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Abstract

A central problem in Delay Tolerant Networks (DTNs) is to persuade
mobile nodes to participate in relaying messages. Indeed, the delivery of
a message incurs a certain number of costs for a relay. We consider a two-
hop DTN in which a source node, wanting to get its message across to
the destination as fast as possible, promises each relay it meets a reward.
This reward is the minimum amount that offsets the expected delivery
cost, as estimated by the relay from the information given by the source
(number of existing copies of the message, age of these copies). A reward
is given only to the relay that is the first one to deliver the message
to the destination. We show that under fairly weak assumptions the
expected reward the source pays remains the same irrespective of the
information it conveys, provided that the type of information does not
vary dynamically over time. On the other hand, the source can gain by
adapting the information it conveys to a meeting relay. For the particular
cases of two relays or exponentially distributed inter-contact times, we
give some structural results of the optimal adaptive policy.
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strategy
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1 Introduction

Delay-tolerant networking (DTN) is an approach to computer network archi-
tecture that seeks to address the technical issues in networks that may lack
continuous network connectivity [1]. A typical example is that of a mobile net-
work with a low node density. Such a network is only sporadically connected,
meaning that it often happens that there is no end-to-end path between a source
node and a destination node. In these challenging environments, popular ad hoc
routing protocols such as AODV [2] and DSR [3] fail to establish routes because
they try to establish a complete route before forwarding the data. Instead what
is needed is a routing scheme that is capable of storing messages and forwarding
them once a link becomes available in hope that they will eventually reach their
destinations. Several such routing schemes have been proposed in the research
litterature, some of them seeking to minimize the message delivery time by
replicating many copies of the message [4], whereas for other ones the emphasis
is more on resource and energy consumption.

In our work, we focus on the so-called two-hop routing scheme, which is
known to provide a good tradeoff between message delivery time and resource
consumption [5]. With two-hop routing, the communication is basically in 3
phases:

• First, the source gives the message to each and every mobile nodes it meets.
These nodes act as relays for delivering the message to its destination.

• A relay cannot forward the message to another relay, so it will store and
carry the message until it is in radio range of the destination.

• Once this happens, the relay deliver the message to the destination.

In most previous works, it is assumed that relays are willing to cooperate
with the source node. However, the delivery of a message incurs a certain
number of costs for a relay. First, there are energy costs for receiving the
message from the source and transmitting it to the destination. It is also natural
to assume that there is some cost per unit time for storing the message in the
buffer of the relay. The question we are interested in is thus the following:
why should a relay accept to have its battery depleted and its buffer occupied
for relaying messages exchanged between other nodes? In other words, how to
persuade mobile nodes to participate in relaying messages?

For that purpose, we propose a very simple incentive mechanism. The source
promises to each and every relay it meets a reward, but informs them that only
the first one to deliver the message to the destination will get a reward. The
reward asked by a relay has to offset its expected cost, as estimated by the relay
when it meets the source. The reward thus depends on the time at which it
meets the source, but also on the information given by the source through the
probability of success estimated by the relay. When it meets a relay, the source
has basically three options:

• it can give full information to the relay, that is it can tell to the relay the
number and the age of all existing message copies,
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• it can give only partial information to the relay, that is it can tell to the
relay the number of message copies in circulation without disclosing the
information on the age of these copies, and

• it can give no information at all to the relay, in which case the relay only
knows at what time it met the source.

The dependence of the reward on the information has the following intuitive
explanation. If for instance a relay is told by the source that many message
copies are already in circulation, the relay will clearly estimate a smaller prob-
ability of getting the reward (since others relays could have already delivered
the message), and thus this relay will naturally ask for a higher reward to offset
its costs. On the contrary, it seems intuitively better for the source to give
full information to the first relay it meets. To address this issue of selfish relay
nodes, we present a solution based on mechanism design theory that considers
how to implement good system-wide solution to problem that involved agents,
each individual has a strategy space and decisions result as a function of his pri-
vate information. The amount of reward proposed by source to relay nodes, is
based on the private information that source node likes to share with a meeting
relay. Hence our model is particular type of game of asymmetric information
characterized by a leader (source node) who would like to condition his actions
on some information that he decides to share with a selfish player.

1.1 Contributions

We propose an incentive mechanism for the relays to compensate for their costs
and risks in carrying messages for a source. In the proposed mechanism every
relay is proposed a different reward based on its meeting time with the source
but only the first one to deliver gets its reward. The main contribution of this
paper is the investigation of the influence of the information given by the source
to the relays and the reward it has to propose to them as compensation.

We first focus on static strategies, that is strategies in which the source
always give the same type of information (either full information, partial infor-
mation, or no information) to the relays irrespective of their contact times. For
each of the three information settings and for an arbitrary inter-contact distri-
bution, we give expressions (in terms of integrals) for the reward that the source
has to propose to each of the relays as a function of the meeting times with the
previous relays. For the special but important case of exponentially distributed
inter-contact times, we shall give explicit expression for these rewards. The pro-
posed reward guaratees full cooperation from each of the relays. Since only the
first relay to deliver the message gets its reward, the amount paid by the source
for the delivery of the message lies somewhere in between what is proposed to
the first and the last relay. We show that the expected reward paid by the
source is the same in all three settings. In other words, the expected reward
paid by the source when it guarantees full cooperation of relays for delivering a
message is the same irrespective of the information that source makes available
to relays, as long as the source does not adapt the information it gives.
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We then study the benefits that can be expected by the source from an
adaptive strategy. In an adaptive strategy, the source decides to give full in-
formation, partial information or no information at all to a relay at the time
it meets it, based on the contact times with this relay and all previous ones.
Since the analysis is much more involved than in the static case, we restrict our-
selves to the two following settings: (a) when there are only two relays, and (b)
when inter-contact times with the source and the destination are exponentially
distributed. Under both settings, we show that the source can do better by
changing its strategy on the fly as and when it meets the relays. The resulting
adaptive strategy will be shown to be of threshold type. Namely, in the setting
with two relays, when the source meets the first relay, it is always optimal for
the source to tell it that it is the first one. For the second relay, if it arrives
before the threshold, which depends on the meeting time with the first relay,
it is optimal to give full information, otherwise it is optimal not to give any
information.

Our results are a generalization of those in [22] which were limited to the
two-relay setting with exponentially distributed inter-contact times.

1.2 Organization of the paper

The paper is organized as follows: the next section is devoted to related work.
Section 3 introduces the system model and the assumptions used through the
paper. In section 4 we investigate the impact of information that the source
share with relays on the reward that it has to propose to them as composition
in static scenario. The extension to the dynamic scenario is provided in section
5. General discussion on main assumptions is held in section 6. Section 7
concludes the paper.

2 Related Work

In the literature on DTNs [6, 7], several incentive schemes have been recently
proposed. For example, [8] uses Tit-for-Tat (TFT) to design an incentive-aware
routing protocol that allows selfish DTN nodes to maximize their individual
utilities while conforming to TFT constraints. Mobicent [9] is a credit-based in-
centive system which integrates credit and cryptographic technique to solve the
edge insertion and edge hiding attacks among nodes. PI [10] attaches an incen-
tive on the sending bundle to stimulate the selfish nodes to cooperate in message
delivery. SMART [11] is a secure multilayer credit-based incentive scheme for
DTNs. In SMART, layered coins are used to provide incentives to selfish DTN
nodes for bundle forwarding. MobiGame [12] is a user-centric and social-aware
reputation based incentive scheme for DTNs. In addition, [13] proposes socially
selfish routing in DTNs, where a node exploits social willingness to determine
whether or not to relay packets for others. Authors in [14] formulate nodal
communication as a two-person cooperative game for a credit-based incentive
scheme to promote nodal collaboration. RELICS [15] is another cooperative
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based energy-aware incentive mechanism for selfish DTNs, in which a rank met-
ric was defined to measure the transit behavior of a node. In [16], authors
proposed an incentive driven dissemination scheme that encourages nodes to
cooperate and chooses delivery paths that can reach as many nodes as possible
with fewest transmissions. A fundamental aspect that is usually ignored in DTN
literature is the feedback message, which may incur into a large delay. In fact,
the exchange of rewards between relays should not require feedback messages.
In order to overcome lack of feedback, the proposed mechanism assumes that
a relay receives a positive reward if and only if it is the first one to deliver the
message to the corresponding destination. [17] is a credit-based incentive sys-
tem using the theory of Minority Games [18] in order to attain coordination in
distributed fashion. This mechanism considers the realistic case when the cost
for taking part in the forwarding process varies with the devices technology or
the users habits.

