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Abstract

We study the long time behaviour of the speed of a particle moving in R
d under the influence of

a random time-dependent potential representing the particle’s environment. The particle undergoes
successive scattering events that we model with a Markov chain for which each step represents a
collision. Assuming the initial velocity is large enough, we show that, with high probability, the

particle’s kinetic energy E(t) grows as t
2
5 when d > 5.

1 Introduction

Our goal in this paper is to make progress on the rigorous analysis of the stochastic acceleration of a
classical particle moving through a random time-dependent potential. The full problem can be described
as follows. A particle moves in R

d, and its position q(t) obeys the following law of motion:

q̈(t) = −
∑

i

λi∇V (q(t) − ri, ωt+ φi), q(0) = q0, q̇(0) = v0. (1.1)

Here V ∈ C∞ (
R
d,Tm

)

is a real valued potential which is bounded and of compact support in its first
variable in the ball of radius 1

2 centered at the origin.

The frequency vector ω ∈ R
m is fixed, so that the particle moves under the influence of a potential

V (q(t) − ri, ωt + φi) that is quasi-periodic in time, when it is close to the scattering center ri. The
scattering centers ri ∈ R

d are a countable and locally finite family of (random or deterministic) points
that satisfies a “finite horizon” condition, that we shall not explicitly describe. The phases φi and the
coupling constants λi are i.i.d random variables in T

m respectively R.
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Such a particle undergoes successive scattering events (also refered to as collisions) when crossing one
of the balls of radius 1

2 centered on the ri, and executes a uniform straight line motion otherwise. When
the potential V is time-independent, the particle’s kinetic energy is preserved in the scattering events and
is therefore uniformly bounded in time. We are interested in the case when V does depend on time, in
which case the kinetic energy is expected to grow in time. This is the phenomenon known as “stochastic
acceleration”. It has been extensively studied by various authors in a variety of models (see for example
[GR09], [Stu66] and [Eij97]) and has been the subject of some controversy concerning the precise rate of
growth. We refer to [ADBLP10] for further background.

In [ADBLP10] and [Agu10], the above model was analysed numerically and partial arguments were
given to argue that, asymptotically in time (d ≥ 2),

E(‖q̇(t)‖) ∼ t1/5, E(‖q(t)‖) ∼ t,

where the expected value is with respect to the (λi, φi) and to an initial distribution of particle velocities.

In this paper, we shall consider a simplified model for the particle’s motion, in which its possible
recollisions with the same scatterer are ignored. Within that framework, we give a complete and rigorous
analysis of the asymptotic behaviour of ‖q̇(t)‖ corroborating the t1/5 law above for d > 5 (Theorem 2.1).

The model is described in detail in Section 2. It treats the successive scattering events as independent,
leading to a Markov chain description for the particle’s momentum and position at each scattering event.
We therefore establish that the t1/5 law is indeed obtained from successive random scattering events
with a smooth potential. The numerics in [ADBLP10] suggests this behaviour is not altered by possible
recollisions but we do not prove this here.

Our work relies first of all on the analysis of the single scattering events for a high energy particle
that was given in [ADBLP10] and [Agu10]. This yields a sufficiently sharp description of the transition
probabilities of the Markov chain at high momenta to allow us to control the asymptotic behaviour of
the energy of the particle in this Markov chain dynamics. For that purpose we then adapt techniques
developed in [DK09] in the context of a related problem on which we shall comment below.

The paper is organised as follow. In Section 2 we introduce the model that we consider and we describe
the behaviour of the kinetic energy by a Markov chain where each step corresponds to a passage trough
a scattering region. In Section 3, we state a technical result (Theorem 3.1) for a class of Markov chains
which includes the one described in Section 2 and we show how it implies our main result, Theorem 2.1.
In Section 4, we show that correctly rescaled and under some technical conditions, each Markov chain of
this class converges weakly to a transient Bessel process (see Theorem 4.1). This Averaging Theorem is
a key element of the proof of Theorem 3.1. Sections 5, 6 and 7 contain the three steps of the proof of
Theorem 3.1. An appendix concludes this paper with in particular the proof of Theorem 4.1.

Acknowledgments. The authors thank B. Aguer, M. Rousset, T. Simon and D. Dereudre for helpful
discussions. This work is supported in part by the Labex CEMPI (ANR-11-LABX-0007-01).

2 The Markov chain model

The solution (q(t), q̇(t)) of (1.1) can be viewed as a stochastic process on the probability space generated
by the (λi, ri, φi). To each trajectory (q(t), q̇(t)) one can associate a sequence (tn, vn, bn, rin , λin , φin)i∈N.
Here tn is the instant the particle arrives at the n-th scattering region with incoming velocity vn = q̇(tn);
rin is the n-th scattering center visited by the particle, λin and φin are, respectively the associated
coupling constant and phase; bn is the impact parameter (Figure 1). More precisely, we have

en =
vn

||vn||
, q(tn) = rin − 1

2
en + bn, bn · vn = 0, ||bn|| ≤

1

2
.
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Figure 1: A particle at time tn arriving with velocity vn and impact parameter bn on the n-th scatterer,
centered at the point rin .

The change in velocity experienced by a sufficiently fast particle at the n-th scattering event can be
written

vn+1 = vn +R(vn, bn, φin , λin) (2.1)

where, for all v ∈ R
d, b ∈ R

d with v · b = 0, and (φ, λ) ∈ T
m × R,

R(v, b, φ, λ) = −λ
∫ +∞

0

dt∇V (q(t), ωt+ φ); (2.2)

here q(t) is the unique solution of

q̈(t) = −λ∇V (q(t), ωt+ φ), q(0) = b− 1

2

v

||v|| , q̇(0) = v. (2.3)

We will always suppose the potential V satisfies the following hypothesis:

Hypothesis 1. V ∈ C∞(Rd,Tm) is bounded and of compact support in its spatial variable in the ball of
radius 1/2 at the origin. The potential V and all its derivates are bounded, and we write

0 < Vmax := ||V ||∞ < +∞.

Moreover, (ω · ∇φ)V 6= 0.

Equation (2.1) determines vn+1 in term of vn, bn, φin , λin . To determine tn+1, bn+1, λin+1 , φin+1 ,
one would need to solve a geometric problem which consists in finding the location rin+1 of the next
scatterer visited by the particle. We shall present and study a simplified model of the dynamics in which
this problem is eliminated. For that purpose note first that, once the particle leaves the n-th scatterer,
it travels with a constant velocity ‖vn+1‖ over a distance ℓn before meeting the n + 1-th scatterer.
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Hence tn+1 = tn + ℓn
‖vn+1‖ , where we ignored the duration of the scattering event itself. Furthermore

qn+1 = qn + vn+1(tn+1 − tn) where qn = q(tn).

Starting from this description of the dynamics and ignoring possible recollisions, we now model the
solution (q̇(t), q(t)) of (1.1) by a coupled discrete-time Markov chain in momentum and position space
as follows. Each step of the chain is associated to one scattering event. Thus, starting with a given initial
velocity v0 ≫ 1, we define iteratively the velocity vn and the time tn just before the n-th scattering event
through the relations:

vn+1 = vn +R (vn, κn)

tn+1 = tn +
ℓ

‖vn+1‖
qn+1 = qn + vn+1(tn+1 − tn),















(2.4)

where
κn = (bn, φn, λn). (2.5)

Here the random variables bn are chosen independently at each step of the Markov chain and follow
a uniform law in B(0, 12 ) conditionally to bn · vn = 0. The variables λn and φn are also sequences of
independent random variables and identically distribued in [−1, 1] and T

m respectively.

Finally, note that we have added a very last simplification to this Markov chain by replacing the
random variables ℓn by the mean distance ℓ between two scatterers successively visited by the particle.
In this way the geometric problem associated to the distribution of the scatterers in the space is completely
eliminated.

This Markov chain provides a simplified but still highly non-trivial model for the original dynamical
problem given in (1.1). Note that the momentum change undergone by the particle during collisions is
entirely encoded in the momentum transfer function R(v, b, φ, λ) (see (2.2)) in both the original problem
and the above Markov chain. The main simplifications in (2.4) come from the fact that we ignore
geometric considerations (the spatial distribution of the ri) as well as possible recollisions.

To state the main result of this paper, we introduce trajectories (q(t))t∈R+
where for all n ∈ N,

q(tn) = qn is a solution of (2.4) and for all t ∈ [tn, tn+1]

q(t) = q(tn) + (t− tn)vn+1. (2.6)

Theorem 2.1. Suppose d > 5. Then for all ν > 0 and v0 ∈ R
d, there exist c(ν) > 0 depending on ν and

C(v0, ν) > 0 depending on both v0 and ν such that

lim
||v0||→+∞

P

(

∀t > 1

‖v0‖
, c(ν)t

1
5−ν ≤ ||q̇(t)|| ≤ C(v0, ν)t

1
5+ν

)

= 1. (2.7)

The proof of Theorem 2.1 is given in Section 3 where the role of the condition d > 5 will be explained.
In order to establish this theorem, we have to analyze the behaviour of the first equation of (2.4),

vn+1 = vn +R(vn, κn), (2.8)

for vn large. For that purpose, we need to understand the behaviour of the momentum transfer R(vn, κn)
in (2.2). Using first order perturbation theory, we can write (see [ADBLP10]),

R(v, κ) = − λ

||v||

∫ +∞

−∞
dy∇V

(

b+ (y − 1

2
)e,

ωt

||v|| + φ

)

+O
(

||v||−3
)

,

with b·v = 0. As V is sufficiently smooth, we have the following expansion forK ∈ N, (v, κ) = (v, b, φ, λ) ∈
R

2d × T
m × R with b · v = 0:

R(v, κ) =
K
∑

k=1

α(k)(e, κ)

||v||k +O(||v||−K−1), e =
v

||v|| ,
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with

α(1)(e, κ) = −λ
∫ +∞

−∞
dy ∇V

(

b + (y − 1

2
)e, φ

)

.

Note that e · α(1)(e, κ) = 0. Then, if we look at the energy transfer

∆E(v, κ) =
1

2

(

(v +R(v, κ))2 − v2
)

, (2.9)

we have

∆E(e, κ) =

L
∑

ℓ=0

β(ℓ)(e, κ)

||v||ℓ +O(||v||−L−1), (2.10)

where β(0) = e · α(1) = 0 and β(1) = e · α(2). Consequently, the first term in (2.10) is equal to 0 and
∆E(e, κ) ∼ ||v||−1. The following theorem (see [ADBLP10]) describes the average energy transfer during
a unique collision.

Theorem 2.2. For all unit vectors e ∈ R
d, α(1)(e) = 0 = α(2)(e). Moreover, for all v ∈ R

d

∆E(v) =
B

‖v‖4 +O(‖v‖−5), (∆E(v))2 =
D2

‖v‖2 +O(‖v‖−3),

where

B =
d− 3

2
D2

and

D2 =
λ2

Cd

∫

Tm

dφ

∫

R2d

dq0 dq
′
0 ||q0 − q′0||1−d∂t V (q0, φ)∂t V (q′0, φ) > 0,

where Cd is the volume of the sphere of radius 1
2 in R

d−1. In particular, for all unit vectors e ∈ R
d and

for all ℓ = 1, 2, 3,

β(ℓ)(e) = 0, B = β(4)(e), and D2 = (β(1)(e))2 > 0.

