
HAL Id: hal-01061292
https://hal.science/hal-01061292v1

Submitted on 5 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tropos For Embedded Real-time Control System
Modeling and Simulation

Nesrine Darragi, Philippe Bon, Simon Collart-Dutilleul, El Miloudi El Koursi

To cite this version:
Nesrine Darragi, Philippe Bon, Simon Collart-Dutilleul, El Miloudi El Koursi. Tropos For Embedded
Real-time Control System Modeling and Simulation. 4th International Workshop on Analysis Tools
and Methodologies for Embedded and Real-time Systems (WATERS 2013), Jul 2013, France. 5p.
�hal-01061292�

https://hal.science/hal-01061292v1
https://hal.archives-ouvertes.fr


Tropos For Embedded Real-time Control System

Modeling and Simulation

Nesrine Darragi, Philippe Bon, Simon Collart-Dutilleul, El-Miloudi El-Koursi

Univ Lille Nord de France, IFSTTAR, ESTAS

20 RUE ELISEE RECLUS,

BP 70317, F-59666 VILLENEUVE D’ASCQ, FRANCE

Email: nesrine.darragi@ifsttar.fr, philippe.bon@ifsttar.fr, simon.collart-dutilleul@ifsttar.fr, el-miloudi.el-koursi@ifsttar.fr

Abstract—Simulation is the imitation of a system or a process
in order to manage the complexity of simulated system or to
optimize its performance. This paper presents a agent-based
strategy of modeling and simulation. We introduce some modeling
methodologies in order to determine the most adequate technique
to deal with embedded control systems. We also introduce
the Tropos and Agentology methodologies by describing used
concepts and how they are integrated with the current stages
of Tropos and Multi-agent System methodology. The above is
illustrated using an embedded real-time control system as a case
study.

I. INTRODUCTION

There are many reasons to make use of formal methods
in embedded real-time systems, particularly in railway sig-
nalling systems. These includes safety-criticality and complex
real-time constraints. The EN50128 guidelines issued by the
European Committee for Electrotechnical Standardization is a
series of safety requirements for railway control. It contains
recommendations based on the criticality, complexity and
temporal behavior of the system. It does provide neither an
exact procedure nor a unique methodology for the development
of embedded critical systems.

Safety is the property which asserts that nothing bad
happens in contrast to liveness which asserts that eventually
a good thing happens. In our works we focus especially on
safety properties and we try to prove that error or fault states
are not reachable for every possible execution.

The aim of our models is to formalize and to anticipate
these dangerous states which could be categorized as to
deadlocked states or erroneous behaviour. It is a sort of future
system validation. Starting with the analysis of Functional Re-
quirement Specifications (FRS) which is a set of finite complex
or simple sentences describing the behavior of the system,
we could capture knowledge divided into two categories.
The first one is the domain specific knowledge describing
domain properties or assumptions. The second category is
the commonsense knowledge which regroups the goals of
stakeholders and the system actors.

The paper is organized into sections. After a short in-
troduction, section 2 describes a state of the art of agent-
based modeling methodologies. Section 3 is devoted to present
the modeling and simulation strategy based on agentology
methodology. The next section presents the case study and
the application of our approachs.

II. STATE OF THE ART

An agent-based modeling noted ABM [1] is an approach
issued from the artificial intelligence which represents a sep-
arate technology. ABM is the opposite of the principle of
discrete event or continuous simulation approaches which are
destinated to simulate systems by simulating its tasks and
events using state variables dependencies. Unlike them, ABM
simulates systems by defining caracteristics and behaviors of
system entities without specifying internal rules. The need
of an agent-oriented methodologies is justified by the system
complexity as well as the weakness of existing methodologies
to support many emergent system characteristics such as dy-
namicity, cooperation aspects, distribution of software entities
and temporal constraints.

Agent-oriented methodology is used to reduce the gap
between existing software frameworks dedicated to the imple-
mentation of multi-agent systems (MAS) and, more precisely,
agent-based simulation and methodologies and guidelines.

The current work is devoted to this approach. We are
dealing with systems where we know the caracteristics of every
elementary subsystem or component and we are interested
specifically in the whole behavior of the system. Agents which
are used to simulate these different components communicate
and react with each other and with their environment in order
to achieve their goals.

We established a comparison study between diverse MAS
methodologies in order to choose the most appropriate one.
The approach has to cover the development life-cycle of
software from analysis to implementation. It is recommended
that the chosen methodology heavily based on requirements
engineering and influenced by the gaol approach which is our
initial conceptual modeling and simulation prerequisite.

In general, modeling methodologies are influenced by
approaches such as object oriented approach (Rational Unified
Process for example), aspect-oriented approach or GORE [5]
for Goal Oriented Requirement Engineering like Keep All
Objectives Satisfied KAOS [10] or Intentional STrategy Actor
Relationships (i*)[3].Table I shows how methodologies for
MAS development are influenced by software development
approaches and identified dependencies exist between these
methodologies and adapted methods. The table is divided into
three parts: MAS methodology, requirements engineering and
object-oriented approach. For each methodology we indicate
the approach or the method-driven MAS methodology in
question.