The proposed mechanism in this paper is a sub-field of mechanism design
that concerns itself with how to develop incentive mechanism that will lead to a
desirable solution from a systemwide point of view. In recent years mechanism
design has found many important applications in the computer sciences; e.g., in
security design problems [19] , in distributed scheduling resource allocation [20]
and cooperation routing in ad-hoc networks [21].

3 System Model and Objectives

We consider a wireless network with one source node, one destination node and
N relays. We shall assume that the source and the destination nodes are fixed
and not in radio range of each other, whereas other nodes are moving according
to a given mobility model.

At time 0, the source generates a message for the destination. The source
wants this message to be delivered to the destination as fast as possible. How-
ever, it cannot transmit it directly to the destination since both nodes are not
in radio range of each other. Instead, the source proposes to each relay it meets
a reward for delivering the message1. It is assumed that the network is two-hop,
that is a relay has to deliver the message by itself to the destination (it can-
not forward the message to another relay). An important assumption we shall
make is that relays are not seeking to make profit: a relay accepts the message
provided the reward promised to it by the source offsets its expected cost for
delivering the message to the destination, as estimated by the relay when it
meets the source.

This expected cost has several components. A relay that accepts the message
from the source always incurs a reception cost Cr. This is a fixed energy cost for
receiving the message from the source. The relay will then store the message into
its buffer and carry it until it is in radio range of the destination. We assume here

1Note that since the source is not informed when the message reaches the destination, it

can still propose the message to a relay even if the message has already been delivered by

another relay.
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that there is an incurred storage cost Cs per unit time the message is stored in
the buffer of the relay. Hence, the expected storage cost depends on the expected
time it takes to reach the destination. Once the relay meets the destination, it
can deliver the message. This incurs an additionnal transmission cost Cd which
is a fixed energy cost for transmitting the message to the destination. This
cost is incured if and only if the relay is the first one to deliver the message
to the destination, in which case the relay gets the reward. If on the contrary,
the message has already been delivered, the relay gets nothing but save the
transmission cost.

3.1 The Role of Information

As should be apparent from the above discussion, the reward asked by a relay
to the source depends both on the expected time it will take for the relay to
reach the destination and on the probability of success it estimates at the time
it meets the source. The latter represents the probability of this relay to be
the first one to deliver the message. The crucial observation here is that this
probability notably depends on the information given by the source to the relay.
Intuitively, if a relay is told by the source that there are already many message
copies in circulation, it will correctly infer that it has a higher risk of failure
than if it was the first one to meet the source, and it will naturally ask for a
higher reward. The source can of course choose not to disclose the information
on the number of existing message copies, in which case relays estimate their
success probabilities based solely on the time at which they meet the source and
on the number of competitors. In that case, the first relay to meet the source
will certainly underestimate its success probability, and again ask for a higher
reward than if it was told it was the first one.

It is thus clear that the expected reward to be paid by the source depends on
the information it gives to the relays. There are several feasible strategies for the
source. We shall distinguish between static strategies and dynamic strategies.
In static strategies, the information given to the relays is fixed in that it does
not depend on the times at which the source meets the relays. We shall consider
three static strategies:

• full information: each relay is told by the source how many other relays
have already received the message, and at what times,

• partial information: each relay is told by the source how many message
copies there are in circulation, but the source does not reveal the age of
these copies,

• no information: each relay is told nothing by the source; it only knows at
what time it meets the source.

In dynamic strategies, the source adapts the information it conveys on the
fly as and when it meets the relays. In such a strategy, the decision to give full
information, only partial information or no information at all to a relay depends
on the contact times with previous relays.
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3.2 Assumptions on Contact Processes

As mentionned before, the N relays are moving according to a given mobility
model. This model represents the movement of relays, and how their location,
velocity and acceleration change over time. However, rather than assuming a
specific mobility model, we instead characterize the movements of relays solely
through their contact processes with the source and the destination. Our main
assumption here is that inter-contact times between a relay and the source
(resp. destination) are independent and identically distributed (i.i.d.) random
variables with finite first and second moments. In the following, we let Ts

(resp. Td) be the random time between any two consecutive contacts between
a relay and the source (resp. destination). We shall moreover assume that the
random variables Ts and Td are independent. In addition, we shall assume that
contacts between relays and any of the fixed nodes are instantaneous, i.e., that
the duration of these contacts can be neglected.

At this point, we make two important observations:

• For a given relay, the time instant at which the message is generated by the
source can be seen as a random point in time with respect to the contact
process of this relay with the source. Hence, the random time between
the instant at which the message is generated and the instant at which
the relay will meet the source corresponds to what is called the residual
life of the inter-contact times distribution with the source in the language
of renewal theory. In the sequel, we shall refer to this time as the residual
inter-contact time with the source.

• Similarly, the time instant at which a given relay receives the message
from the source can be considered as a random point in time with respect
to the contact process of this relay with the destination. Hence, residual
inter-contact time with the destination is given by the residual life of the
inter-contact times distribution with the destination.

Let Fs(x) = P(Ts > x) (resp. Fd(x) = P(Td > x)) be the complementary
cumulative distribution function of Ts (resp. Td). As a consequence of the
above, the density functions of the residual inter-contact times with the source
and the destination are given by

f̃s(x) =
Fs(x)

E[Ts]
and f̃d(x) =

Fd(x)

E[Td]
, (1)

respectively. We also note that the mean residual inter-contact times with the
source and the destination are given by E[T̃s] = E[T 2

s ]/(2E[Td]) and E[T̃d] =
E[T 2

d ]/(2E[Td]), respectively.

3.3 Objectives

In the following, we adopt the point of view of the source and investigate the
strategy it should follows in order to minimize the price to be paid for delivering
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a message. We first analyze the case of static strategies in Section 4, and then
consider dynamic strategies in Section 5.

4 Expected Reward Under a Static Strategy

In this section, we assume that the source follows a static strategy, i.e., it does
not adapt the information it conveys to as and when it meets the relays. More
precisely, we consider the three following settings: (a) the source always gives
full information to the relays, (b) it always gives only partial information to the
relays or (c) it always gives no information at all to the relays. In the sequel,
the superscript F (resp. P , N) will be used to denote quantities related to the
full information (resp. partial information, no information) setting. Also, we
shall use relay i and the ith relay interchangeably to refer to the relay that is
the ith one to meet the source in chronological order.

4.1 Estimated Probability of Success

Let also Si, i = 1, . . . , N , be the random time at which the source meets the ith

relay. We denote by S the vector (S1, . . . , SN ). In order to simplify notations,
we shall write S−n to denote the vector (S1, . . . , Sn−1, Sn+1, . . . , SN ) and Sm:n

to denote the vector (Sm, . . . , Sn). Similarly, for fixed s1, s2, . . . , sN , we denote
by s the vector (s1, s2, . . . , sN). We shall also use the notations s−n and sm:n

with the same interpretation as for vectors of random variables.
Define pi(s) as the (real) probability of success of the ith relay for the given

vector s of contact times, that is the probability of this relay to be the first one

to deliver the message. Let also p
(k)
i (s) be the probability of success estimated

under setting k by relay i when it meets the source2. Note that in general

p
(k)
i (s) and pi(s) are different. Indeed, the probability of success pi(s) depends

on all contact times. On the contrary, it is obvious that for i < N , p
(k)
i (s) does

not depend on si+1, · · · , sN , since, when it meets the source, relay i does not
know at what time the source will meet relays i+1, . . . , N . Similarly, for i > 1,

p
(k)
i (s) depends on s1, . . . , si−1 only in the full information setting. Besides, we

also note that

p
(P )
1 (s) = p

(F )
1 (s), (2)

since the first relay obtains exactly the same information from the source in the
partial information and in the full information settings. Finally, we note that

p
(F )
N (s) = pN(s), (3)

since in the full information setting, the last relay knows the contact times of
all relays with the source.

2We remind the reader that relay i refers to the ith relay in chronological order of meeting

times with the source.
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4.2 Expected Cost for a Relay

Define V
(k)
i (s) as the net cost for relay i under setting k, and let R

(k)
i (s) be the

reward asked by this relay to the source under this setting. The reward R
(k)
i (s)

proposed to relay i has to offset its expected cost E[V
(k)
i (s)], which is given by

E[V
(k)
i (s)] = Cr + CsE[T̃d] + [Cd −R

(k)
i (s)]p

(k)
i (s). (4)

The first term in the net expected cost is the reception cost, which is always
incurred. The second term represents the expected storage cost. It is directly
proportional to the mean of the residual inter-contact time with the destination.
The last term is the cost of transmitting the message to the destination which
then gives the reward to the relay. This term enters into play only if relay i is

the first one to reach the destination, which explains the factor p
(k)
i (s).