Theorem 2.2 and (2.9) yield

∆||vn||3 = 3β(1)
n +

3

(

β
(4)
n + 1

2

(

β
(1)
n

)2
)

||vn||3
+O0

(

||vn||−1
)

+O
(

||vn||−4
)

. (2.11)

Here ∆||vn||3 = ||vn+1||3 − ||vn||3 where (vn)n is the stochastic process defined by (2.8) and O0

(

||vn||−1
)

designates a term of O
(

||vn||−1
)

with zero average. Introducing

ξn =
||vn||3
3D

, ωn =
β
(1)
n

D
, and γ =

1

3

(

B

D2
+

1

2

)

=
1

6
(d− 2) ≥ −1

6
, (2.12)

and using (2.11), we obtain the discrete Markov chain with values in R

ξn+1 = ξn + ωn +
γ

ξn
+O0

(

ξ
− 1

3
n

)

+O
(

ξ
− 4

3
n

)

, (2.13)

with 〈ωn〉 = 0, 〈ω2
n〉 = 1. To understand the behaviour of the system’s kinetic energy, it remains therefore

to study the Markov chain (ξn)n, a task we turn to in the following sections. In particular, Theorem 3.1
is a technical result valid for a class of Markov chains including (ξn)n defined by (2.13).
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3 Strategy of the proof

We start with a remark that explains the origin of the condition d > 5 in Theorem 2.1. Note that under
Hypothesis 1, a global solution of (2.3) always exists. Nevertheless, the integral in (2.2) may not converge.
Indeed, it is conceivable that for given v = q̇(0), the solution satisfies ‖q(t)‖ ≤ 1

2 for all t > 0 large. In
other words, the particle may not leave the scattering region after having entered it: it is trapped. In
this case the integral in (2.2) may not converge. As shown in [ADBLP10], and as is intuitively obvious,
this will not happens if ‖v‖ is large enough (meaning v > 12|λ| ‖∇V ‖∞, see [ADBLP10]). The particle
will then exit the scattering region after a finite time of order ‖v‖−1. We will show below below that for
d > 5 (this means γ > 1

2 in (2.12)), the Markov chain (2.12) is transient. This implies an initially fast
particle never slows down so that there is no trapping and the chain is well defined.

We will consider a slightly more general class of Markov chains, which may be of interest on its own,
and which is defined as follows. Let (ωk)k∈N be a family of bounded, i.i.d. real random variables, with
zero mean and whose variance equals 1:

E(ωk) = 0, E(ω2
k) = 1, ∃M ≥ 1, |ωk| ≤M. (3.1)

We will denote their common probability measure by µ. Let F : R+
∗ × [−M,M ] → R

+
∗ be a measurable

function satisfying the following properties:

Hypothesis 2. ∃γ ∈ R, 0 < ξ− < ξ+, α > 0, β > 1, such that F is continuous on [ξ−,+∞[×[−M,M ]
and, for all ξ > ξ+,

F (ξ, ω) = ξ + ω +
γ

ξ
+G0(ξ, ω) +G1(ξ, ω), (3.2)

and where the functions G0 and G1 are such that, for large ξ,

sup
ω

|G0(ξ, ω)| = O
(

ξ−α
)

and sup
ω

|G1(ξ, ω)| = O
(

ξ−β
)

, (3.3)

with α > 0 and β > 1. Moreover, E (G0(ξ, ·)) = 0.

We will study the asymptotic behaviour of the Markov chains

ξk+1 = F (ξk, ωk), ξ0 > 0. (3.4)

Note that the Markov chain described by (2.13) satisfies Hypothesis 2. The following result is the main
technical ingredient for the proof of Theorem 2.1.

Theorem 3.1. Suppose γ > 1
2 . Then

(i) For all 0 < p ≤ 1, for all ν > 0, there exists ξ∗ > ξ+ such that for all ξ0 ≥ ξ∗, we have

P

(

∀k ∈ N,
(

ξ0 + k
1
2

)1−ν
≤ ξk ≤

(

ξ0 + k
1
2

)1+ν
)

≥ 1− p,

(ii) For all ν > 0, we have

lim
ξ0→+∞

P

(

∀k ∈ N,
(

ξ0 + k
1
2

)1−ν
≤ ξk ≤

(

ξ0 + k
1
2

)1+ν
)

= 1.

This asymptotic behaviour can be anticipated from the following observation. Let us consider the
special case where F is of the form (3.2) for all ξ > 0 (and not only for large ξ) and drop the two last
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Figure 2: Illustration of (3.5) with different values of γ. Mean of 500 simulations of a Markov chain (ξk)k.

errors terms, i.e F (ξ) = ξ + ω + γ
ξ . This is possible if 2

√
γ > M , as is easily checked. In that case, one

readily finds that

ξ2k+1 = ξ2k + 2γ + ω2
k + 2ωk

(

ξk +
γ

ξk

)

+
γ2

ξ2k
,

so that
E(ξ2k+1) = E(ξ2k) + (2γ + 1) + γ2E(ξ−2

k ).

It follows that, for all k ≥ 2,

ξ20 + (2γ + 1)k ≤ E(ξ2k) ≤ ξ20 + (2γ + 1 +
1

4

γ

(1− M
2
√
γ )

2
)k. (3.5)

It shows that, indeed, E(ξ2k) behaves as k in this simple case. Of course, this information on the second
moment of ξk does not imply the statement of the Theorem 3.1, even in this case. Conversely, the
statement of the Theorem 3.1 does not allow to draw conclusions on the moments of ξk, since we have
no control on the trajectories on a set of small probability.

Another way to anticipate the asymptotic behaviour of ξk is to notice that the Markov chain

ξk+1 = ξk + ωk +
γ

ξk

can be thought of as a time discretized version of the stochastic differential equation satisfied by a Bessel
process Rt of dimension 2γ + 1:

dRt = dBt +
γ

Rt
dt,

where Bt is a standard Brownian motion and γ > − 1
2 . It is of course well known (see [RY99]) that

Rt ∼
√

(2γ + 1)t when γ > − 1
2 . In Section 4, a rigorous version of this observation constitutes the first

step of the proof of Theorem 3.1. Indeed, we introduce a family of rescaled processes Rǫt and then show
that the Rǫt converge, as ǫ → 0, to a Bessel process with R(0) = 1 (Theorem 4.1). We note that the
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transience and recurence of various time and space discretized versions of the Bessel process are discussed
in [Ale11] and [CFR09] but no results on their asymptotic behaviour are obtained there.

Observe that in Hypothesis 2 no assumption is made on the behaviour of the chain when ξ < ξ−. Such
information is unavailable in the application we have in mind as we already indicated, and it is therefore
important to see what can be said without it. Clearly, one cannot hope to obtain general results valid
for all γ, without such additional information. Indeed, if γ is too small, the trajectories will reach the
region ]0, ξ+] with probability one, and the asymptotic behaviour of the chain will then depend crucially
on the behaviour of F in that region. This can be seen for example when γ = 0, and F (ξ, ω) = ξ+ω, for
all ξ ≥ ξ−. In that case, we are dealing with an ordinary random walk for ξ > ξ−, which is recurrent. If
then ξ− > M and F (ξ, ω) = 0 for all ξ < ξ−, it is clear that, with probability 1, limk→+∞ ξk = 0 (and
E(ξk) → 0). On the other hand, if F (ξ, ω) = |ξ+ω|, ∀ξ, ω, then E(ξk) ∼ k1/2 and lim supk ξk = +∞, with
probability 1. In short, when γ is small, the chain is recurrent and one needs a “non-trapping” condition
of the trajectories in the region [0, ξ+] to ensure the asymptotic behaviour of ξk is still of the form k1/2.

Once we have Theorem 3.1, we can show Theorem 2.1.

Proof of Theorem 2.1. Theorem 3.1 ii) and (2.12) yield that for all ν > 0

lim
‖v0‖→+∞

P

(

∀n ≥ 0; (3D)−
1
3

(‖v0‖3
3D

+ n
1
2

)− 1+ν
3

≤ ‖q̇(tn)‖−1 ≤ (3D)−
1
3

(‖v0‖3
3D

+ n
1
2

)− 1−ν
3

)

= 1.

(3.6)
Furthermore, by (2.4) we have, for all n ≥ 1,

tn = ℓ

n
∑

j=1

‖vj‖−1, t0 = 0. (3.7)

Combining (3.6) and (3.7), straightforward estimates show that for all ν > 0, the following bounds on tn
hold,

lim
‖v0‖→+∞

P

(

∀n ≥ 2; c1(ν)t
6

5+ν
n ≤ n ≤ C1(v0, ν)t

6
5−ν

n−1

)

= 1. (3.8)

Here c1(ν) > 0 and C1(v0, ν) > 0 are two positive constants depending only on ν and (v0, ν) respectively.
This implies, by part ii) of Theorem 3.1, that for all ν > 0

lim
‖v0‖→+∞

P

(

∀n ≥ 2; c2(ν)t
1−ν
5+ν
n ≤ ‖q̇(tn)‖ ≤ C2(v0, ν)t

1+ν
5−ν

n−1

)

= 1. (3.9)

Then, as for all t ∈ (tn−1, tn], q̇(t) = q̇(tn) (see (2.6)), it follows from (3.9) that

lim
‖v0‖→+∞

P

(

∀t > ℓ

‖v1‖
; c(ν)t

1−ν
5+ν ≤ ‖q̇(t)‖ ≤ C(v0, ν)t

1+ν
5−ν

)

= 1. (3.10)

Using (3.6), this result is easily extended to all t > 1/‖v0‖.

The rest of this paper is devoted to the proof of Theorem 3.1. The strategy is the following. We will
consider, in Section 4, a family of Markov processes Rεn = εξn, indexed by ε = ξ−1

0 . We show that after
an appropriate rescaling of the time variable, the limit of this new family as ε → 0 is a Bessel process

of dimension 2γ + 1 =
d+ 1

3
when γ > 1

2 (d > 5 in the initial problem). This yields Theorem 4.1. The

proof of this averaging theorem is given in Appendix A. In Section 5, implementing a strategy developed
in [DK09] for a similar problem, we define an auxiliary process ηℓ ∈ Z and corresponding stopping times
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τℓ such that, roughly, ξτℓ ∼ 2ηℓ (see Figure 3). In other words, the increments of the process (ηℓ)ℓ are
±1, and ∆τℓ = τℓ+1 − τℓ is the time the process (ξn)n needs to double or half its value. In Section 6, we
use Theorem 4.1, properties of the Bessel process and the Porte-Manteau Lemma to show that, provided
γ > 1

2 and η0 is large enough, (ηℓ)ℓ is a submartingale. We then control ∆τℓ. Basically, we show
(Proposition 5.1) that there exists µ > 0 such that

ηℓ ∼ µℓ+ η0, and ∆τℓ ∼ 22ηℓ .

In Section 7, we use the results of Sections 5 and 6 to conclude the proof of Theorem 3.1.

We end this section with a further comment on [DK09]. The authors of that paper study a similar
model, in which however the force does not derive from a potential. In other words, it is not irrotational.
In that case they show that, provided ‖q̇(0)‖ is large enough, and for d ≥ 4,

‖q̇(t)‖ ∼ t1/3, ‖q(t)‖ ∼ t4/3,

with high probability. Note that the energy growth is faster here than when the force derives from a
potential as in our case: it grows as t2/3 as compared to t2/5 in the latter situation. This faster growth
allows the authors of [DK09] to show the spatial trajectories of the particles do not self-intersect, so that
recollisions do in fact occur only with very low probability. This in turn allows them to control the growth
of ‖q(t)‖. The situation under study in this paper is very different. As argued and shown numerically
in [ADBLP10], the slower growth of the energy when the force does derive from a potential leads the
particle to turn on a short time scale, so that self-intersections of the trajectory do occur and the growth
of ‖q(t)‖, as t, is slower than the power t6/5 one could naively expect. In fact, the numerics of [ADBLP10]
indicates ‖q(t)‖ ∼ t. We will come back to this aspect of the problem in a further publication.

4 A scaling limit

Let ε∗ > 0, to be fixed later. We introduce ε = ξ−1
0 , and define, for ε < ε∗,

Rεn := εξn.

Note that Rε0 = 1, independently of ε. It then follow from (3.2) that Rεn satisfies

Rǫn+1 = G(ǫ, Rǫn, ωn)

where, for x > Rε+ = εξ+

G(ǫ, x, ω) = x+ ǫω + ǫ2γx−1 + εα+1Gε0 (x, ω) + εβ+1Gε1 (x, ω) ,

where Gε0 and Gε1 are such that

sup
ω∈Ω

|Gε0(x, ω)| = O
(

x−α
)

and sup
ω∈Ω

|Gε1(x, ω)| = O
(

x−β
)

,

with α > 0 and β > 1. Moreover, E (Gε0(x, ·)) = 0.

