;7:99� gA ½0;0:31� gA ½8;10�
12 gA ½5:01;5:11� gA ½0;5� gA ½5:12;7:29� gA ½7:35;10�

gA ½7:3;7:34�
15 gA ½0;5:06� gA ½5:07;7:31� gA ½7:32;10�
24 gA ½0;5:06� gA ½5:07;7:31� gA ½7:32;10�

Table 3
The optimal policy for obsolescence case in Example 1.

c1 Invest Maintain Do nothing

300 gA ½0;7:84� gA ½7:85;10�
400 gA ½0;7:57� gA ½7:58;10�
600 gA ½0;7:5� gA ½7:51;10�

1000 gA ½0;7:37� gA ½7:38;10�
1700 gA ½0;7:07� gA ½7:08;7:19� gA ½7:2;10�
1837 gA ½0;6:15� gA ½6:16;7:33� gA ½7:34;10�

Fig. 1. Impact of the new technology appearance probability on the maintenance
threshold for the three first decision periods.

Fig. 2. Impact of the new technology appearance probability on the replacement
threshold for the three first decision periods.

Fig. 3. Comparison of maintenance areas for the three first decision periods.



new technology is not very expensive, the ratio of the mainte-
nance cost and its associated benefits is not greater than the
expected rewards of new technology. We find that the replace-
ment option demonstrates its dominance in this case. On the
contrary, we weigh the benefits of utilizing the available asset and
the revenues gained by investment in new technology. Hence, the
maintenance area expands in the purchase price of new technol-
ogy, not in the maintenance efficiency, Fig. 6. This interesting
result thus demonstrates that it seems not necessary to improve
the efficiency of maintenance; a routine maintenance effort may
be sufficient under technological evolution.

6. Conclusion

In general, maintenance is often viewed as a necessary short-term
investment by a company for dealing with equipment failures and
enhancing system efficiency while investment in a new technology is
considered as a part of long-term competitive strategy. In this paper,
we have highlighted the importance of considering maintenance
actions at the tactical level by integrating them into the problem of
technology investment. We have also developed an efficient approach

for determining the optimal forecast horizon – a given finite horizon N
that is long enough to guarantee the optimal decision over the infinite
horizon. As the investment planning in a new technology is the long-
term development strategy of a company, the identification of the
minimum forecast horizon in order to avoid bad decisions is critical.

Through our mathematical analysis, we have shown the control
limit structure of the optimal policy and demonstrated the intui-
tion that the replacement investment in new technology is
postponed when its purchase price is high.

Finally, the impact of maintenance actions on the investment
strategy in a new technology is demonstrated through the results
of numerical examples. Indeed, the maintenance action allows
postponing the investment in a new asset in order to wait for
better technology. In the obsolescence case, the optimal main-
tenance policy when applied on new technology would offer a
higher profit than that on the current asset. This encourages the
firms to consider investment in the new technology.

Several perspectives arise from this study. This model could be
extended to consider a sequence of new technologies. This,
however, would drastically increase the complexity in the decision
by having to choose the most suitable technology. From an
optimization perspective, the number of bounds for the differ-
ences in option values would need to be extended for defining the
new stopping rule. Furthermore, the solution algorithmwould also
need to be improved in order to identify the forecast horizon for a
sequential technology evolution.
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