4.3 Rewards Promised by the Source to Individual Relays:

General Inter-Contact Times

Relay i will accept the message provided the proposed reward offsets its expected

cost, that is, if R
(k)
i (s) is such that E[V

(k)
i (s)] ≤ 0. Thus, the minimum reward

that the source has to promise relay i is

R
(k)
i (s) = Cd +

(

Cr + CsE[T̃d]
) 1

p
(k)
i (s)

=: C1 + C2
1

p
(k)
i (s)

. (5)

Note that the reward asked by relay i depends on the information given by

the source only through the estimated probability of success p
(k)
i .

Given S1 = s1, · · · , SN = sN , the expected reward paid by the source under
setting k is

R
(k)

(s) =

N
∑

i=1

pi(s)R
(k)
i (s). (6)

With (5), it yields

R
(k)

(s) = C1 + C2

N
∑

i=1

pi(s)

p
(k)
i (s)

. (7)

While the reward promised to the relays in different information settings can
be computed using the above equations, we now give explicit expressions for
these rewards for exponential inter-contact times which are observed in certain
mobility models.
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4.4 Rewards Promised by the Source to Individual Relays:

Exponential Inter-Contact Times

Let us assume that the inter-contact times between a relay and the source (resp.
destination) follows an exponential distribution with rate λ (resp. µ)

We shall first compute the probability of success of each of relays given all
the contact times, and then use this expression to compute the probability of
success of each of relays in the three information settings. The rewards to be
promised to relays can then be computed using (5).

Proposition 1. For a given vector s = (s1, · · · , sN ), the success probability of
nth relay is,

pn(s) =

N
∑

i=n

1−
(

e−µ(si+1−si)
)i

i

i
∏

j=1

e−µ(si−sj). (8)

Proof. Consider relay n that met the source at time sn and first compute its
probability to deliver the message to the destination for each time interval
(si, si+1], n ≤ i < N . The probability that a relay does not meet the desti-
nation in (si, si+1] is e

−µ(si+1−si), and the probability that the nth relay will be
the first one to meet the destination in (si, si+1] among i relays that have the

message at time si, is
1−(e−µ(si+1−si))

i

i
.

Next, take into account the probability that none of the relays that re-
ceived the message before time si have not yet meet the destination, which is
∏i

j=1 e
−µ(si−sj).

The probability of success of the nth relay is then the sum of success proba-
bilities in each interval (si, si+1], i ≥ n,

pn(s) =
N
∑

i=n

1−
(

e−µ(si+1−si)
)i

i

i
∏

j=1

e−µ(si−sj). (9)

Next, for each setting k ∈ {F, P,N}, write the success probability, p
(k)
i ,

estimated by relay i when it receives the message from the source.

4.4.1 Full Information Case

Proposition 2. For given times s = (s1, · · · , sn), n
th relay computes its prob-

ability of success as

p
(F )
n (s) = µ

n−1
∏

k=1

e−µ(sn−sk)
N
∑

i=n

(N−n)!
(N−i)! λ

i−n
i
∏

j=n

1
(N−j)λ+jµ

. (10)
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Proof. The formal proof involves unconditioning the probability in (8) on the
meeting times of the subsequent relays with the source, and in given in Appendix
B. Here we give a sketch of the proof which summarizes the main steps.

Let Sj (resp. Yj) be a random time at which jth relay meets the source
(resp. destination). Note that Sj , · · · , SN and Y1, · · · , Yj−1 are independent
∀j ≥ 2.

Recall that for independent exponential random variables X1, · · · , Xn with
respective parameters λ1, · · · , λn, the probability that the minimum is Xi is
λi/(λ1 + · · ·+ λn).

Consider relay n that met the source at time sn. For j > n, the probability
that Sj is the minimum from random variables Sj , · · · , SN and Y1, · · · , Yj−1 is
λ/((N−j+1)λ+(j−1)µ), which essentially means that random time Sj will be
the first to occur among the random variables Sj , · · · , SN of meeting times with
the source and that none of j − 1 relays will not meet the destination before Sj

happens.
For i > n, the product

(N − n)!

((N − n)− (i − n))!

i
∏

j=n+1

λ

(N − j + 1)λ+ (j − 1)µ
(11)

represents probability that Si is the minimum from Si, Y1, · · · , Yi−1 where Sn+1 <
· · · < Si. This means that after time sn and before time Si occurs no relay has
yet met the destination.

For i ≥ n, the probability that Yn is the minimum from Si+1, · · · , SN , Y1, · · · , Yi

is
µ

(N − i)λ+ iµ
, (12)

that means that nth relay will be the first to deliver the message before time
Si+1.

Thus, probability that nth relay will deliver the message to the destination
in time interval (si, si+1], n ≤ i < N is,

(N − n)!

(N − i)!

µ

λ

i
∏

j=n

λ

(N − j)λ+ jµ
, (13)

and by summing over the subsequent relays one obtains probability that after
time sn, n

th relay will be the first to deliver the message, that is,

N
∑

i=n

(N − n)!

(N − i)!

µ

λ

i
∏

j=n

λ

(N − j)λ+ jµ
, (14)

The probability that none of the relays that received the message before time
sn did not yet meet the destination is

∏n−1
k=1 e

−µ(sn−sk). With this and (14), we
obtain the success probability of nth relay given times s1, · · · , sn,

p
(F )
n = µ

n−1
∏

k=1

e−µ(sn−sk)
N
∑

i=n

(N−n)!
(N−i)! λ

i−n
i
∏

j=n

1
(N−j)λ+jµ

. (15)
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4.4.2 Partial Information Case

Proposition 3. Given the time sn with the number, n, of already existing
copies, the nth relay computes its success probability as

p(P )
n (s) =

(

λ
λ−µ

e−µsn−e−λsn

1−e−λsn

)n−1

×µ
N
∑

i=n

(N−n)!
(N−i)! λ

i−n
i
∏

j=n

1
(N−j)λ+jµ

, if λ 6= µ,

(16)

and

p(P )
n (s) =

(

λsn
e−λsn

1−e−λsn

)n−1 N
∑

i=n

(N−n)!
(N−i)!Ni−n+1 , if λ = µ. (17)

Proof. The probability that after time sn, the n
th relay is the first one to deliver

the message to the destination is given by (14).
Consider a relay that received the copy of the message before time sn. For

λ 6= µ, the probability that the relay does not meet the destination before sn is

∫ sn

0

λe−λse−µ(sn−s)

1− e−λsn
ds =

λ

λ− µ

e−µsn − e−λsn

1− e−λsn
. (18)

Then the probability that none of the n − 1 relays that received the message
before time sn did not deliver it to the destination before sn is

(

λ

λ− µ

e−µsn − e−λsn

1− e−λsn

)n−1

, for λ 6= µ. (19)

The product of this probability with the probability (14) that after time sn, n
th

relay is the first one to deliver the message to the destination, gives the claimed
result.

Similarly reasoning, the claimed result for λ = µ is obtained after substitut-

ing λ instead of µ in (14) and with that the integral in (18) gives λsn
e−λsn

1−e−λsn
.

Corollary 1. For the given times s = (s1, · · · , sn), the success probability of

the nth relay in the full information setting, p
(F )
n , can be represented through

p
(P )
n as follows,

p(F )
n (s1, · · · , sn) =

n−1
∏

k=1

e−µ(sn−sk)

(

λ
λ−µ

e−µsn−e−λsn

1−e−λsn

)n−1 p
(P )
n (s), if λ 6= µ. (20)
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4.4.3 No Information Case

Proposition 4. Given only the time sn, the nth relay computes its success
probability as

p
(N)
n (s) =

=
N
∑

m=1

(N−1)!
(N−m)!(m−1)!

(

1− e−λsn
)m−1 (

e−λsn
)N−m

p
(P )
m .

(21)

Proof. Consider the relay n that meets the source at time sn and informed only
this meeting time and not the number of already existing copies of the message.
The probability that any relay does not meet the source before time sn is e−λsn

and that it meets the source is 1 − e−λsn . Then the nth relay can compute its
probability of success as

p
(N)
n (s) =

=
N
∑

m=1
Cm−1

N−1

(

1− e−λsn
)m−1 (

e−λsn
)N−m

p
(P )
m (s)

=
N
∑

m=1

(N−1)!
(N−m)!(m−1)!