We then construct a continuous time process by linear interpolation, as follows. For n ∈ N, tn = nε2

and for t ∈ [tn, tn+1],

Rǫ(t) =
tn+1 − t

ǫ2
Rǫn +

t− tn
ǫ2

Rǫn+1.

Theorem 4.1. Fix T ∈ R
+
∗ . If γ > 1/2, the processes (Rǫt)t∈[0,T ] converge weakly, as ǫ → 0, to the

Bessel process of dimension 2γ + 1, and with initial condition 1.

9



The condition on γ guarantees that the limiting Bessel process is transient, does not explode in finite
time and does not reach zero. This is an important element of the proof which is given in Appendix A.

In addition, we will need the following result.

Lemma 4.2. Let γ > − 1
2 , and let R be a Bessel process of dimension 2γ + 1 with R(0) = 1. Let, for

a− < 1 < a+,

Ta−,a+ = inf{t ≥ 0 | R(t) 6∈]a−, a+[}, Ta− = inf{t ≥ 0 | R(t) < a−}, Ta+ = inf{t ≥ 0 | R(t) > a+}.

(i) Then, for all T ≥ 0,
0 < P(Ta−,a+ > T ) < 1.

(ii) If in addition γ > 1
2 ,

P(Ta− > Ta+) =
a1−2γ
− − 1

a1−2γ
− − a1−2γ

+

In order not to break the flow of the main argument, the proofs of Theorem 4.1 and Lemma 4.2 are
given in Appendix A.

5 An auxiliary process

Let L > 0, η ∈ Z and define the intervals Jη = [2η − L, 2η + L]. We consider the subset NL :=
⋃

Z
Jη

of R+
∗ and we will study how the Markov chain (ξk)k visits successively NL by introducing an auxiliary

process (ηℓ ∈ Z)ℓ and corresponding stopping times τℓ, so that ξτℓ ∈ Jηℓ , (see Figure 3). We start with a
technical remark. Note that in Hypothesis 2, ξ+ can always be replaced by a larger value. It turns out

to be convenient to work under the following further condition on ξ+: ξ+ ≥ |γ|
M . Under this hypothesis,

one easily checks that
∀ξk > ξ+, ξk+1 ∈ (ξk − CM,γ , ξk + CM,γ) , (5.1)

where CM,γ = 2M +C
Mα

|γ|α +C
Mβ

|γ|β , C > 0. This expresses the rather obvious fact that, for large enough

ξk, the step size of the random walk is small compared to ξk.

Let us now define the process (ηℓ)ℓ∈N precisely. First, set

η+ = min{η ∈ N | 2η > 2max{ξ+, CM,γ}} > 1, (5.2)

where the last inequality follows from the observation that M ≥ 1 (See (3.1)). In view of (5.2), one can
choose L satisfying CM,γ < L < 2η+−1, from which it follows that, for all η, η′ ≥ η+, η 6= η′, we have
Jη ∩Jη′ = ∅. Note that, in view of (5.1), the process ξk cannot jump across one of these intervals without
visiting it. In this way, for all ℓ, ηℓ+1 = ηℓ ± 1,as we will see.

We are now in a position to define the process ηℓ, and the associated stopping times τℓ recursively, as
follows. We restrict ourselves to initial conditions ξ0 for which there exists an integer η0 so that ξ0 ∈ Jη0 ,
with η0 > η+. Note that if ξ0 is not in such an interval, by Lemma 6.1 we can control the time that the
procces spend before entering in Jη0 . Then, define τ0 = 0 and

τ1 := inf{k > τ0 | ξk ∈ Jη0−1 ∪ Jη0+1}.

We define
η1 = η0 + 1, if ξτ1 ∈ Jη0+1, and η1 = η0 − 1, if ξτ1 ∈ Jη0−1.

10



Figure 3: (ξk)k visiting NL. Here, ηℓ+1 = ηℓ − 1.

We then proceed recursively. Suppose that, for some ℓ ∈ N, τ0, η0, τ1, η1, . . . τℓ, ηℓ have been defined, with
ξτk ∈ Jηk , for all 0 ≤ k ≤ ℓ. If ηℓ = η+, we define τℓ+1 = τℓ and ηℓ+1 = ηℓ. Otherwise we define

τℓ+1 = inf{k > τℓ | ξk ∈ Jηℓ−1 ∪ Jηℓ+1},
ηℓ+1 = ηℓ + 1, if ξτℓ+1

∈ Jηℓ+1, and ηℓ+1 = ηℓ − 1, if ξτℓ+1
∈ Jηℓ−1.

We will show in this section that the process (ηℓ)ℓ is asymptotically a submartingale, with high
probability, and that ηℓ ∼ µℓ, for some µ > 0 (see Proposition 5.1 (ii)). In Section 6, we will combine
this result with estimates on the dwell times τℓ+1 − τℓ between successive visits of the original process ξk
to NL, which we show to be of order (2ηℓ)2 ∼ 22µℓ, to conclude that

τℓ ∼ 22µℓ, and hence ξτℓ ∼
√
τℓ.

(See Proposition 6.2 (ii)&(iv) for a precise statement.) It will then remain, in Section 7, to interpolate
between the stopping times τℓ to obtain Theorem 3.1.

Note that the sequence (τℓ)ℓ is increasing, and we have the following dichotomy: either the sequence
(τℓ)ℓ is strictly increasing, limℓ→+∞ τℓ = +∞, and ∀ℓ ∈ N, ηℓ > η+, or ∃L∗ ∈ N and T∗ > 0 so that
τℓ = T∗ and ηℓ = η+, forall ℓ ≥ L∗.

There is no reason to think the process ηℓ is still a Markov process, specifically (ηℓ)ℓ describe the
behaviour of (ξk)k on interval:

P (ηℓ+1 = η ± 1|ηℓ = η, ηℓ−1 = η ± 1) = P
(

ξτℓ+1
∈ Jη±1|ξτℓ ∈ Jη, ξτℓ−1

∈ Jη±1

)

6= P
(

ξτℓ+1
∈ Jη±1|ξτℓ ∈ Jη

)

.

Actually, it depends on if ξτℓ is rather on the left than on the right of Jηℓ .

To control its asymptotic behaviour, we will show it is, with high probability, a submartingale, if η0
is sufficiently large, and control its jump probabilities P(ηℓ+1 = ηℓ ± 1 | ηℓ, . . . , η0). (See Proposition 5.1
(i).) We note that the transience of the chain (ξk)k is essential in the arguments of this section; it is, as
we shall see, ensured by the condition that γ > 1

2 . The main properties of the process ηℓ are summarized
in the following proposition.

Proposition 5.1. (i) Suppose γ > 1
2 . For all δ > 0 there exists η̃ > η+ such that for all ℓ ∈ N

∗ and
for almost all η0, η1, . . . , ηℓ−1 ≥ η+, ηℓ > η̃, we have

|P (ηℓ+1 = ηℓ ± 1|ηℓ, . . . , η0)− p±| < δ, (5.3)

where p+ = 22γ−1−1
22γ−1−21−2γ >

1
2 and p− = 1− p+.
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(ii) For all 0 < p ≤ 1 and for all δ > 0, there exists η∗ > η+ so that for all η0 ≥ η∗

P (|ηℓ − µℓ− η0| ≤ δ (ℓ+ η0) , ∀ℓ ∈ N) ≥ 1− p,

where µ = 2p+ − 1 > 0.

(iii) For all 0 < p ≤ 1, there exists η∗ > η+ so that for all η0 ≥ η∗,

P

(

∀ℓ ∈ N, ηℓ ≥
η0
2

)

≥ 1− p.

We start with two preliminary observations. First, in what follows our notation will not distinguish
between on the one hand the random variable P (A|ηℓ, . . . , η0), viewed as a function on the underlying
probability space or on N

ℓ+1, and on the other hend the values it takes at points in N
ℓ+1, also denoted

by (ηℓ, . . . , η0) ∈ N
ℓ+1. Second, we will often make use of the following useful property of the process ξk,

which is a consequence of its Markovian nature:

inf
ξk−1∈I

P(A ∈ F+
k |ξk−1) ≤ P(A ∈ F+

k |ξk−1 ∈ I, C ∈ Fk−2) ≤ sup
ξk−1∈I

P(A ∈ F+
k |ξk−1), (5.4)

where I is an interval, Fk−2 is the sigma-algebra generated by the ξk′ , 0 ≤ k′ ≤ k − 2 and F+
k the

sigma-algebra generated by the ξk′ , k
′ ≥ k.

Proof. (i) Let η0, η1, . . . , ηℓ > η+. We then have

P (ηℓ+1 = ηℓ + 1|ηℓ, . . . , η0) =
∑

0<i1≤···≤iℓ

P (ηℓ+1 = ηℓ + 1|ηℓ, . . . , η0; τℓ = iℓ, . . . , τ1 = i1)

×P (τℓ = iℓ, . . . , τ1 = i1 | ηℓ, . . . , η0) . (5.5)

Here and in what follows, the values of η0, . . . , ηℓ and of the multi-indices ij are restricted to values for
which the set on which we condition has non-zero probability. Introducing, for all i ∈ N and for all
η > η+,

τ+,i(η) = inf{k ≥ 0|ξi+k > 2η+1 − L} and τ−,i(η) = inf{k ≥ 0|ξi+k < 2η−1 + L},

we can write, for all η0, η1, . . . , ηℓ > η+, and for all 0 < i1 < · · · < iℓ,

P (ηℓ+1 = ηℓ + 1|ηℓ, . . . , η0; τℓ = iℓ, . . . , τ1 = i1)

= P (τ+,iℓ(ηℓ) < τ−,iℓ(ηℓ)|ηℓ, . . . , η0; τℓ = iℓ, . . . , τ1 = i1)

= P (τ+,iℓ(ηℓ) < τ−,iℓ(ηℓ)|ξiℓ ∈ Jηℓ , . . . , ξi1 ∈ Jη1 , ξ0 ∈ Jη0 ; τℓ = iℓ, . . . , τ1 = i1) . (5.6)

It then follows from (5.4) and the homogeneity of the process ξk that

inf
ξ0∈Jηℓ

P(τ+,0(ηℓ) < τ−,0(ηℓ)|ξ0) = inf
ξiℓ∈Jηℓ

P (τ+,iℓ(ηℓ) < τ−,iℓ(ηℓ)|ξiℓ )

≤ P (τ+,iℓ(ηℓ) < τ−,iℓ(ηℓ)|ξiℓ ∈ Jηℓ , . . . , ξi1 ∈ Jη1 , ξ0 ∈ Jη0 ; τℓ = iℓ, . . . , τ1 = i1)

≤ sup
ξiℓ∈Jηℓ

P (τ+,iℓ(ηℓ) < τ−,iℓ(ηℓ)|ξiℓ) = sup
ξ0∈Jηℓ

P (τ+,0(ηℓ) < τ−,0(ηℓ)|ξ0) .

Inserting this into (5.6) and using the result in (5.5) finally yields

inf
ξ0∈Jηℓ

P (τ+,0(ηℓ) < τ−,0(ηℓ)|ξ0) ≤ P (ηℓ+1 = ηℓ + 1|ηℓ, . . . , η0) ≤ sup
ξ0∈Jηℓ

P (τ+,0(ηℓ) < τ−,0(ηℓ)|ξ0) . (5.7)
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We will now use the Porte-Manteau Theorem again to conclude the argument. For ease of notation, we
shall write τ±(η) = τ±,0(η) in what follows. Let η > η+ and ξ ∈ Jη. We consider the set Eξ(η) defined
as follows:

Eξ(η) = {τ+(η) < τ−(η); ξ0 = ξ},
so that

inf
ξ∈Jη

P (τ+(η) < τ−(η)|ξ0 = ξ) = inf
ξ∈Jη

P (Eξ(η)) , sup
ξ∈Jη

P (τ+(η) < τ−(η)|ξ0 = ξ) = sup
ξ∈Jη

P (Eξ(η)) .