TABLE I. INFLUENCE OF SOFTWARE DEVELOPMENT APPROACHES ON

MULTI-AGENT SYSTEMS METHODOLOGIES

MAS Methodology Requirements Engineering Object Oriented

ADELFE [4] Rational Unified Process

GAIA [1] Agent-Oriented Methodology

INGENIAS [11] Rational Unified Process

PASII [12] Pattern for Agent

SODA [13] AgentOriented Methodology

Tropos [2] i* [3]

Fig. 1. Phases of the development process covered by different Multi-agent
Systems development methodologies

In this work, we need to model and simulate MAS.
Figure 1 shows different MAS development methodologies and
software development processes they . For example Tropos,
ADELFE, INGENIAS [11] or PASSI are used to analyse, to
specify, to design and to implement MAS. Tropos methodology
[2] responds to our needs in terms of development phases
and approaches. It is an agent-oriented methodology for the
analysis and design of software from early requirements to late
requirements analysis right through to the building of a system
model. It is established using goal-based concepts issued
from i* and goal-oriented requirements language dedicated to
non-functional requirements, Tropos uses other AUML [14]
diagrams to deal with MAS aspects. The framework iSTAR
or i* defines system agents as entities where relationships are
based not only on shared data or informations but also on its
common goals, beliefs or abilities.

Entities of Tropos include actors, goals (the strategic inter-
ests of agents), capabilities (the ability of an agent to decide
the action to execute given its perceptions of its environment
and external events), plans (a description of how an agent
is able to reach a goal), dependencies (relationships between
agents), beliefs (agent’s knowledge related to its environment),
resources, and finally contributions (a metric to evaluate the
relationship between goals, plans or resources specifying if it
is beneficial to achieve these goals or not).

Figure 2 shows the Tropos metamodel of the agent concept
which inherits from the actor concept. An agent plays the roles
and occupies a position. An actor is an agent or a role. An
actor has goals and plans. It is dependent on other actors
with which it may share resources and goals. The latter is

Fig. 2. Tropos metamodel of actor concept

Fig. 3. Tropos metamodel of goal concept

the generalisation of soft and hard goals. The first category
is intentions of non-functional requirements in general. The
second one is the aim behind the functional requirements.

Figure 3 illustrates the Tropos metamodel of goal concept.
An actor has many points of view of its contribution to achieve
its goal. This latter may be decomposed by other refined sub-
goals in another level of abstraction. A ”And” or an ”Or”
relationships may regroup many sub-goals in order to fulfil
the global or the root goal. It has a means or satisfaction.

The methodology of Tropos may be summerized in 5
phases :

• Early Requirement phase : Identification and modeling
of stakeholders as social actors. Dependencies of these
based on common goals, plans and shared resources
are identified.

• Late Requirement phase : Identification of system
actors and software agents and the dependencies be-
tween them.

• Architectural Design : Definition of subsystem archi-
tectures and their connections through data and control
flows.

• Detailed Design : Specification of the characteristics
and capabilities of each agent.

• Implementation : Implementation of the system de-
tailed design.

III. MODELING AND SIMULATION STRATEGY

Inspired from the Watterfall model [8] but also by best
practices contained in several other methodologies ,the agen-



Fig. 4. Process Agentology

tology [6] is a methodology for agent-based modeling. The
methodology is independant of any specific technology, pro-
gramming language or excecution environments. The basic
idea of this kind of simulation is Composed of 4 phases
and 9 steps, as shown in figure 4. The first phase is the
requirement definition wchich consists on formulation and
evaluation of requirements or tasks. The second phase is the
conceptual modeling. It is composed by two steps; modeling
and consistency checking of models.The third phase id the
platform-specific modeling which concerns the selection of
a development platform in addition to definition of transfor-
mation guide and the last step is platform-specific modeling.
Finally, simulation modeling which is the fourth pahse. It
is dedicated to development, debugging, testing and model
evalution. This methodology attempts to offer guidelines to
assist the modeling of the system using of one of the most
difficult approaches which is agent-paradigm. We will use the
ontology as a platform-independent methodology to provide
an agent-based model as a means to simulate this model in
subsequent steps.

The goal of this work is the simulation of the behavior of
subsystems and their interactions under hazardous conditions
and to detect possible defects and software faults. We simulate
the interaction of subsystems and components considered to be
system actors within a real-time execution-like environment.
Each one of our actors has specific characteristics such as
capabilities, responsibilities, goals, plans and resources which
could be shared with other actors. A real-time embedded
system is characterized by being driven by real world events.
This issue could be simulated by MAS.

First of all, we specify the study case in general and
we provide functional requirement specifications (FRS) in the
subsequent step. We are dealing with embedded real-time
control systems which have some specificities which must be
respected.

Conceptual modeling is ”the activity of formally describing
some aspects of the physical and social world around us for the

purposes of understanding and communication” [Wiki]. The
aim of this phase of the simulation project is to transform
requirements into system models that are platform-independent
and which contain different diagrams of different views. The
choice or these conceptual diagrams should be meticulous
in order to depict various aspects of the system and cover
different views.