(

1− e−λsn
)m−1 (

e−λsn
)N−m

p
(P )
m (s).

(22)

Thus, the source when it meets a relay can compute the reward it should
promise to this relay within each setting based on the corresponding success
probability estimated by the relay.

4.5 Expected Reward Paid by the Source

Until now, we have computed the reward the source should offer to each of the
relays as a function of the time it meets them and the information offered to
them. We now turn our attention to the expected reward paid by the source
when the expection is taken over all possible meeting times. This quantity
can be thought of as the long-run average reward per message the source will
have to pay if it sends a large number of messages (and assuming that message
generation occurs at a much slower time scale than that of the contact process).

The expected reward paid by the source under setting k can be obtained by
unconditioning (6) on S1, · · · , SN ,

R
(k)

=
∫

s

R
(k)

(s)fS(s)ds

=
∞
∫

s1=0

∞
∫

s2=s1

· · ·
∞
∫

sN=sN−1

R
(k)

(s)fS(s)dsN · · · ds2ds1,

(23)

where fS(s) is the joint distribution of S1, · · · , SN . Since the residual inter-
contact times between the relays and the source are i.i.d. random variables,
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fS(s) is the joint distribution of the order statistics of the N random variables
S1, · · · , SN . That is,

fS(s) = N ! f̃s(s1) . . . f̃s(sN ). (24)

With (7), (23) and (24), we obtain the expected reward paid by the source
in terms of the probabilities of success estimated by the relays,

R
(k)

= C1 + C2 N !

N
∑

n=1

∫

s

pn(s)

p
(k)
n (s)

f̃s(s1) . . . f̃s(sN )ds. (25)

From the probability of success estimated by the relays in the three settings,
we can prove that the expected reward to be paid by the source for delivering
its message is the same in all three settings, as stated in Theorem 1.

Theorem 1. The expected reward to be paid by the source under setting k ∈
{F, P,N} is

R
(k)

= C1 +NC2. (26)

Proof. See Appendix A.

Theorem 1 shows that if the source does not adapt the information it gives,
the expected reward it will have to pay remains the same irrespective of the
information it conveys. We also note that the expected reward grows lineraly
with the number of relays.

The result in Theorem 1 has the following intuitive explanation. It says
that the expected reward paid by the source is equal to expected total cost
incurred by all the relays in the process of delivering the message. Each relay
accepts and stores the message until it meets the destination, and a cost of
C2 = Cr + CsE[T̃d] in the process. Since there are N relays which carry the
message, the expected total cost for carrying the message is NC2. Of these N ,
one relay will be successful in delivering the message and will incur an additional
delivery cost of C1 = Cd. Thus, the expected total cost incurred by the relays
is C1 + NC2. Since on the long run the relays make neither a profit nor a
loss, the expected total costs incurred by the relays should be offset by the
reward paid by the source, which explains the result in Theorem 1. What is less
intuitive though is that the expected reward paid does not depend on the type
of information given to the relays.

5 Adaptive Strategy

The analysis in the previous section shows that as long as the information given
to all the relays is of the same type, the source has to pay the same reward.
Could the source do better by changing the type of information it gives to relays
based on and when it meets them? We show in this section that the source can
indeed reduce the expected reward it pays if it can adapt the type of information

14



dynamically. Consider the following situation in which the source encounters
the second relay a long time after it encountered the first one. If the source
discloses the time when it met the first relay to the second one, then the second
relay will correctly compute its probability of success to be small and will ask
for a high reward. If instead the source were not to disclose this information,
then the probability of success computed by the relay would be higher and the
source could propose a lower reward. Thus, source stands to gain by changing
the type of information based on the time instants it encounters the relays.

In this we shall investigate the benefits that an adaptive strategy can procure
for the source, and bring to light certain structural properties concerning of the
optimal adaptive strategy for some particular cases of the model.

A key assumption we shall make in the analysis of the adaptive strategy is
that the relays do not react to the fact that the source is adapting its strategy. A
relay will compute its success probability based only on its contact time with the
source and additional information, if any, received from the source. In practice,
if the relay knows that the source will adapt its strategy as a function of time,
then the relay will also react accordingly, to which the source will react, and so
on ad infinitum. As a first approximation, we shall restrict the analysis of the
adaptive strategy assuming that the relays are naive.

5.1 Adaptive Versus Static Strategies

We shall first give bounds on the expected reward paid by the source when it
uses the adaptive strategy.

Let R
(A)

denote the expected reward paid by the source when it uses the
adaptive strategy. The decision of the source to either give or not information
to a relay it meets will depend upon the reward it has to propose in each of the
three settings. Thus, the source when it meets a relay can compute the reward
it should promise to this relay within each setting based on the corresponding
success probability estimated by the relay and then to choose the setting of least
reward to be paid to this relay. That is,

R
(A)

=

∫

s

(

N
∑

n=1

pn(s)min
k

(

R(k)
n

)

)

fS(s)ds. (27)

From the definition of the adaptive strategy, it can do no worse than any static
strategy which gives an upper bound. Also, the source has to pay at least
C1 + C2 because this is the average cost when there is only one relay, which
gives a lower bound. It follows that

Proposition 5. C1 + C2 ≤ R
(A)

≤ R
(k)

= C1 +NC2.

Corollary 2. R
(A)

R
(k) ≥ C1+C2

C1+NC2
≥ 1

N
.

By using an adaptive strategy the source can reduce its expenses at most by
a factor of 1/N .
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Although the exact analytical expressions for an adaptive policy is difficult to
compute, an advantage of the adaptive strategy can be seen from the numerical

results. In Figures 1 and 2, R
(A)

is plotted as a function of λ for N = 5, µ = 1,

C1 = 1, and C2 = 5 (C2 = 0.5 in Figure 2). It is observed that R
(A)

increases
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1
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Figure 1: Expected reward paid by the source for the adaptive strategy. N = 5,
µ = 1, C1 = 1, C2 = 5.

with λ and is gets close to R
(F )

when λ → ∞. On the other hand, for small

values of λ, R
(A)

is close to the minimal reward C1 + C2. It appears that R
(A)

has the form (C1 +C2) +C2(1− e−λγ), for some constant γ, but we are unable
to prove this result.

The exact analytical expression of R
(A)

is difficult to compute unlike the

expression for R
(k)

. Nonetheless, we shall give some structural properties of
the adaptive strategy. In particular, for N = 2, it will be shown that the
adaptive strategy is of threshold type in which the second relay is given either
full information or no information depending on how late it meets the source
after the first one.

5.2 Two Relays, Decreasing Density Function of Inter-

Contact Times

Let us consider a network of a fixed single source, a fixed single destination,
and two relays with an underlying mobility model described in the Section 3.2.
Futher assume that densities of residual inter-contact times, f̃s and f̃d, are
decreasing functions.
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Figure 2: Expected reward paid by the source for the adaptive strategy. N = 5,
µ = 1, C1 = 1, C2 = 0.5.

In order to establish the structure of the adaptive strategy, one needs to
determine which information setting has the lowest reward at any given instant.
The reward of a given setting depends in turn on the probability of success
estimated by the relay based on the information given by source (see (5)). For
the comparison of the rewards, we shall need a few results on the probabilities
of success, which we give now.

Lemma 1. 1.

p2(s) ≤
1

2
≤ p1(s), (28)

2. for fixed s2, p1(s1, s2) decreases (p2(s1, s2) increases) with s1.

Proof. See Appendix C.

The above result states that the real probability of success of the first relay
decreases when its meeting time with the source gets closer to that of the second
relay. It gives a similar monotonicity result for the probability of success of the
second relay. The assumption of decreasing density function comes into play in
the proof of these results.

The next lemmas shows the similar inequalities for the success probabilities
in the full information setting and the partial information setting.

Lemma 2.

p
(F )
2 (s) ≤

1

2
≤ p

(F )
1 (s). (29)
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Proof. The first inequality follows from Lemma 1 and equality (3).
For the second inequality, note that the probability of success of the first

relay in the full information setting can be represented as follows,

p
(F )
1 (s) =

∞
∫

s2=s1

p1(s)f̃s(s2 − s1)ds2. (30)

Using Lemma 1 for p1(s), we obtain

p
(F )
1 (s) ≥ 1

2

∞
∫

s2=s1

f̃s(s2 − s1)ds2 = 1
2 , (31)

since
∫∞

s2=s1
f̃s(s2 − s1)ds2 = 1 due to the property of probability density func-

tion.