(5.8)
Noting that

Eξ(η) = {∀k < τ+(η), ξk > 2η−1 + L; ξ0 = ξ},
one sees, with the notation of Section 4 (Rεk = ξk

ξ0
, and ε = ξ−1

0 ), that, provided ξ ∈ Jη,

Eξ(η) ⊃ {∀k < τ+(η), R
ε
k >

1

2
σ−(η); R

ε
0 = 1},

where σ−(η) =
2η + 2L

2η − L
. Note that σ− is a decreasing function of its argument which tends to 1 as

η → +∞. Let η∗ > η+, to be chosen later, as a function of δ in (5.3). Let η > η∗; it then follows that

Eξ(η) ⊃ {∀k < τ+(η), R
ε
k >

1

2
σ−(η); R

ε
0 = 1} ⊃ {∀k < τ+(η), R

ε
k >

1

2
σ−(η∗); R

ε
0 = 1}.

In order to apply the Porte-Manteau Theorem, we need to replace the stopping time τ+(η) of ξk by an
appropriately chosen stopping time of the continuous time process Rǫ(t) introduced in Section 4. We
will proceed in two steps. First we replace τ+(η) by a stopping time τε+ for the discrete time process Rεk,
which is defined as follows:

τε+ = inf{k ≥ 0|Rεk > 2σ+(η∗)},

where σ+(η∗) =
2η∗ − L

2

2η∗ − L
is also decreasing and tends to 1 as η∗ → +∞. One checks that τε+ ≥ τ+(η), for

all η > η∗, so that for all η > η∗, and for all ξ ∈ Jη,

Eξ(η) ⊃ {∀k < τ+(η), R
ε
k >

1

2
σ−(η∗); R

ε
0 = 1} ⊃ {∀k < τε+, R

ε
k >

1

2
σ−(η∗); R

ε
0 = 1}.

We next consider two stopping times T ε+ and T ε− for the continuous time processes (Rε(t))t, defined as
follows

T ε+ = inf{t ≥ 0|Rε(t) = 2σ+(η∗)} and T ε− = inf{t ≥ 0|Rε(t) = 1

2
σ−(η∗)}.

It then follows from the definition of (Rε(t))t by linear interpolation of the (Rεk)k between the times tk =
kε2, and the fact that τε+ is an integer that (τε+−1)ε2 < T ε+ < τε+ε

2, so that 1
2σ−(η∗) < Rε

(

(τε+ − 1)ε2
)

<

2σ+(η∗) and Rε
(

τε+ε
2
)

> 2σ+(η∗). Hence

{∀t < τε+ε
2, Rε(t) >

1

2
σ−(η∗); R

ǫ(0) = 1} ⊃ {∀t < T ε+, R
ε(t) >

1

2
σ−(η∗); R

ǫ(0) = 1}.

Finally, we may conclude that, for all η > η∗ and for all ξ ∈ Jη, with ǫ = ξ−1

P (Eξ(η)) ≥ P

(

∀t < T ε+, R
ε(t) >

1

2
σ−(η∗); R

ǫ(0) = 1

)

. (5.9)

We will now apply the Porte-Manteau Theorem to get a lower bound on the right hand side of this
inequality. For that purpose, we first remark that, for all ε and η∗ > η+,

P

(

∀t < T ε+, R
ε(t) >

1

2
σ−(η∗); R

ε(0) = 1

)

= P

(

∀t < T ε+, R
ε(t) >

1

2
σ−(η∗); R

ε(0) ∈] 5
6
,
7

6
[

)

,
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Figure 4: The linear interpolation of the (Rεk)k between tk and tk+1 yields that T ε± happens before ε2τε±.

because P
(

Rε(0) ∈] 56 , 1[∪]1, 76
)

= 0. The set {ϕ ∈ C([0, T ],R+)|∀t < Ta+ , ϕ(t) >
1
2σ−(η∗); ϕ(0) ∈

] 56 ,
7
6 [} where Ta+ = inf{t ≥ 0|ϕ(t) = a+}, is open. Hence the Porte-Manteau Theorem together with

Theorem 4.1 and Lemma 4.2 imply

lim inf
ε→0

P

(

∀t < T ε+, R
ε(t) >

1

2
σ−(η∗)

)

≥ P
(

∀t < Ta+ , R(t) > a−
)

= P(Ta+ < Ta−) =
a1−2γ
− − 1

a1−2γ
− − a1−2γ

+

,

(5.10)
where we use the notation of Lemma 4.2 with a− = 1

2σ−(η∗), a+ = 2σ+(η∗) and where (R(t))t is a Bessel
process of dimension 2γ + 1 and initial condition R(0) = 1. Since σ±(η∗) → 1 when η∗ → +∞, there
exist η∗ large enough, depending only on δ and L, so that,

P(Ta+ < Ta−) ≥ p+ − δ

2
, where p+ =

22γ−1 − 1

22γ−1 − 21−2γ
>

1

2
,

since γ > 1
2 . It then follows from (5.10) that there exists ε̃ so that

inf
ε<ε̃

P

(

∀t < T ε+, R
ε(t) >

1

2
σ−(η∗)

)

≥ p+ − δ,

Combining this with (5.7), (5.8) and (5.9), we obtain

inf
ηℓ>η̃

P (ηℓ+1 = ηℓ + 1|ηℓ, . . . η0) ≥ p+ − δ,

where η̃ = max{η∗, log2(ε̃−1+L)}. This is the desired lower bound on the jump probability of the process
ηℓ.

To control the upper bound in (5.7), we proceed in the same manner. First, for all ξ ∈ Jη, ε = ξ−1,

Eξ(η) = {∀k < τ+(η), ξk > 2η−1 + L; ξ0 = ξ} ⊂ {∀k < τ+(η), R
ε
k >

2η−1 + L

2η + L
; Rε0 = 1}

⊂ {∀k < τ+(η), R
ε
k >

1

2
; Rε0 = 1}.
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Now, let η̃∗ > η+, to be chosen later, and let η > η̃∗. Consider the stopping time τ̃ε+ = inf{k ≥ 0|Rεk >

2σ̃+(η̃∗)} where σ̃+(η̃∗) =
2η̃∗ − L

2

2η̃∗ + L
. Note that σ̃+ is increasing and converges to 1 when η̃∗ → +∞. One

readily checks that τ̃ε+ ≤ τ+(η) and hence

{∀k < τ+(η), R
ε
k >

1

2
; Rε0 = 1} ⊂ {∀k < τ̃ε+, R

ε
k >

1

2
; Rε0 = 1}

⊂ {∀t < T̃ ε+, R
ε(t) >

1

2
; Rε(0) = 1},

where T̃ ε+ = inf{t ≥ 0|Rε(t) = 2σ̃+(η̃∗)} and (τ̃ε+ − 1)ε2 ≤ T̃ ε+ < τ̃ε+ε
2. Finally, we have

Eξ(η) ⊂ {∀t < T̃ ε+, R
ε(t) >

1

2
; Rε(0) = 1}. (5.11)

Set ã+ = 2σ̃+(η̃∗). Now, we can again use the Porte-Manteau Theorem and Theorem 4.1, because the
set {ϕ ∈ C ([0, T ],R+) | ∀t ≤ Tã+ , ϕ(t) >

1
2 ; ϕ(0) = 1} where Tã+ = inf{t ≥ 0|ϕ(0) = 1, ϕ(t) = ã+} is

closed. This leads to

lim sup
ε→0

P

(

∀t ≤ T̃ ε+, R
ε(t) >

1

2

)

≤ P

(

∀t ≥ Tã+ , R(t) >
1

2

)

(5.12)

where (R(t))t is as before a Bessel process of dimension 2γ + 1 and initial condition R(0) = 1. Defining
ã− = 1

2 , and using Lemma 4.2, we have

P

(

∀t ≤ Tã+ , R(t) >
1

2

)

= P
(

Tã− > Tã+
)

=
22γ−1 − 1

22γ−1 − ã1−2γ
+

. (5.13)

It follows from (5.12) and (5.13) that there exists ε̃ depending on δ so that

sup
ε<ε̃

P

(

∀t ≤ T̃ ε+, R
ε(t) >

1

2

)

≤ p+ + δ.

Combining this with (5.7) and (5.11), we see there exists η̃ > η+ so that

sup
ηℓ>η̃

P (ηℓ+1 = ηℓ + 1| ηℓ, . . . , η0) ≤ p+ + δ,

which is the desired upper bound.

(ii) Let 0 < δ < µ and 0 < p ≤ 1. We first write down the Doob decomposition (see [EK86]) of ηℓ
explicitly:

ηℓ = η0 +Mℓ +Aℓ,

where

Mℓ =

ℓ
∑

j=1

(ηj − E (ηj |ηj−1, . . . , η0)) , and Aℓ =

ℓ
∑

j=1

(E (ηj |ηj−1, . . . , η0)− ηj−1) .

As is well known, and easily checked, Mℓ is a martingale with respect to the natural filtration induced
by the process ηℓ, a fact we will use below. Now,

| ηℓ − (η0 + µℓ) |≤|Mℓ | +
ℓ
∑

j=1

| [(E (ηj |ηj−1, . . . , η0)− ηj−1)− µ] | .

It then follows from part (i) of the Lemma that, for all δ > 0, there exists η̃ > η+ so that,

∀ℓ ∈ N,

(

ηℓ−1, . . . , η0 > η̃ ⇒| ηℓ − (η0 + µℓ) |≤|Mℓ | +
δ

2
ℓ

)

. (5.14)
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Figure 5: A typical trajectory of ηℓ, on FL, as defined in (5).

Now, for any L > 0, define

FL = {|Mℓ| ≤
δ

2
ℓ, ∀ℓ ≥ L}.

Then, on FL, and provided η0 > η̃ + L > η+ + L, so that ηL−1, . . . , η0 > η̃, one has

| ηL − (η0 + µL) |≤ δL,

so that in particular ηL > η0 > η̃ + L. This in turn implies that ηj > η̃, for all 0 ≤ j ≤ 2L. We can
therefore apply (5.14) for all L ≤ ℓ ≤ 2L to conclude that on FL, and provided η0 > η̃+L > η+ +L, one
has

| ηℓ − (η0 + µℓ) |≤|Mℓ | +
δ

2
ℓ ≤ δℓ. (5.15)

Proceeding recursively, one then concludes that (5.15) holds on FL, for all L ≤ ℓ. For 0 ≤ ℓ ≤ L, one has
from (5.14) that

| ηℓ − (η0 + µℓ) |≤|Mℓ | +
δ

2
ℓ ≤ 2L+ δℓ.

Hence, if we choose η0 >
2L
δ , we can conclude that,

∀ 0 ≤ ℓ ≤ L; | ηℓ − (η0 + µℓ) |≤ δ(η0 + ℓ).

From this, and (5.15), we conclude that, for all δ > 0 and all L > 0, if

η0 > η∗ = max{η̃ + L,
2L

δ
},

then
P (∀ℓ ∈ N, | ηℓ − (η0 + µℓ) |≤ δ(η0 + ℓ)) ≥ P(FL). (5.16)

It remains to show that, given δ and p, there exists L so that

P(FL) ≥ 1− p
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to conclude the proof. For that purpose, let us introduce the quadratic variation of Mℓ,

D2
ℓ =

ℓ
∑

i=1

(Mi −Mi−1)
2.

The Burkholder inequality (see [KS91]) then says that, for all ℓ ∈ N, exists a constant C > 0

E

(

( max
0≤i≤ℓ

|Mi|)4
)

≤ CE(D4
ℓ ).

The definition of the ηℓ and of the martingale Mℓ immediately imply that, with probability one, |Mℓ −
Mℓ−1| ≤ 2, for all ℓ. This implies immediately that E(D4

ℓ ) ≤ 4ℓ2. Hence, by the Tchebychev inequality,

P

(

|Mℓ| >
δ

2
ℓ

)

≤ P

(

max
0≤i≤ℓ

|Mi| >
δ

2
ℓ

)

≤ 24

δ4ℓ4
C4ℓ2 =

C̃

δ4ℓ2
,

where C̃ is a numerical constant. It then follows that

P(FL) ≥ 1−
∑

ℓ≥L
P(|Mℓ| >

δ

2
ℓ) ≥ 1− C̃

δ4L
.

Choosing L = C̃
δ4p , the result now follows from (5.16).

(iii) This is an immediate consequence of (ii).

6 Estimates on the dwell times τℓ − τℓ−1

As explained in the introduction of Section 5, having obtained the asymptotic behaviour of ηℓ, we now
need to control the stopping times τℓ and show that with high probability they behave, roughly, as
τℓ ∼ ξ2τℓ ∼ 22ηℓ . We turn to this task in this section, the main result of which is stated in Proposition 6.2
(ii)&(iv). For that purpose, we will first estimate the dwell times τℓ − τℓ−1 (Proposition 6.2 (i)&(iii)).
Roughly speaking, this is the time the process needs to move from ξτℓ−1

to either 2ξτℓ−1
or to 1

2ξτℓ−1
. As

we will see in Lemma 6.1, the latter can be estimated from above and from below using Theorem 4.1,
together with the Porte-Manteau Theorem and Lemma 4.2 (ii), a task we now turn to.

Let us define, for all n0 ∈ N, for all b− < 1 < b+, and for all r > 0, the stopping time

Kn0 = inf{k ∈ N | ξn0+k 6∈]b−r, b+r[}. (6.1)

If ξn0 6∈]b−r, b+r[, Kn0 = 0. Otherwise, Kn0 > 0: n0 + Kn0 − 1 is then the last instant that the
process is still inside the interval ]b−r, b+r[. The following lemma gives the bounds on Kn0 that we shall
be needing.

Lemma 6.1. Suppose Hypothesis 2 holds and that γ ≥ 1/2. (i) There exists ξ∗ > ξ+ and 0 < q− < 1, so
that, for all m ∈ N∗, for all n0 ∈ N,

sup
r≥ξ∗

sup
ξn0∈]b−r,b+r[

P
(

mr2 < Kn0 | ξn0

)

≤ qm− < 1.

(ii) Let b′−, b
′
+ be such that b− < b′− < 1 < b′+ < b+. Then there exists ξ∗ > ξ+ and 0 < q+ < 1 so that,

for all n0 ∈ N,
sup
r≥ξ∗

sup
ξn0∈]b′−r,b

,
+r[

P
(

Kn0 ≤ r2 | ξn0

)

≤ q+ < 1. (6.2)
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Proof. (i) We first treat the case with m = 1. Let r > 0, ξn0 ∈]b−r, b+r[. The homogeneity of the Markov
chain implies it is enough to consider n0 = 0. Consider the set

{K0 > r2} = {∀ 0 ≤ k ≤ r2, ξk ∈]b−r, b+r[} = {∀tk ≤ ε2r2, Rε(tk) ∈]εb−r, εb+r[}.

where we used the notation of Section 4. Since (b+r)
−1 < ε < (b−r)−1, it follows that

{K0 > r2} ⊂ {∀tk ≤ ε2r2, Rε(tk) ∈]
b−
b+
,
b+
b−

[} ⊂ {∀tk ≤ 2T,Rε(tk) ∈]
b−
b+
,
b+
b−

[},

where T = 1
2b2+

. Now choose r > (b−
√
T )−1 so that ε2 < T . Then, if K̃ satisfies tK̃ ≤ 2T < tK̃+1, we

have T < tK̃ . Since Rε(t) is constructed by linear interpolation between the Rε(tk), we can then conclude
that

{∀tk ≤ 2T,Rε(tk) ∈]
b−
b+
,
b+
b−

[} ⊂ {∀t ≤ T,Rε(t) ∈]b−
b+
,
b+
b−

[} ⊂ {∀t ≤ T,Rε(t) ∈ [
b−
b+
,
b+
b−

]},

so that

∀r > (b−
√
T )−1, ∀ξ0 ∈]b−r, b+r[, P({K0 > r2}) ≤ P(∀t ≤ T,Rε(t) ∈ [

b−
b+
,
b+
b−

]). (6.3)

The set {ϕ ∈ C([0, T ],R∗) | ∀t ∈ [0, T ], ϕ(t) ∈ [ b−b+ ,
b+
b−

]} is closed, so we can apply the Porte-Manteau

Theorem, together with Theorem 4.1 to conclude that

∃ε∗ > 0, ∀ε < ε∗, P({∀t ≤ T,Rε(t) ∈ [
b−
b+
,
b+
b−

]}) ≤ q− :=
1

2
(1 + q̃−), (6.4)

where q̃− := P(∀t ∈ [0, T ], Rt ∈ [ b−b+ ,
b+
b−

]}). By Lemma 4.2, q̃− < 1 so that q− < 1. It then follows from

(6.3) and (6.4) that

∀r > ξ∗ = max{(b−
√
T )−1, (b−ε∗)

−1}, ∀ξ0 ∈]b−r, b+r[, P ({K0 > r2}) ≤ q− < 1.

This proves (6.1) for m = 1.

It remains to show the case m > 1. This will follow from the Markov property of the chain, as follows.
We write ∆ =]b−r, b+r[. Let us introduce K∗ = ⌊r2⌋, where ⌊·⌋ denotes the integer part. First note that

P(Kn0 > mK∗ | ξn0) = P(ξn0+1 ∈ ∆, . . . , ξn0+mK∗ ∈ ∆ | ξn0)

= Πm−1
s=0 ΠK∗

i=1

∫

ξn0+sK∗+i∈∆

P(dξn0+sK∗+i | ξn0+sK∗+i−1)

= Πm−1
s=0

∫

ξn0+(s+1)K∗∈∆

LK∗(dξn0+(s+1)K∗ , ξn0+sK∗),

(6.5)

where

LK∗(A, y) :=

∫

ξn0+(s+1)K∗∈A

∫

ξn0+(s+1)K∗−1∈∆

. . .

∫

ξn0+sK∗+1∈∆

ΠK∗
i=2P(dξn0+sK∗+i | ξn0+sK∗+i−1)P(dξn0+sK∗+1 | ξn0+sK∗ = y)

= P(ξn0+(s+1)K∗ ∈ A, ξn0+sK∗+i ∈ ∆, 1 ≤ i < K∗ | ξn0+sK∗ = y),

which does in fact not depend on s, nor on n0, because the Markov chain is homogeneous. Now remark
that, when A = ∆, and y ∈ ∆, one finds

LK∗(∆, y) = P(Kn0 > K∗ | ξn0 = y).
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It then follows from (6.5) and from (6.1) for m = 1 that, for all m ∈ N∗,

P(Kn0 > mK∗ | ξn0) ≤ qm− .

This completes the proof of (i).

(ii) The argument is analogous to the first part of (i). Again, because of the homogeneity of the chain,
it is enough to prove the result for n0 = 0. Let ξ0 ∈]b′−r, b′+r[⊂]b−r, b+r[. We then have

{K0 ≤ r2} = {∃k ≤ r2, ξk 6∈ ∆}

⊂ {∃tk ≤ 1

b′−
2 , R

ε(tk) 6∈]
b−
b′−
,
b+
b′+

[}

⊂ {∃t ∈ [0, T ], Rε(t) 6∈]b−
b′−
,
b+
b′+

[}

where we set T = 1
b′−

2 . The set {ϕ ∈ C([0, T ],R∗) | ∃t ∈ [0, T ], ϕ(t) 6∈] b−b′− ,
b+
b′+

[} is closed, so we can apply

the Porte-Manteau Theorem, together with Theorem 4.1 and Lemma 4.2 to obtain (6.2) with

q+ =
1

2
(1 + q̃+), q̃+ = P(∃t ∈ [0, T ], Rt 6∈]

b−
b′−
,
b+
b′+

[}) < 1.

To state the main result of this section, we introduce “good” sets where the dwell times are suitably
controlled and that we will show to be of high probability. Let η0 > η+, δ > 0 be given, as well as two
increasing sequences (k±ℓ ) of positive integers, with 0 < k−ℓ ≤ ℓ. Define furthermore the sequence

aℓ = 22[(1−δ)η0+(µ−δ)(l−1−k−
ℓ
)]2−δk

−
ℓ . (6.6)

Then we introduce

G1 = {∀ℓ ∈ N, |ηℓ − µℓ− η0| ≤ δ(ℓ+ η0)} = ∩ℓG1(ℓ),

G2 = {∀ℓ ∈ N∗, τℓ − τℓ−1 ≤ k+ℓ−12
2ηℓ−1} = ∩ℓG2(ℓ),

G3 = {∀ℓ ∈ N∗, ∃ℓ− k−ℓ ≤ k ≤ ℓ, τk − τk−1 ≥ aℓ} = ∩ℓG3(ℓ) and G = G1 ∩G2 ∩G3.

If we set δ = 0, and k−ℓ = 0, k+ℓ−1 = 1, and use (6.6), then one can easily check that on G, τℓ ∼ 22µℓ and

ξτℓ ∼ 2µℓ, this mean that ξτℓ ∼
√
τℓ which is the power law we are trying to establish. But in that case,

we cannot hope to prove a suitable lower bound on P(G). To do so, we need to make the set G a little
bigger, by taking δ > 0 and choosing suitable growing sequences k±ℓ . This will allow us to show P(G) is
close to 1 in the following proposition, using Proposition 5.1 and Lemma 6.1, and at the same time to
get suitable bounds on τℓ in function of 22ηℓ ∼ ξ2τℓ .

Proposition 6.2. (i) ∀0 ≤ p < 1, and for all δ > 0, ∃η̃ > η+ so that ∀η0 > η̃ and for all sequences
(k+ℓ )ℓ∈N, we have

P(G1 ∩G2) ≥ 1−
+∞
∑

ℓ=1

p
k+
ℓ−1

− − p

2
, (6.7)

where p− is defined in Lemma 6.1 (i).

(ii) Let 0 < ν̂ < 1, 0 < p ≤ 1. Then there exists δ̂ > 0 so that, for all 0 < δ ≤ δ̂ and k+ℓ = 2δ(ℓ+η0), there
exists η̃ such that, ∀η0 ≥ η̃,

{G1, ∀ℓ ∈ N, τ1−ν̂ℓ ≤ 1

2
22ηℓ} ⊃ G1 ∩G2

P

(

G1, ∀ℓ ∈ N, τ1−ν̂ℓ ≤ 1

2
22ηℓ

)

≥ P(G1 ∩G2) ≥ 1− p.

19



(iii) ∀0 ≤ p < 1, ∀δ > 0, ∃η̃ > η+ so that for all η0 ≥ η̃ and for all sequences 0 < k−ℓ ≤ ℓ, one has

P(G1 ∩G3) ≥ 1−
+∞
∑

ℓ=1

q
k−
ℓ

+ − p

2
, (6.8)

where q+ is defined in Lemma 6.1 (ii).
(iv) ∀0 ≤ p < 1, ∀δ > 0, ∃η̃ > η+ so that for all η0 ≥ η̃

{G1, ∀ℓ ∈ N, τℓ ≥ aℓ} ⊃ G1 ∩G3

P(G1, ∀ℓ ∈ N, τℓ ≥ aℓ) ≥ P(G1 ∩G3) ≥ 1− p,

provided k−ℓ = min{δ(ℓ+ η0), ℓ} and aℓ is given by (6.6).

We point out that, in order to get a sharp upper bound on the τℓ− τℓ−1 in part (i) of the lemma, one
would like to take the k+ℓ small, or at least bounded, in the left hand side of (6.7). But this estimate is
useful only if the k+ℓ are large for all ℓ and tend to +∞ as ℓ → +∞. This is indeed needed for the sum
in the right hand side to converge to a small number.