Lemma 3.

p
(P )
2 (s) ≤

1

2
≤ p

(P )
1 (s). (32)

Proof. From Lemma 2 for p
(F )
1 , along with equation (2), it follows that p

(P )
1 (s) ≥

1/2. It is now sufficient to show that p
(P )
2 (s) ≤ 1/2.

The success probability of the second relay in the partial information setting
satisfies

p
(P )
2 (s) =

s2
∫

s1=0

p
(F )
2 (s)f̃s(s1)ds1

s2
∫

s1=0

f̃s(s1)ds1

(33)

≤

1
2

s2
∫

s1=0

f̃s(s1)ds1

s2
∫

s1=0

f̃s(s1)ds1

=
1

2
. (34)

where the inequality follows from Lemma 2 according to which p
(F )
2 ≤ 1/2.

We now proceed to the main results on the comparison of the rewards in
various information settings. The first results shows that it is always beneficial
for the source to give information to the first relay independently of s1.

Proposition 6.

R
(F )
1 (s) = R

(P )
1 (s) ≤ R

(N)
1 (s) (35)

Proof. The equality R
(F )
1 = R

(P )
1 follows from (5) and (2). For the inequality,

from (5), it is sufficient to establish that

p
(N)
1 (s) ≤ p

(P )
1 (s), ∀s1 ≥ 0.
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The probability,

p
(N)
1 (s) = p

(P )
2 (s1)P(S2 < s1) + p

(P )
1 (s1)(1− P(S2 < s1))

= P(S2 < s1)
[

p
(P )
2 (s1)− p

(P )
1 (s1)

]

+ p
(P )
1 (s1)

≤ p
(P )
1 (s1),

(36)

where the last inequality follows from (32).

The next result in favour of an adaptive strategy pertains to the reward the
source should propose to the second relay.

Proposition 7.

R
(N)
2 (s) ≤ R

(P )
2 (s). (37)

Proof. The success probability of the second relay in the no information setting,

p
(N)
2 (s), can be expressed as

p
(N)
2 (s) = p

(P )
2 (s)P(S1 < s2) + p

(P )
1 (s)(1 − P(S1 < s2)), (38)

with S1 being the random time when the source gives the copy of the message
to the first relay it meets.

With (32), the following inequality holds,

p
(N)
2 (s) ≥ p

(P )
2 (s)P(S1 < s2) + p

(P )
2 (s)(1− P(S1 < s2))

= p
(P )
2 (s), (39)

and the statement of the proposition follows.

Proposition 7 says that between the choice of informing a relay that it is the
second one and not giving this information, it is better for the source not to
give this information.

Before proceeding to the next result, we prove another lemma.

Lemma 4. p(N)(s) decreases with s.

Proof. The probability,

p(N)(s) = p
(P )
2 (s)P(Ŝ < s) + p

(P )
1 (s)(1− P(Ŝ < s)).

Find its derivative on s,

dp(N)(s)

ds
= p

(P )
2 (s)f̃s(s) +

dp
(P )
2 (s)
ds

P(Ŝ < s)

−p
(P )
1 (s)f̃s(s) +

dp
(P )
1 (s)
ds

(1− P(Ŝ < s)).

=
[

p
(P )
2 (s)− p

(P )
1 (s)

]

f̃s(s) +
dp

(P )
2 (s)
ds

P(Ŝ < s)

+
dp

(P )
1 (s)

ds
(1 − P(Ŝ < s)).

The first term of the last sum is negative due to (32). To complete the proof,
we show the negativity of two last terms of this sum.
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From (33), find the derivative,

dp
(P )
2 (s)

ds
=

p
(F )
2 (s,s)f̃s(s)

s
∫

ŝ=0

f̃s(ŝ)dŝ−
s
∫

ŝ=0

p
(F )
2 (ŝ,s)f̃s(ŝ)dŝf̃s(s)

(

s
∫

ŝ=0

f̃s(ŝ)dŝ

)2

=
f̃s(s)

s
∫

ŝ=0

[

p
(F )
2 (s,s)−p

(F )
2 (ŝ,s)

]

f̃s(ŝ)dŝ

(

s
∫

ŝ=0

f̃s(ŝ)dŝ

)2 ≤ 0,

since p
(F )
2 (s, s) − p

(F )
2 (ŝ, s) ≤ 0 due to the second statement of the Lemma 1

and the equation (3).
With (2) and from (30), the derivative,

dp
(P )
1 (s)

ds
= −p1(s, s)f̃s(s) < 0.

Thus, the derivative dp(N)(s)
ds

is negative and the claimed result follows.

Until now we have shown that it is optimal to give the full information to the
first relay, and for the second relay it is giving no information is always better
that giving partial information. We now compare the settings of no information
with that of full information.

Our main result for this section, stated in Theorem 2 shows that there is a
threshold, which depends on the meeting time with the first relay, before which
it is optimal to give full information to the second relay and beyond which it
is optimal to give no information. Once, the source meets the first relay, it can
compute this threshold, and based on when it meets the second relay decide to
give or not the information.

Define the difference of the success probabilities as a function of s1 and s2,

g(s1, s2) = p
(N)
2 (s1, s2)− p

(F )
2 (s1, s2), (40)

then for the source, it will be better to give information when g(s1, s2) < 0.

Theorem 2. There exists 0 ≤ θ1 < ∞ such that

1. if 0 ≤ s1 < θ1, then g(s1, s2) ≥ 0, ∀s2 ≥ s1;

2. if θ1 < s1 < ∞, then

(a) g(s1, s2) < 0, ∀s2 ∈ [s1, s1 + ω(s1)),

(b) g(s1, s2) > 0, ∀s2 ∈ (s1 + ω(s1),∞),

where θ1 is a solution of the equation g(s1, s1) = 0 and ω(s1) is a solution of
g(s1, s1 + v) = 0 with respect to v when g(s1, s1) < 0.
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Before going to the proof of the above result, we give some consequences. If
the source met the first relay at s1 ≤ θ1, then irrespective of the time instant
at which it meets the second relay, it should not give any information to the
second relay. On the other hand, if s1 ≥ θ1, then the strategy of the source
should be of threshold type: if it meets the second relay before s1 +ω(s1), then
it should give full information, otherwise it should not give any information.

Proof of Theorem 2. First, note that for fixed s2, g(s1, s2) decreases with s1,

since in this case p
(F )
2 (s1, s2) increases with s1 (Lemma 1 with equality 3),

whereas p
(N)
2 (s) does not depend on s1.

Thus, the closer s1 is to s2 the smaller g(s1, s2) is. This also implies that
for fixed s1, g(s1, s1 + v) will increase with v, for v ≥ 0.

Let us show that g(0, s2) = p
(N)
2 (0, s2) − p

(F )
2 (0, s2) is non-negative. Using

the expression

p
(N)
2 (s1, s2) = p

(P )
2 (s1, s2)P(S1 < s2)

+ p
(P )
1 (s2, s2)(1 − P(S1 < s2)), (41)

we obtain,

g(0, s2) = [p
(P )
1 (s2, s2)− p

(F )
2 (0, s2)]

−[p
(P )
1 (s2, s2)− p

(P )
2 (0, s2)]P(S1 < s2).

(42)

With (2), and that p
(F )
2 (s1, s2) increases with s1 (Lemma 1 with equality 3),

the difference,

p
(P )
1 (s2, s2)− p

(F )
2 (0, s2) ≥ p

(F )
1 (s2, s2)− p

(F )
2 (s2, s2) ≥ 0, (43)

where the last inequality follows from the Lemma 2.
Now due to the non-negativity of the first difference in (42) the following

inequality can be obtained,

g(0, s2) ≥ [p
(P )
1 (s2, s2)− p

(F )
2 (0, s2)]P(S1 < s2)

−[p
(P )
1 (s2, s2)− p

(P )
2 (0, s2)]P(S1 < s2)

= P(S1 < s2)[p
(P )
2 (0, s2)− p

(F )
2 (0, s2)].

(44)

The success probability, p
(P )
2 (s1, s2), can be represented as

p
(P )
2 (s1, s2) =

∫ s2

ŝ1=0 p
(F )
2 (ŝ1, s2)f̃s(ŝ1)dŝ1
∫ s2
ŝ1=0 f̃s(ŝ1)dŝ1

. (45)

Again, due to the increasing property of p
(F )
2 (s1, s2) on s1, p

(F )
2 (ŝ1, s2) ≥ p

(F )
2 (0, s2).