Proof. (i) First note that it follows from Proposition 5.1 (ii) that, for all 0 ≤ p < 1 and all δ > 0, there
exists η∗ > η+ so that, for all η0 ≥ η∗, P(G1) ≥ 1− p

2 . Hence

P(G1 ∩G2) ≥ 1− p

2
− P(G1 ∩Gc2). (6.9)

Now,

P(G1 ∩Gc2) ≤
+∞
∑

ℓ=1

P(G2(ℓ)
c ∩G1) ≤

+∞
∑

ℓ=1

P(G2(ℓ)
c ∩G1(ℓ− 1)) ≤

+∞
∑

ℓ=1

P(G2(ℓ)
c|G1(ℓ− 1)) (6.10)

and, for all ℓ ∈ N∗,

P(G2(ℓ)
c|G1(ℓ − 1)) ≤ sup

ηℓ−1∈Iℓ−1

P(G2(ℓ)
c|ηℓ−1} (6.11)

where we used the observation that G1(ℓ − 1) = {ηℓ−1 ∈ Iℓ−1}, where

Iℓ−1 = [η0(1− δ) + (µ− δ)(ℓ − 1), η0(1 + δ) + (µ+ δ)(ℓ − 1)].

Now, proceeding as in the beginning of the proof of Proposition 5.1,

P(G2(ℓ)
c|ηℓ−1) = P(τℓ − τℓ−1 > k+ℓ−12

2ηℓ−1 | ηℓ−1)

=
∑

i

P
(

τℓ − τℓ−1 > k+ℓ−12
2ηℓ−1 | ηℓ−1, τℓ−1 = i

)

P(τℓ−1 = i | ηℓ−1). (6.12)

We have, for all i, ℓ and ηℓ−1,

P(τℓ − τℓ−1 >k
+
ℓ−12

2ηℓ−1 | ηℓ−1, τℓ−1 = i)

= P(inf{k|ξi+k 6∈]2ηℓ−1−1 + L, 2ηℓ−1+1 − L[} > k+ℓ−12
2ηℓ−1 | ξi ∈ Jηℓ−1

, τℓ−1 = i)

≤ sup
ξi∈Jηℓ−1

P(inf{k|ξi+k 6∈]2ηℓ−1−1 + L, 2ηℓ−1+1 − L[} > k+ℓ−12
2ηℓ−1 | ξi)

≤ sup
ξi∈Jηℓ−1

P(inf{k|ξi+k 6∈]2ηℓ−1−1, 2ηℓ−1+1[} > k+ℓ−12
2ηℓ−1 | ξi),
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where we used (5.4). We now remark that inf{k|ξi+k 6∈]2ηℓ−1−1, 2ηℓ−1+1[} = Ki, where Ki is defined
in (6.1), with b− = 1

2 , b+ = 2 and r = 2ηℓ−1 . It therefore follows from Lemma 6.1 (i) and from what
precedes that, provided 2η̃ ≥ ξ∗, we have for all ηℓ−1 ≥ η̃,

P(τℓ − τℓ−1 > k+ℓ−12
2ηℓ−1 | ηℓ−1, τℓ−1 = i) ≤ p

k+
ℓ−1

− .

Using this in (6.10), we find that, for all η̃ ≥ log2 ξ∗,

P(G2(ℓ)
c|ηℓ−1) = P(τℓ − τℓ−1 > k+ℓ−12

2ηℓ−1 |ηℓ−1) ≤ p
k+
ℓ−1

− ,

which, when inserted into (6.9)-(6.11), yields the result provided η̃ ≥ max{η∗, log2 ξ∗}.
(ii) Let ν̂ > 0, 0 ≤ p < 1. Let δ > 0. On G1 ∩G2, a simple calculation using k+ℓ = 2δ(ℓ+η0) yields

τℓ =

ℓ
∑

k=1

τk − τk−1 ≤ (22µ − 1)−122[(1+
3
2 δ)η0+(µ+ 3

2 δ)ℓ].

Introducing
δ̂ = (5− 3ν̂)−1 min

(

2µν̂, 2ν̂ − η−1
+

(

(1− ν̂) log2 |22µ − 1| − 1
))

,

it now easily follows that, if δ ≤ δ̂, and η0 ≥ η+, then, on G1 ∩ G2, τ
1−ν̂
ℓ ≤ 1

22
2ηℓ , which is the desired

estimate. To see it occurs with high probability, we use (6.7) to check that there exists η̃ > η+, depending
on δ and p, so that, for all η0 ≥ η̃, one has

P(G1 ∩G2) ≥ 1− p.

(iii) As in (i), we argue that, for all 0 ≤ p < 1 and all δ > 0, there exists η∗ > η+ so that, for all η0 ≥ η∗,

P(G1 ∩G3) ≥ 1− p

2
−

+∞
∑

ℓ=1

P(G3(ℓ)
c ∩G1(ℓ− 1) ∩ · · · ∩G1(ℓ− k−ℓ − 1)). (6.13)

For ease of notation, we introduce, for ℓ− k−ℓ ≤ k ≤ ℓ,

G4(k, ℓ) = {τk − τk−1 < aℓ}, and G5(k, ℓ) = G4(k, ℓ) ∩G1(k − 1).

Remarking that

G3(ℓ)
c = {∀ℓ− k−ℓ ≤ k ≤ ℓ, τk − τk−1 < aℓ} = ∩ℓ

k=l−k−
ℓ

G4(k, ℓ),

and introducing
G−

5 (k, ℓ) = ∩k−1

k′=ℓ−k−
ℓ

G5(k
′, ℓ),

we can then write

P(G3(ℓ)
c ∩G1(ℓ− 1), . . . , G1(ℓ− k−ℓ − 1)) = P(∩ℓ

k=ℓ−k−
ℓ

G5(k, ℓ))

=





k−
ℓ
−1
∏

k=0

P
(

G5(ℓ − k, ℓ)|G−
5 (ℓ− k, ℓ)

)



P(G5(ℓ − k−ℓ , ℓ)).

(6.14)
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Now, for ℓ− k−ℓ < k′ ≤ ℓ, we have

P(G5(k
′, ℓ)|G−

5 (k
′, ℓ))

= P(G4(k
′, ℓ)|G1(k

′ − 1), G−
5 (k

′, ℓ))P(G1(k
′ − 1)|G−

5 (k
′, ℓ))

≤ P(G4(k
′, ℓ)|G1(k

′ − 1), G−
5 (k

′, ℓ))

≤ P(∆τk′ < aℓ|ηk′−1 ∈ Ik′−1, G
−
5 (k

′, ℓ))

≤ sup
ηj∈Ij

ℓ−k−
ℓ
−1≤j<k′

P(∆τk′ < aℓ|ηk′−1, ηk′−2, . . . ηℓ−k−
ℓ
−1,∆τk′−1 < aℓ, . . . ,∆τℓ−k−

ℓ
< aℓ), (6.15)

where we introduced ∆τj = τj − τj−1. As before, we write

P(∆τk′ < aℓ|ηk′−1, ηk′−2, . . . ηℓ−k−
ℓ
−1,∆τk′−1 < aℓ, . . . ,∆τℓ−k−

ℓ
< aℓ)

=
∑

0<ij−ij+1<aℓ

P(∆τk′ < aℓ|ηk′−1, ηk′−2, . . . ηℓ−k−
ℓ
−1, τk′−1 = ik′−1, . . . , τℓ−k−

ℓ
−1 = iℓ−k−

ℓ
−1)

× P(τk′−1 = ik′−1, . . . , τℓ−k−
ℓ
−1 = iℓ−k−

ℓ
−1|ηk′−1, ηk′−2, . . . ηℓ−k−

ℓ
−1,∆τk′−1 < aℓ, . . . ,∆τℓ−k−

ℓ
< aℓ).

(6.16)

It remains to estimate

P(∆τk′ < aℓ|ηk′−1, ηk′−2, . . . ηℓ−k−
ℓ
−1, τk′−1 = ik′−1, . . . , τℓ−k−

ℓ
−1 = iℓ−k−

ℓ
−1).

For that purpose, we make the observation that

{ηk′−1, ηk′−2, . . . ηℓ−k−
ℓ
−1, τk′−1 = ik′−1, . . . , τℓ−k−

ℓ
−1 = iℓ−k−

ℓ
−1} = {ξik′−1

∈ Jηk′−1
, C}

where
C = {ηk′−2, . . . ηℓ−k−

ℓ
−1, τk′−1 > ik′−1 − 1, . . . , τℓ−k−

ℓ
−1 = iℓ−k−

ℓ
−1}.

Indeed, on the set where ξik′−1
∈ Jηk′−1

and τk′−1 > ik′−1 − 1, we do have τk′−1 = ik′−1. Hence

P(∆τk′ < aℓ|ηk′−1, ηk′−2, . . . ηℓ−k−
ℓ
−1, τk′−1 = ik′−1, . . . , τℓ−k−

ℓ
−1 = iℓ−k−

ℓ
−1)

= P(inf{t|ξik′−1+t 6∈]2
ηi

k′−1
−1

+ L, 2
ηi

k′−1
+1 − L[} < aℓ|ξik′−1

∈ Jηk′−1
, C)

≤ sup
ξi

k′−1
∈Jη

k′−1

P(inf{t|ξik′−1+t 6∈]2
ηi

k′−1
−1

+ L, 2
ηi

k′−1
+1 − L[} < aℓ|ξik′−1

) (6.17)

where we use the observation that C ∈ Fik′−1−1, and (5.4). We now wish to use Lemma 6.1 to conclude.
For that purpose, first note that, there exist 0 < b− < 1 < b+ so that for all r ≥ 2η+ ,

1

2
r + L < b−r < r < b+r < 2r − L.

Clearly, one can think of b− as being close to 1
2 and of b+ as being close to 2. With the notation of (6.1),

and r = 2
ηi

k′−1 , one has

Kik′−1
< inf{t|ξik′−1+t 6∈]2

ηi
k′−1

−1
+ L, 2

ηi
k′−1

+1 − L[},

so that

P(inf{t|ξik′−1+t 6∈]2
ηi

k′−1
−1

+ L, 2
ηi

k′−1
+1 − L[} < aℓ|ξik′−1

) ≤ P(Kik′−1
< aℓ|ξik′−1

).
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Recalling that ℓ− k−ℓ < k′ ≤ ℓ, one checks readily that

aℓ ≤ r2,

so that (6.2) implies, there exists η̂∗ so that, for all η0 ≥ η̂∗, for all ηk′−1 ∈ Ik′−1 and for all ξik′−1
∈ Jηk′−1

,

P(inf{t|ξik′−1+t 6∈]2
ηi

k′−1
−1

+ L, 2
ηi

k′−1
+1 − L[} < aℓ|ξik′−1

) ≤ P(Kik′−1
< aℓ|ξik′−1

)

≤ P(Kik′−1
< r2|ξik′−1

)

≤ q+ < 1, (6.18)

provided b′−, b
′
+ are chosen so that

b−r < b′−r ≤ r − L ≤ r + L ≤ b′ + r < b+r,

for all r ≥ 2η+ , which is always possible. (One should think of b′± as being close to 1.) Inserting
(6.15)-(6.18) into (6.14) yields

P(G3(ℓ)
c ∩G1(ℓ− 1), . . . , G1(ℓ − k−ℓ − 1)) ≤ q

k−
ℓ

+ ,

provided η0 ≥ η̃ = max{η∗, η̂∗}. Inserting this in (6.13) yields (6.8).
(iv) This is now an immediate consequence of (iii).

7 Proof of Theorem 3.1

(i) Let p > 1 and 0 < ν < 1. Let 0 < ν̂ < ν. It then follows from Proposition 6.2 that, there exists δ̂ and

η̃ so that, for all 0 < δ < δ̂ and for all η0 ≥ η̃, one has

P(G) ≥ 1− p,

where G = G1 ∩G2 ∩G3 and where k+ℓ = 22δ(η0+ℓ), k−ℓ = min{δ(η0 + ℓ), ℓ}. Note that G depends on η0
and δ. In addition, on G, the following inequalities hold for all ℓ ∈ N∗:

|ηℓ − µℓ − η0| ≤ δ(ℓ+ η0),

τ1−ν̂ℓ ≤ 1

2
22ηℓ ,

τℓ ≥ aℓ = 22[(1−δ)η0+(µ−δ)(ℓ−1−k−
ℓ
)]2−δk

−
ℓ .

Since (2η0+τ
1
2

ℓ )
1−ν̂ ≤ 2(1−ν̂)η0+τ

1−ν̂
2

ℓ , one easily infers from the first two inequalities that, on G, provided

δ ≤ min{δ̂, ν̂}, one has for all η0 ≥ max{η̃, (2(ν̂ − δ))−1}, and for all ℓ,

(

2η0 + τ
1
2

ℓ

)1−ν̂
≤ 2ηℓ . (7.1)

Similarly, using the first and third inequality above, one shows that on G, provided δ ≤ min{δ̂, ν̂}, one
has for all η0 ≥ max{η̃, (2(ν̂ − δ))−1}, and for all ℓ,

2ηℓ ≤
(

2η0 + τ
1
2

ℓ

)1+ν̂

. (7.2)

We are now ready to conclude the proof. By the definition of the stopping time τℓ, and using that
ηℓ ≥ ηℓ+1 − 1, as well as (7.1)-(7.2),we have for all k ∈ [τℓ; τℓ+1[

1

4

(

2η0 + k
1
2

)1−ν̂
≤ 1

4
2ηℓ+1 ≤ 2ηℓ−1 + L ≤ ξk ≤ 2ηℓ+1 − L ≤ 22ηℓ ≤ 2

(

2η0 + k
1
2

)1+ν̂
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Finally, remarking that

2 = (2η0)
1
η0 ≤ (2η0 + k

1
2 )

1
η0

one obtains the result if one chooses η̃ large enough so that

ν̂ +
2

η̃
≤ ν.

(ii) This is an immediate consequence of (i).

A Appendix

In this Appendix we prove Theorem 4.1 and Lemma 4.2. Recall that we consider a family of continuous
and piecewise linear stochastic processes (t→ Rε(t), t ∈ [0, 2T ])0<ε<ε∗ defined as follows. For each 0 <
ε < ε∗, where ε∗ ≪ 1

Rε(tn) = εξn, tn = nε2,

Rε(t) =
tn+1 − t

ε2
Rε(tn) +

t− tn
ε2

Rε(tn+1), t ∈ [tn, tn+1].

Here (ξn)n is defined in (3.4). Note that the initial value Rε(0) = 1 is independent of ε and non-random.
Each realization of the process (Rε(t))t∈[0,2T ] belongs to

C := (C ([0, 2T ] : R+) , || · ||∞) .

Let B(C) designate the Borel sets of C.
The method used in the proof of Theorem 4.1 is standard. It is in particular described in [GR09]. It

can be decomposed in 3 steps.

Step 1 For each η > 1, we introduce the process Xε which is Rε stopped at η−1 or at η (see (A.1)). We
show that the process Xε admits convergent subsequences as ε→ 0 by showing it is precompact.

Step 2 We show the limits of the converging subsequences are solutions of the martingale problem associ-
ated to a Bessel process in dimension 2γ + 1, stopped at η−1 or η. As the latter is well-posed, we
conclude that the limits have the distribution of the preceding stopped Bessel process and that it
is not only the subsequences which are converging but the entire family.

Step 3 We show that the convergence result still holds when we delete all the stopping times, which means
we tak η → +∞. The transience of the Bessel process in dimension strictly larger than 2 is an
essential ingredient in this part of the proof.

Proof of Theorem 4.1.

Step 1: Precompactness of the stopped proccess Let η ≫ 1 and ε∗ = (ηξ+)
−1, then for all

0 < ε < ε∗, η−1 > εξ+. We introduce for all 0 < ε < ε∗ the stopping time

τε := inf{t ∈ [0, T ]; Rε(t) 6∈ (η−1, η)} (A.1)

with the convention inf{∅} = 2T . We then introduce the stopped process

∀t ∈ [0, 2T ], Xε(t) = Rε(t ∧ τε).

In other words, once Xε reaches η or η−1 it stays constant. The assumption ε∗ = (ηξ+)
−1 guarantees

that for all n, ξn = 1
εR

ε(tn) > ξ+.
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Introduce
Aεf(x) = aε(x)f ′′(x) + bε(x)f ′(x) + cε(f, x),

where

aε(x) = ε2 + ε4
γ2

x2
+ ε2αE

(

Gε0(x, ω)
2
)

+ ε2βE
(

G1(x, ω)
2
)

+ εβ+3
E (G1(x, ω)) , (A.2)

bε(x) = ε2
γ

x
+ εβ+1

E (G1(x, ω)) , (A.3)

cε(f, x) =

K
∑

n=3

f (n)(x)E
((

εω + ε2
γ

x
+ εα+1Gε0(x, ω) + εβ+1Gε1(x, ω)

)n)

+O
(

‖εf‖K+1
)

, (A.4)

and
Dε

∗ = {f ∈ C
(

[η−1, η]
)

∩ C∞ ((η−1, η)
)

, lim
x→η±1

Aεf(x) = 0}.

Then we have the following lemma.

Lemma A.1. The operator (Aε,Dε
∗) is a core for the infinitesimal generator of the stopped proccess

(Xε(tn))n.

See [SV79] and [Man68] for the proof.

Hence, as for all f ∈ Dε
∗, the process

(

f(Xε(tn))−
∑n−1
j=0 Aεf(Xε(tj))

)

n∈N

is a martingale, it is easy

to check by (A.2)-(A.4) and (3.3) that for all f ∈ Dε
∗ there exists a constant 0 < Cf < +∞ depending

only on f such that the process (f (Xε(tn))− Cf tn)n is a sub-martingale. As well, for all δ > 0 there
exists ε̃ such that for all ε < ε̃ we have

P (|Xε(tj)−Xε(tj−1)| > δ) = 0,

and then

lim
ε→0

⌊ 2T
ε2

⌋
∑

j=1

P (|Xε(tj)−Xε(tj−1)| > δ) = 0, (A.5)

which assure by Theorem 1.4.11 of [SV79], the precompactness of the family (t→ Xε(t), t ∈ [0, T ])0<ε<ε∗ .
This yields the existence of decreasing functions ϕ : (0, ε∗) → (0, ε∗) such that

(

t→ Xϕ(ε)(t), t ∈ [0, 2T ]
)

0<ε<ε∗
⇀ (t→ Xϕ(t), t ∈ [0, 2T ]) ,

where the symbol ⇀ refers to convergence in distribution.

Step 2: Convergence and limit Introduce

τϕ :=
{

t ∈ [0, 2T ]; Xϕ(t) 6∈ (η−1, η)
}

with the convention inf{∅} = 2T . As it evolves in the compact [0, 2T ], the sequence (τε)0<ε<ε∗ is also

tight, however the limit of a subsequence (τψ(ε))0<ε<ε∗ converging is not a stopping time.

Theorem A.2. The processes (Xϕ(t ∧ τϕ))t∈[0,2T are solution of the martingale problem associated to

the infinitesimal generator (L,D∗) where

L :=
1

2

d2

dx2
+
γ

x

d

dx

and

D∗ :=

{

f ∈ C
(

[η−1, η]
)

∩ C∞ ((η−1, η)
)

; lim
x→η±1

Lf = 0

}

.
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Note that (L, C∞(R)) is the infinitesimal generator of a Bessel process of dimension 2γ + 1. The
condition on D∗: limx→η±1 Lf(x) = 0 yields that the Bessel process stays constant once it reaches the
points η±1. We call the points η±1 as being adhesif (see [Man68]).

We introduce (R(t))t∈[0,2T ] a Bessel process of dimension 2γ + 1 such that R(0) = 1 and

τ := inf
{

t ∈ [0, 2T ]; R(t) 6∈ (η−1, η)
}

with the convention inf{∅} = 2T . Then (R(t ∧ τ))t∈[0,2T ] is generated by (L,D∗) (see [Man68]).

As martingale problems associated to Bessel processes are well-posed, this theorem implies that all
the (Xϕ(t ∧ τϕ))t∈[0,2T ] have the same distribution which is the one of (R(t ∧ τ))t∈[0,2T ]. In particular τ
and the τϕ have the same distribution.

Proof of Theorem A.2. The process

M
ϕ(ε)
f (tn) = f

(

Xϕ(ε)(⌊ tn ∧ τϕ
ϕ(ε)2

⌋ϕ(ε)2)
)

−
⌊ tn∧τϕ

ϕ(ε)2
⌋

∑

j=1

Aϕ(ε)f
(

Xϕ(ε)(tj)
)

is a FXϕ(ε)

n -martingale for all f ∈ Dϕ(ε)
∗ . Nevertheless, for all f ∈ D∗ it is only a submartingale. By Doob

decomposition (see [EK86]) we can write

M
ϕ(ε)
f (tn) =Mart

ϕ(ε)
f (tn) +O

ϕ(ε)
f (tn) (A.6)

where
(

Mart
ϕ(ε)
f (tn)

)

n
is a FXϕ(ε)

n -martingale and
(

O
ϕ(ε)
f (tn)

)

n
is deterministic and tend to 0 as ε→ 0.

Then, applying the Representation Theorem of Skorohod (see [Bil95]), there exist a probability space
(

Ω̃, F̃ , P̃
)

and processes

(

t→ X̃ϕ(ε)(t), t ∈ [0, 2T ]
)

0<ε<ε∗
, and

(

X̃ϕ(t)
)

t∈[0,2T ]

respectively of same distribution than
(

t→ Xϕ(ε)(t), t ∈ [0, 2T ]
)

0<ε<ε∗
and (Xϕ(t))t∈[0,2T ], there exists

also τ̃ϕ stopping time for X̃ϕ with the same distribution than τϕ and such that

sup
t∈[0,2T ]

∣

∣

∣
X̃ϕ(t ∧ τ̃ϕ)− X̃ϕ(ε)(t ∧ τ̃ϕ)

∣

∣

∣
−−−→
ε→0

0, P̃-a.s.

Lemma A.3. i) Let 0 ≤ t1 < t2 ≤ 2T , then for all f ∈ D∗ we have

lim
ε→0

f

(

X̃ϕ(ε)

(

⌊ t2 ∧ τ̃
ϕ

ϕ(ε)2
⌋ϕ(ε)2

))

− f

(

X̃ϕ(ε)

(

⌊ t1 ∧ τ̃
ϕ

ϕ(ε)2
⌋ϕ(ε)2

))

−
⌊ t2∧τ̃ϕ

ϕ(ε)2
⌋−1

∑

j=⌊ t1∧τ̃ϕ

ϕ(ε)2
⌋

Aϕ(ε)f
(

X̃ϕ(ε)(tj)
)

= f
(

X̃ϕ(t2 ∧ τ̃ϕ)
)

− f
(

X̃ϕ(t1 ∧ τ̃ϕ)
)

−
∫ t2∧τ̃ϕ

t1∧τ̃ϕ

Lf
(

X̃ϕ(s)
)

ds, P̃-a.s.

ii) The limit process
(

M̃ϕ
f (t)

)

t
,

M̃ϕ
f (t) = f

(

X̃ϕ(t ∧ τ̃ϕ)
)

−
∫ t2∧τ̃ϕ

t1∧τ̃ϕ

Lf
(

X̃ϕ(s)
)

ds

is a F X̃ϕ

t -martingale.
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Proof. i) X̃ϕ is time-continuous as limit of X̃ϕ(ε) which are time-continuous. Then, for all f ∈ D∗
∣

∣

∣

∣

f
(

X̃ϕ(t ∧ τ̃ϕ)
)

− f

(

X̃ϕ(ε)

(

⌊ t ∧ τ̃
ϕ

ϕ(ε)2
⌋
))∣

∣

∣

∣

≤||f ′||∞
(

∣

∣

∣

∣

X̃ϕ (t ∧ τ̃ )− X̃ϕ

(

⌊ t ∧ τ̃
ϕ

ϕ(ε)2
⌋
)∣

∣

∣

∣

+

∣

∣

∣

∣

X̃ϕ

(

⌊ t ∧ τ̃
ϕ

ϕ(ε)2
⌋
)

− X̃ϕ(ε)

(

⌊ t ∧ τ̃
ϕ

ϕ(ε)2
⌋
)
∣

∣

∣

∣

)

−−−→
ε→0

0 P̃− a.s.

We have, now to control
∫ t2∧τ̃ϕ

t1∧τ̃ϕ Lf
(

X̃ϕ(s)
)

ds−∑
⌊ t2∧τ̃ϕ

ϕ(ε)2
⌋−1

j=⌊ t1∧τ̃ϕ

ϕ(ε)2
⌋
Aϕ(ε)f

(

X̃ϕ(ε)(tj)
)

for all f ∈ D∗.