Then, since p
(F )
2 (0, s2) does not depend on s1, we obtain,

p
(P )
2 (0, s2) ≥

p
(F )
2 (0, s2)

∫ s2

ŝ1=0
f̃s(ŝ1)dŝ1

∫ s2
s1=0 f̃s(s1)ds1

= p
(F )
2 (0, s2), (46)
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and hence, g(0, s2) ≥ 0. Since, for fixed s2, the function g(s1, s2) is non-negative
at s1 = 0 and decreases in s1, we can conclude that the equation g(s1, s2) = 0
has at most one real solution with respect to s1.

Thus, if for s1 and s2 close to each other, g(s1, s2) < 0, i.e. if g(s1, s1) < 0
then there exists ω(s1) such that g(s1, s2) < 0 if s2 ∈ [s1, s1 + ω(s1)) and
g(s1, s2) > 0 for s2 ∈ (s1 + ω(s1),∞) since g(s1, s1 + v) increases with v as was
seen before. Meanwhile, in case g(s1, s1) ≥ 0, the difference g(s1, s1+ v) will be
positive ∀v ≥ 0.

Now let us find out when the condition g(s1, s1) < 0 holds. As was shown
before, for fixed s2, g(0, s2) ≥ 0, and hence, g(0, 0) ≥ 0. Consider the behaviour
of g(s1, s1) with increasing of s1.

Note that p
(F )
2 (s1, s1) = 1/2, since,

p
(F )
2 (s1, s1) =

∞
∫

y2=0

f̃d(y2)
∞
∫

y1=y2

f̃d(y1)dy1dy2 = 1/2, (47)

proof of which can be found in the proof of Lemma 1. Thus,

g(s1, s1) = p
(N)
2 (s1, s1)−

1
2 , (48)

and it decreases with s1 since p
(N)
2 decreases with time (Lemma 4).

Thus, the equation g(s1, s1) = 0 has at most one real solution θ with respect
to s1, such that if 0 ≤ s1 ≤ θ then g(s1, s1) > 0. If s1 > θ then g(s1, s1) < 0
and the threshold ω(s1) for the meeting time s2 holds.

5.3 Two relays, exponentially distributed inter-contact times

Let us illustrate the result in Theorem 2 for exponentially distributed inter-
contact times.

The difference in (40)) can be written as

g(s1, s1 + v) = a(s1)e
−µv − b(s1)e

−λv,

where

a(s1) =
1

2

(

λ

λ− µ
e−µs1 − 1

)

, and

b(s1) =
µ2

λ2 − µ2
e−λs1 .

First, consider the case λ > µ.

Proposition 8 ( [22]). For λ > µ, there exist 0 ≤ θ1 ≤ θ2 < ∞ such that

1. if 0 ≤ s1 ≤ θ1, then g(s1, s1 + v) ≥ 0, ∀v ≥ 0;

2. if s1 ≥ θ2, then g(s1, s1 + v) < 0, ∀v ≥ 0;

3. if θ1 < s1 < θ2, then
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(a) g(s1, s2) < 0, ∀s2 ∈ [s1, s1 + ω(s1));

(b) g(s1, s2) > 0, ∀s2 ∈ (s1 + ω(s1),∞);

where

θ2 = −
1

µ
log
(

1−
µ

λ

)

,

ω(s1) =
1

λ− µ
log

(

b(s1)

a(s1)

)

,

and θ1 is the solution of a(θ1) = b(θ1). Moreover, ω is an increasing and convex
function.

For this case, the threshold ω(s1) becomes infinity for s1 ≥ θ2. So, the
adaptive strategy is of following form: if s1 < θ1, then give no information to
the second relay irrespective of when it meets the source. On the other hand,
if s1 > θ2, then give full information to the second relay irrespective of s2. For
θ1 < s1 < θ2, give full information if s2 < s1 +ω(s1), otherwise do not give any
information. The adaptive strategy in Proposition 8 is illustrated in Figure 3.

s1

s2

θ1

s
2
=
s
1
+
ω
(s

1)

θ2

s1 = s2

NO INFORMATION

FULL
INFORMATION

Figure 3: Optimal strategy for the source for λ > µ.

The other case λ ≤ µ is similar with the difference that θ2 = ∞. For any s1
there will always be some values of s2 when the source will not give information
to the second relay. The formal result is as follows.

Proposition 9 ( [22]). For λ ≤ µ, there exist 0 ≤ θ1 < ∞ such that

1. if 0 ≤ s1 ≤ θ1, then g(s1, s1 + v) ≥ 0, ∀v ≥ 0;
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2. if θ1 < s1 < ∞, then

(a) g(s1, s1 + v) < 0, ∀s2 ∈ [s1, s1 + ω(s1));

(b) g(s1, s1 + v) > 0, ∀s2 ∈ (s1 + ω(s1),∞);

where θ1 and ω(s1) are as defined in Proposition 8.

s2 = s1 + ω(s1)

s1

s2

θ1

s1 = s2
FULL

NO INFORMATION

INFORMATION

Figure 4: Optimal strategy for the source for λ < µ.

The adaptive strategy for λ < µ for the source is illustrated in Figure 4. As
a special case, for λ = µ,

θ1 =
−LW (−e−1.5)− 1.5

λ
,

ω(s1) =
2eλs1 − (3 + 2λs1)

2λ
,

where LW is the LambertW function.

6 Discussion of Assumptions, Limitations and

Future Work

In this section we discuss the main assumptions that were adopted to yield a
tractable model and we describe limitations and possible extensions.
Mobility pattern: A key challenge in developing our results has been to make
general assumptions about the mobility of DTN nodes. In particular, the prop-
erties derived for our incentive mechanism hold under any homogeneous mobility
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pattern. Indeed, the large majority of analytical studies are typically assumed
that the cumulative distribution function of inter contact time decays expo-
nentially over time such as in random waypoint models. But many extensive
empirical mobility traces have been showed that cumulative distribution func-
tion of inter contact time follows approximately a power law over large time
range with exponent less than unit [23]. By investigating a general assumption
about the mobility, in future works, we will evaluate our scheme on realistic
traces [24] in order to evaluate the robustness of our proposed mechanism. An-
other aspect that we want to take into account is the heterogeneous models.
Existing analytical studies in the literature strongly rely on the assumption
that nodes identical and uniformly visit the entire network space. Experimental
data, however, have shown that mobility patterns of individuals are typically
restricted to a given area, and the overall node density is often largely inhomoge-
neous. Such models allow studying how DTN routing mechanisms are affected
by highly inhomogeneous node density and differences in mobility patterns and
transmission technologies.
Buffer management: In our model we consider only one source-destination
pair generates packet into DTN. For several source-destination pairs, node
buffers may well overflow if no message discarding policy is adopted. In this
scenario, efficient drop policies at relay nodes decide which messages should pri-
oritised under capacity constraints regardless of the specific routing algorithm
used. In the future, we propose to work on intentional DTN Drop/Scheduling
policies with respect to our mechanism. Such study engenders sources to de-
velop a mechanism design in order to know the information about the messages
that relay stores in his buffer. Then we will propose a mechanism that can al-
low the source to truthfully elicit private information from each and every relay
nodes it meet. However, information elicitation is most challenging when it is
most useful: when there is no ground truth available to evaluate answers.

7 Conclusions

In this paper we proposed a reward mechanism to incentive relays to sacrifice
their memory and battery on DTNs relaying operation. Furthermore we argue
that such a coordination scheme should not rely on end to end control message
exchange. To this respect, our paper provided a novel key contribution: the
reward mechanism in fact is designed to secure the participation of relays in
the delivery process by proposing a reward that takes into account the costs
incurred by the relays and the risk they are exposed to during the delivery
process. This reward is the minimum amount that offsets the expected delivery
cost, as estimated by the relay from the information given by the source (number
of existing copies of the message, age of these copies). We first showed that
the expected reward paid by the source remains the same irrespective of the
information it conveys, ranging from full state information to no information.
We also studied the dynamic case in which the source can change the information
that it conveys on the fly as and when meets the really. Under some additional
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assumptions, the source can gain by adopting the dynamic strategy.

A Proof of the Theorem 1

Proof. Since p
(k)
n does not depend on sn+1, · · · , sN , we can rewrite (25) as fol-

lows

R
(k)

= C1 + C2×

×
N
∑

n=1

∫

s1:n

fS1:n (s1:n)

p
(k)
n (s1:n)
∫

sn+1:N

pn(s)fSn+1:N |S1:n
(sn+1:N |s1:n)dsN :n+1

dsn:1,

(49)

where dsN :n+1 is to be read as dsNdsN−1 · · · dsn+1, and

fSn+1:N |S1:n
(sn+1:N |s1:n) =

fS1:N
(s1:N )

fS1:n (s1:n)
. (50)

We now proceed to the analysis of the success probabilities estimated by the
relays in each of the three settings.

A.1 Full Information Setting

The success probability of the nth relay in the full information setting can be
expressed as

p(F )
n (s1:n) =

∫

sn+1:N

pn(s)fSn+1:N |S1:n
(sn+1:N |s1:n)dsN :n+1. (51)

With (49), it yields

R
(k)

= C1 + C2

N
∑

n=1

∫

s1:n

fS1:n (s1:n)

p(F )(s1:n)
p(F )(s1:n)dsn:1

= C1 + C2

N
∑

n=1
1 = C1 +NC2.

A.2 Partial Information Setting

With (49) and (51), we can write the expected reward under the partial infor-
mation setting as follows

R
(P )

= C1 + C2

N
∑

n=1

∫

s1:n

fS1:n(s1:n)
p(F )
n (s)

p
(P )
n (s)

dsn:1. (52)
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Since p
(P )
n depends only on sn, we can change the integration order in (52)

to obtain
R

(P )
= C1 + C2×

×
N
∑

n=1

∞
∫

sn=0

fSn|S1:n−1
(sn|s1:n−1)

p
(P )
n (s)

∫

sn−1:1

p
(F )
n fS1:n−1(s1:n−1)ds1:n−1dsn.

(53)

Now, observe that the success probability of the nth relay can be expressed
as

p(P )
n (s) =

∫

sn−1:1

p(F )
n (s)fS1:n−1

(s1:n−1)ds1:n−1

∫

sn−1:1

fS1:n−1
(s1:n−1)ds1···dsn−1

, (54)

where the integral
∫

sn−1:1

is to be read
sn
∫

sn−1=0

· · ·
s2
∫

s1=0

.

With (53), it yields

R
(P )

= C1 + C2×

×
N
∑

n=1

∞
∫

sn=0

fSn|S1:n−1
(sn|s1:n−1)

∫

sn−1:1

fS1:n−1(s1:n−1)ds1:n−1dsn

= C1 + C2

N
∑

n=1

∫

sn:1

fS1:n(s1:n)ds1:n

= C1 + C2

N
∑

n=1

1 = C1 +NC2. (55)

A.3 No Information Case

Since the success probability of the nth relay in the no information setting
depends only on sn, we can rewrite the expression for the expected reward paid
by the source as

R
(N)

= C1 + C2×

×
N
∑

n=1

∞
∫

sn=0

1

p
(N)
n (sn)

∫

s1:n−1≤sn
sn+1:N

pn(s)fS1:N (s1:N)ds−ndsn

(56)

where the integral
∫

s1:n−1≤sn
sn+1:N

is to be read as

sn
∫

s1=0

· · ·

sn
∫

sn−1=sn−2

∞
∫

sn+1=sn

· · ·

∞
∫

sN=sN−1

.
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Observe that the joint distribution fS1:N (s1:N) can be eqivalently written as
follows

fS1:N (s1:N )

= (N − 1)!f̃s(s1) · · · f̃s(sn−1)f̃s(sn+1) · · · f̃s(sN )Nf̃s(sn)

= fS−n
(s−n)Nf̃s(sn).

(57)

Note that the outer summation in (56) specifies only the ordinal position
of the time sn for each member of summation, and thus can be put under the
integral by removing the ordinal dependence as follows,

R
(N)

= C1 + C2×

× N
∞
∫

sn=0

f̃s(sn)

p
(N)
n (sn)

N
∑

m=1

∫

s1:m−1≤sn
sm+1:N

pm(s)fS−m
(s−m)ds−mdsn.

(58)

Now the sum represents the success probability of the nth relay in the no
information setting, namely,

p(N)
n (sn) =

N
∑

m=1

∫

s1:m−1≤sn
sm+1:N

pm(s)fS−m
(s−m)ds−m. (59)

Thus,

R
(N)

= C1 +NC2

∞
∫

sn=0

p(N)
n (sn)

p
(N)
n (sn)

f̃s(sn)dsn

= C1 +NC2.

(60)

B Proof of Proposition 2

Proof. In order to derive the formula for success probability, p
(F )
n , estimated by

a relay in the full information setting, we shall use the expression of its real
success probability given all the contact times with the source, which is given
in Proposition 1, and uncondition future meeting-times of the relays with the
source. That is,

p(F )
n (s) =

∫

pn(s)fS
n+1:N

|S
1:n

(s
n+1:N

)ds
n+1:N

, n = 1, 2, . . . , N − 1, (61)

and p
(F )
N (s) = pN (s).

From (8), one can infer that pn(s) satisfies the following recursion on n:

pn(s) = pn+1(s) +
1− e−µ(sn+1−sn)

n

n
∏

j=1

e−µ(sn−sj). (62)
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Also, since the inter-contact times with the source are i.i.d., the order statistics
of the future meeting-times with the source has the product form

fS
n+1:N

|S
1:n

(s
n+1:N

) = (N − n)!
N
∏

j=n+1

f̃s(sj)

F̃s(sn)
, (63)

where f̃s in the residual inter-contact time density function and F̃ is the cor-
responding complementary cumulative distribution function. For exponentially
distributed random variables with parameter λ, the order statistics takes the
form

fS
n+1:N

|S
1:n

(s
n+1:N

) = (N − n)!

N−1
∏

j=n

λe−(N−j)λ(sj+1−sj), (64)

from which it follows that

fS
n+1:N

|S
1:n

(s
n+1:N

) = (N − n)λe−(N−n)λ(sn+1−sn)fS
n+2:N

|S
1:n+1

(s
n+2:N

)

(65)
Substituting (65) and (62) in (61), we

p(F )
n (s) =

∫

s
n+1:N



pn+1(s) +
1− e−µ(sn+1−sn)n

n

n
∏

j=1

e−µ(sn−sj)



 (66)

(N − n)λe−(N−n)λ(sn+1−sn)fS
n+2:N

|S
1:n+1

(s
n+2:N

) ds
n+1:N

Note that the second term in the above sum does not depend upon sn+2, sn+3, . . . , sN ,

and the first term can be rewritten in terms of p
(F )
n+1(s) using (61), which gives

p(F )
n (s) =

∫

sn+1

p
(F )
n+1(s)(N − n)λe−(N−n)λ(sn+1−sn)dsn+1

+

∫

sn+1

1− e−µ(sn+1−sn)n

n

n
∏

j=1

e−µ(sn−sj)(N − n)λe−(N−n)λ(sn+1−sn)dsn+1

(67)

Equation (67) gives a recursion for p
(F )
n in terms of p

(F )
n+1. The proof of the

claimed result will follow if we show that (10) satisfies this recursion. The base

case is n = N , for which we note that p
(F )
N (s) given in (10) is equal to pN (s)

given in 8. Now, assume that for all j = n+ 1, . . . , N , p
(F )
j is given by (10).

Consider the first term in the RHS of (67). From (10),

p
(F )
n+1(s) = µθn+1

n
∏

k=1

e−µ(sn+1−sk)

= µθn+1

(

n
∏

k=1

e−µ(sn−sk)

)

e−nµ(sn+1−sn),
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where

θn+1 =

N
∑

i=n+1

(N − (n+ 1))!

(N − i)!
λi−(n+1)

i
∏

j=n+1

1

(N − j)λ+ jµ
. (68)

Therefore,

(N − n)

∫ ∞

sn+1=sn

p
(F )
n+1(s)λe

−λ(N−n)(sn+1−sn)dsn+1 =

µθn+1

(

n
∏

k=1

e−µ(sn−sk)

)

λ(N − n)

λ(N − n) + µn
.

Similarly, the second term becomes

µ

(

n
∏

k=1

e−µ(sn−sk)

)

1

λ(N − n) + µn
.

Thus we can rewrite (67) as

p(F )
n (s) = µ

(

n
∏

k=1

e−µ(sn−sk)

)

(

θn+1
λ(N − n)

λ(N − n) + µn
+

1

λ(N − n) + µn

)

.