∣

∣

∣

∫ t2∧τ̃ϕ

t1∧τ̃ϕ

Lf
(

X̃ϕ(s)
)

ds−
⌊ t2∧τ̃ϕ

ϕ(ε)2
⌋−1

∑

j=⌊ t1∧τ̃ϕ

ϕ(ε)2
⌋

Aϕ(ε)f
(

X̃ϕ(ε)(tj)
) ∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣

∫ t2∧τ̃ϕ

t1∧τ̃ϕ

Lf
(

X̃ϕ(s)
)

ds− ϕ(ε)2
⌊ t2∧τ̃ϕ

ϕ(ε)2
⌋−1

∑

j=⌊ t1∧τ̃ϕ

ϕ(ε)2
⌋

Lf
(

X̃ϕ(tj)
)

∣

∣

∣

∣

∣

∣

∣

+ϕ(ε)2

∣

∣

∣

∣

∣

∣

∣

⌊ t2∧τ̃ϕ

ϕ(ε)2
⌋−1

∑

j=⌊ t1∧τ̃ϕ

ϕ(ε)2
⌋

Lf
(

X̃ϕ(tj)
)

−
⌊ t2∧τ̃ϕ

ϕ(ε)2
⌋−1

∑

j=⌊ t1∧τ̃ϕ

ϕ(ε)2
⌋

Lf
(

X̃ϕ(ε)(tj)
)

∣

∣

∣

∣

∣

∣

∣

+ϕ(ε)2

∣

∣

∣

∣

∣

∣

∣

⌊ t2∧τ̃ϕ

ϕ(ε)2
⌋−1

∑

j=⌊ t1∧τ̃ϕ

ϕ(ε)2
⌋

Lf
(

X̃ϕ(ε)(tj)
)

− 1

ϕ(ε)2

⌊ t2∧τ̃ϕ

ϕ(ε)2
⌋−1

∑

j=⌊ t1∧τ̃ϕ

ϕ(ε)2
⌋

Aϕ(ε)f
(

X̃ϕ(ε)(tj)
)

∣

∣

∣

∣

∣

∣

∣

.

The first term tends to 0 when ε→ 0 as an approximation of the integral. The second term tends
to 0 as ε → 0 too because of the convergence almost sure of X̃ϕ(ε) to X̃ϕ. For the third term, we
use [SV79] and show that for each f ∈ D∗,

1

ϕ(ε)2
Aϕ(ε)f −−−→

ε→0
Lf

uniformly on the compact subsets of [η−1, η].

ii) We have to show that for all 0 ≤ s < t ≤ 2T and all 0 ≤ s1 < · · · < sd ≤ s, we have, for all
application φ ∈ C∞

c

(

R
d
)

,

E

((

M̃ϕ
f (t ∧ τ̃ϕ)− M̃ϕ

f (s ∧ τ̃ϕ)
)

φ
(

X̃ϕ(s1 ∧ τ̃ϕ), · · · , X̃ϕ(sd ∧ τ̃ϕ)
))

= 0.

For that we use point ii) of Lemma A.3, (A.6) and conclude with the Dominated convergence
Theorem.

Then Theorem A.2 is obtain by returning to (Ω,F ,P).
By Theorem A.2 the two stopping time τ := inf{t ∈ [0, T ]; R(t) 6∈ (η−1, η)} and τϕ have the same

distribution, we’ll write τ for both.

We end this step with the following corollary.
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Corollary A.4. The family of processes (t→ Xε(t ∧ τ), t ∈ [0, 2T ])0<ε<ε∗ converge weakly to (R(t ∧ τ))t∈[0,2T ].

Proof. We have to check that for all φ : C ([0, 2T ] : R+) → R continuous and bounded,

lim
ε→0

E

(

φ
(

Xϕ(ε)(t ∧ τ)
))

= E (R(t ∧ τ)) .

For that we use the tightness of
(

t→ Xϕ(ε)(t ∧ τ), t ∈ [0, 2T ]
)

0<ε<ε∗
in a reductio ad absurdum.

Step 3: Suppression of the stopping times For the moment, we have the following weak conver-
gence

(t→ Rε(t ∧ τε ∧ τ), t ∈ [0, 2T ])0<ε<ε∗ ⇀ (R(t ∧ τ))t∈[0,2T ] .

In this last step, we want to delete all the stopping times in order to expand the convergence to the
whole family (Rε)ε. We will use the transience of the Bessel process for d > 2 (here d refers to the
dimension of the Bessel process) and then deleting the stopping times remains to make η → +∞.

Proposition A.5. Let γ > 1
2 , then (t→ Rε(t), t ∈ [0, T ])0<ε<ε∗ ⇀ (R(t))t∈[0,T ].

Proof. For d > 2 (which means γ > 1
2 ), the transience of the Bessel process (R(t))t∈[0,2T ] yields that

P (∀t ∈ [0, 2T ]; 0 < R(t) < +∞) = 1,

and then, limη→+∞ P (τ = 2T ) = 1. Let a decreasing subsequence ϕ : (0, ε∗) → (0, ε∗) such that
(

τϕ(ε)
)

0<ε<ε∗
converge weakly to τϕ(0) (which is not a stopping time), it’s easy to show that P

(

τ ≤ τϕ(0)
)

=
1 and then

lim
η→+∞

P

(

τϕ(0) ≤ 2T
)

= 1.

As τϕ(0) = limε→0 τ
ϕ(ε), we can deduce that for all p > 0, there exist ηc ≫ 1 and ε(ηc) > 0 such

that for all η > ηc and ε < ε(ηc), we have P
(

τϕ(ε) ≥ T
)

> 1 − p. From that, we can deduce that for all
φ : C ([0, T ] : R+) → R

∣

∣

∣
E

(

φ
(

Rϕ(ε)(·)
)

− φ (R(·))
)∣

∣

∣
≤ 2||φ||∞p+

∣

∣

∣
E

(

φ
(

Rϕ(ε)(· ∧ τϕ(ε) ∧ τ)
)

− φ (R(· ∧ τ))
)∣

∣

∣
.

But by Theorem A.2

E

(

φ
(

Rϕ(ε)(· ∧ τϕ(ε) ∧ τ)
)

− φ (R(· ∧ τ))
)

7→ε→0 0.

Then, there exists ηc ≫ 1 such that for all η > ηc, for all φ : C ([0, T ] : R+) → R,

lim
p→0

lim
ε→0

E

(

φ
(

Rϕ(ε)(·)
)

− φ (R(·))
)

= 0. (A.7)

Now, assume that Rε doesn’t converge weakly to R, then there exist φ : C ([0, T ] : R+) → R and a
decreasing subsequence ψ : (0, ε∗) → (0, ε∗) and there exists δ > 0 such that

∣

∣

∣
E

(

φ
(

Rψ(ε)(·)
)

− φ (R(·))
)∣

∣

∣
> δ.

As τψ(ε) is tight, it admits converging subsequences τϕ(ψ(ε)) and (A.7) implies that

E

(

φ
(

Rφ(ψ(ε))(·)
)

− φ (R(·))
)

→ε→0 0,

which is a contradiction and then ends the proof of both Proposition A.5 and Theorem 4.1.
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We remark that the condition γ > 1
2 just appears in the last step, in order that the Bessel process

(R(t))t∈[0,T ] does not reaches 0 or explodes in finite time. If γ ≤ 1
2 then the Bessel process is reccurent

and we are not able to delete the stopping times with this method.

In the proof of Theorem 3.1, we need some estimation of exit time for a transient Bessel process. In
particular, we need to know the probability for a Bessel procces starting at 1 to reach 2 before 1

2 .

Lemma 4.2 Let γ > − 1
2 , and let R be a Bessel process of dimension 2γ +1 with R(0) = 1. Let, for

a− < 1 < a+,

Ta−,a+ = inf{t ≥ 0 | R(t) 6∈]a−, a+[}, Ta− = inf{t ≥ 0 | R(t) < a−}, Ta+ = inf{t ≥ 0 | R(t) > a+}.

(i) Then, for all T ≥ 0,
0 < P(Ta−,a+ > T ) < 1. (A.8)

(ii) If in addition γ > 1
2 ,

P(Ta− > Ta+) =
a1−2γ
− − 1

a1−2γ
− − a1−2γ

+

Proof. (i) See [Man68], [RY99] or also [EK86].
(ii) This is readily shown using the Optional Stopping Theorem, as follows. Consider the processM(t) =
R(t)1−2γ . Note that 1 − 2γ ≤ 0 for γ ≥ 1

2 but since for these values of γ the Bessel process is almost
surely positive (see [RY99]), M(t) is well defined. Considering

TM+ = inf
{

t ≥ 0|M(t) = a1−2γ
+

}

and TM− = inf
{

t ≥ 0|M(t) = a1−2γ
−

}

.

it is clear that P
(

Ta+ < Ta−
)

= P
(

TM+ < TM−
)

. By the Ito lemma, it is easily checked this is a local
martingale. It then follows from the Optional Stopping Theorem that

E
(

M
(

TM+ ∧ TM−
))

= 1. (A.9)

On the other hand,

E
(

M
(

TM+ ∧ TM−
))

= a1−2γ
+ P

(

TM+ < TM−
)

+ a1−2γ
−

(

1− P
(

TM+ < TM−
))

. (A.10)

From (A.9) and (A.10), we then obtain

P
(

TM+ < TM−
)

=
a1−2γ
− − 1

a1−2γ
− − a1−2γ

+

,

which yields the desired result.
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[CFR09] Endre Csáki, Antónia Földes, and Pál Révész. Transient nearest neighbor random walk and
Bessel process. J. Theoret. Probab., 22(4):992–1009, 2009.

[DK09] Dmitry Dolgopyat and Leonid Koralov. Motion in a random force field. Nonlinearity,
22(1):187–211, 2009.

[Eij97] E Vanden Eijnden. Some remarks on the quasilinear treatment of the stochastic acceleration
problem. Physics of Plasmas (1994-present), 4(5):1486–1488, 1997.

[EK86] Stewart N. Ethier and Thomas G. Kurtz. Markov processes. Wiley Series in Probability and
Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons Inc.,
New York, 1986. Characterization and convergence.

[GR09] Thierry Goudon and Mathias Rousset. Stochastic acceleration in an inhomogeneous time
random force field. Appl. Math. Res. Express. AMRX, (1):1–46, 2009.

[KS91] Ioannis Karatzas and Steven E. Shreve. Brownian motion and stochastic calculus, volume
113 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1991.

[Man68] Petr Mandl. Analytical treatment of one-dimensional Markov processes. Die Grundlehren der
mathematischen Wissenschaften, Band 151. Academia Publishing House of the Czechoslovak
Academy of Sciences, Prague, 1968.

[RY99] Daniel Revuz and Marc Yor. Continuous martingales and Brownian motion, volume 293 of
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences]. Springer-Verlag, Berlin, third edition, 1999.

[Stu66] Peter A Sturrock. Stochastic acceleration. Physical Review, 141(1):186, 1966.

[SV79] Daniel W. Stroock and S. R. Srinivasa Varadhan. Multidimensional diffusion processes,
volume 233 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences]. Springer-Verlag, Berlin, 1979.

30