(69)
We can verify from (68) that θn follows the recursion

θn = θn+1
λ(N − n)

λ(N − n) + µn
+

1

λ(N − n) + µn
,

which allows to conclude that, as claimed,

p(F )
n (s) = µθn

n−1
∏

k=1

e−µ(sn−sk),

where the term corresponding to k = n in the product in (69) is just 1 and can
be omitted.

C Proof of Lemma 1

Proof. Prove the first inequality in the first part of the lemma. Then the second
inequality will follow from the fact that p1(s) + p2(s) = 1.

The probability of success of the second relay given vector of meeting times
with the source, s,

p2(s) =
∞
∫

y2=s2

f̃d(y2 − s2)
∞
∫

y1=y2

f̃d(y1 − s1)dy1dy2. (70)
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Change the variables and using the properties of the integration of non-negative
functions obtain,

p2(s) =
∞
∫

y2=0

f̃d(y2)
∞
∫

y1=y2+s2−s1

f̃d(y1)dy1dy2

≤
∞
∫

y2=0

f̃d(y2)
∞
∫

y1=y2

f̃d(y1)dy1dy2.

(71)

The last expression gives 1/2. Show it thoroughly.
Consider probability density function f(·). Thus, for the function f , by the

changing of integration order obtain,

∞
∫

u=0

f(u)
∞
∫

v=u

f(v)dvdu =
∞
∫

v=0

f(v)
v
∫

u=0

f(u)dudv. (72)

Note also, that the integration in the left hand side does not depend of the
choice of the integration variables and thus can be rewritten as

∞
∫

u=0

f(u)
∞
∫

v=u

f(v)dvdu =
∞
∫

v=0

f(v)
∞
∫

u=v

f(u)dudv. (73)

Summation of this two equalities gives one in the right hand side due to the
properties of the probability density function and thus,

∞
∫

u=0

f(u)
∞
∫

v=u

f(v)dvdu = 1
2 . (74)

Since p1(s)+ p2(s) = 1, then for the second statement of the lemma to hold,
show only that for fixed s2, the probability p2(s1, s2) is increasing function of s1.
This directly follows from (70) due to the decreasing property of the function
f̃d.

References

[1] Kevin Fall. A delay-tolerant network architecture for challenged internets.
In Proc. ACM SIGCOMM, Karlsruhe, Germany, pages 27–34, 2003.

[2] Charles E. Perkins and Elizabeth M. Royer. Ad-hoc on-demand distance
vector routing. In The Second IEEE Workshop on Mobile Computing Sys-
tems and Applications, 1999.

[3] D. Johnson and D. Maltz. Dynamic source routing in ad hoc wireless
networks. In T. Imielinski and H. Korth, editors, Mobile Computing, pages
153–181. Kluwer Academic, 1996.

[4] A. Vahdat and D. Becker. Epidemic routing for partially connected ad hoc
networks. Technical Report, Duke University, 2000.

31



[5] A. Al-Hanbali, P. Nain, and E. Altman. Performance of ad hoc networks
with two-hop relay routing and limited packet lifetime. Performance Eval-
uation, 65(6-7):463–483, June 2008.

[6] Rachid El-Azouzi, Francesco De Pellegrini, Habib B.A. Sidi, and Vijay
Kamble. Evolutionary forwarding games in delay tolerant networks: Equi-
libria, mechanism design and stochastic approximation. Computer Net-
works, 2012.

[7] X. Zhang, G. Neglia, J. Kurose, and D. Towsley. Performance modeling of
epidemic routing. Computer Networks, 51:2867–2891, 2007.

[8] U. Shevade, H.H. Song, L. Qiu, and Y. Zhang. Incentive-aware routing
in dtns. In IEEE International Conference on Network Protocols (ICNP),
pages 238–247, 2008.

[9] B.B. Chen and M.C. Chan. Mobicent: a credit-based incentive system for
disruption tolerant network. In Proc. of IEEE INFOCOM, pages 1–9, 2010.

[10] R. Lu, X. Lin, H. Zhu, X. Shen, and B. Preiss. Pi: A practical incen-
tive protocol for delay tolerant networks. IEEE Transactions on Wireless
Communications, 9(4):1483–1493, 2010.

[11] H. Zhu, X. Lin, R. Lu, Y. Fan, and X. Shen. Smart: A secure multilayer
credit-based incentive scheme for delay-tolerant networks. IEEE Transac-
tions on Vehicular Technology, 58(8):4628–4639, 2009.

[12] L. Wei, Z. Cao, and H. Zhu. Mobigame: A user-centric reputation based
incentive protocol for delay/disruption tolerant networks. In Proc. IEEE
Global Telecommunications Conference (GLOBECOM), pages 1–5, 2011.

[13] Qinghua Li, Sencun Zhu, and Guohong Cao. Routing in socially selfish
delay tolerant networks. In Proc. of IEEE INFOCOM, pages 1–9, 2010.

[14] Ting Ning, Zhipeng Yang, Xiaojuan Xie, and Hongyi Wu. Incentive-aware
data dissemination in delay-tolerant mobile networks. In Proc. of IEEE
Sensor, Mesh and Ad Hoc Communications and Networks (SECON), pages
539–547, 2011.

[15] Md Yusuf Sarwar Uddin, Brighten Godfrey, and Tarek Abdelzaher. Relics:
In-network realization of incentives to combat selfishness in DTNs. In Proc.
IEEE International Conference on Network Protocols (ICNP), pages 203–
212, 2010.

[16] Yan Wang, Mooi-Choo Chuah, and Yingying Chen. Incentive driven infor-
mation sharing in delay tolerant mobile networks. In Proc. of IEEE Global
Communications Conference (GLOBECOM), pages 5279–5284, 2012.

[17] W. Chahin, H. Sidi, R. El Azouzi, F. De Pellegrini, and J. Walrand. Incen-
tive mechanisms based on minority games in heterogeneous delay tolerant
networks. In Proc. of The International Teletraffic Congress (ITC), 2013.

32



[18] Esteban Moro. The Minority Game: an introductory guide. eprint
arXiv:cond-mat/0402651, February 2004.

[19] J. Feigenbaum and S. Shenker. Distributed algorithmic mechanism design:
Recent results and future directions. In Proc. of the 6th International
Workshop on Discrete Algorithms and Methods for Mobile Computing and
Communications (DIAL-M), 2002.

[20] Ramesh Johari. Efficiency loss in market mechanisms for resource alloca-
tion. In PhD thesis, Massachusetts Institute of Technology, 2004, 2004.

[21] R. Molva P. Michiardi. A collaborative repudiation mechanism to enforce
node cooperation in mobile ad hoc networks. In Proc. of Sixth IFIP confer-
ence on security communications, and multimedia (CMS 2002), Portoroz,
Slovenia, 2002.

[22] Olivier Brun, Rachid El-Azouzi, Balakrishna J. Prabhu, and Tatiana
Seregina. Modeling rewards and incentive mechanisms for delay tolerant
networks. In Proc. of IEEE International Symposium on Modeling and
Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), pages
233–240, 2014.

[23] A. Chaintreau, P. Hui, J. Scott, R. Gass, J. Crowcroft, and C. Diot. Impact
of human mobility on opportunistic forwarding algorithms. IEEE Transac-
tions on Mobile Computing, 6(6):606–620, June 2007. (previously published
in the Proceedings of IEEE INFOCOM 2006).

[24] Rawdad: A community resource for archiving wireless data at dartmouth.

33


	Introduction
	Contributions
	Organization of the paper

	Related Work
	System Model and Objectives
	The Role of Information
	Assumptions on Contact Processes
	Objectives

	Expected Reward Under a Static Strategy
	Estimated Probability of Success
	Expected Cost for a Relay
	Rewards Promised by the Source to Individual Relays: General Inter-Contact Times
	Rewards Promised by the Source to Individual Relays: Exponential Inter-Contact Times
	Full Information Case
	Partial Information Case
	No Information Case

	Expected Reward Paid by the Source

	Adaptive Strategy
	Adaptive Versus Static Strategies
	Two Relays, Decreasing Density Function of Inter-Contact Times
	Two relays, exponentially distributed inter-contact times

	Discussion of Assumptions, Limitations and Future Work
	Conclusions
	Proof of the Theorem 1
	Full Information Setting
	Partial Information Setting
	No Information Case

	Proof of Proposition 2 
	Proof of Lemma 1