First we propose to define an object model to the very high
level of granularity which is the abstraction of the real system.
In the second step, we create an agent diagram to determine
system actors in the defined scope. We propose to be general in
this phase and give a global model without detailed design. The
next step focuses on the creation of a global model for each
agent and the determination of dependencies between them. In
the fourth step, a detailed agent model is provided.

IV. CASE STUDY: ERTMS/ ETCS SYSTEM

The FRS of European Rail traffic Management System/
European Train Control System (ERTMS/ ETCS) [9] is the
chosen embedded control system to be studied. The aim of this
project is to unify the transeuropean railway network with the
same and unique train control system. ERTMS is decomposed
by on-board equipment which is the embedded system and
Trackside equipment which is the static system (Wayside). The
architecture of the whole system is illustrated by figure 5.

Fig. 5. ERTMS Architecture

We will focus on the Start of Mission (SoM) procedure
since it is the first procedure to apply to start the train
equipped by ERTMS. We note that in the embedded system is
composed of ETCS on-board equipment beside other systems.
The procedure ”Start of mission” is totally described in [9].
This procedure is used if the train is awake, if shunting
movements are finished, if a mission is ended or if a slave
machine becomes a leading engine. In fact, this procedure is
used when the on-board system is in Stand-By mode. The
procedure describes the status of system data required and
details the table of requirements for the procedure.After the
table, a complex flowchart describes the interactions between
the different components of the system and gives a graphical
vision of the procedure. We can notice that on-board system
interacts with Radio network and RBC and the flowchart show
how they interact between them.



A. System Evaluation for Simulation

The first step of the SoM simulation is to formulate the task
which is provided by the subset of the procedure. We analyse
the simulation description and we evaluate specifications in
order to determine if the present case study is simulable or not
by an agent-based model. The aim of this phase is to prove
the efficiency of the making use of agent approach and its
suitability and convenience in the study case. Therefore, we
need to know some general specifications of agents such as
making decision ability, the system dynamicity, granularity of
the treated system, ect... In the case of SoM procedure , (i)
there is one actor that makes decision decision- driver who can
make many kinds of decisions. (ii) The system dynamicity
is represented by faults avoidance in real-time execution.
(iii) The system behavior is treated on a macro level which
coincide with the principle of agent-based modeling, contrary
to flowchart, activity diagrams or state transition diagrams
which are typically viewed in macro-level. (iv) In micro level,
each actor has its specificities and we note that there are
different used agent architectures. (v) The environment of
the MAS is characterised by the presence of spatial factors
which may influence the simulation. All these previous metrics
mean that an agent-based model is suitable for modeling an
embedded real-time control system in general and our sturdy
case in particular.

B. Conceptual Model

The concepts of hard and soft goals are used to model
functional requirements and quality attributes respectively.
Tropos, since it adopts i*, uses these concepts in addition to
actors who could be an agent, role or position. Goals can be
classified into types or categories. We talk about software and
other behavioral goals.

A software goal announces an alternative that should be
chosen by the system to reach another goal. A behavioral goal
describes the expected behavior of a system. There are two
subtypes of behavioral goals: ”Achieve/ Cease” and ”Maintain/
Avoid.” The first class includes goals describing a behavior that
must be satisfied or not under conditions in a limited time in
the future. The second class is the set of goals describing a
behavior that should be satisfactory under conditions over time
or behavior should never be present in the system under any
condition respectively. We propose the following definition.

Definition 1. Lets S be a set of states, Si an initial state, Sf

a set of states in the future and t0 is the current instant such
that the following hold for Si ⊆ S and Sf ⊆ S:
F (Sf ) → ∃t(t>t0 ∧ P (Sf ))
G(Sf ) → t(t>t0 → P (Sf ))
Achieve[Sf ]: if [Si] then F (Sf )
Cease[Sf ]: if [Si] then qF (Sf )
Maintain[Sf ]: if [Si] then G(Sf )
Avoid[Sf ]: if [Si] then qG(Sf )

C. Goal-based reflex agent Architecture

A goal-based agent is an agent having knowledge about
its goals and what actions to choose to achieve it. A reflex
agent is an agent who maintains an internal state and based in
”condition-action” rules it updates its state.

An hybrid architecture is a way to switch between the
intuitive reaction and thought deliberation respecting the cir-
cumstances and environment events. Moreover, it is the latter
that determines the expected behavior of the agent and these
characteristics. An agent is considered as an autonomous entity
or a decision-maker.

On an abstract view, an hybrid agent is composed of
several layers each of which depends on a specific architecture
of an agent. Each class of agents has its advantages and
disadvantages. We can choose the most suitable functions
in architectures using various agents although we face the
problems of mutual interference.

The hybrid architectures are in hierarchical layers allowing
the boundary delimitation between the different features of
each level. The layers of the highest level are reserved for
reflection, decision. This is the area of reasoning. The lowest
layers are those devoted to communication and perception of
the environment. Between these two levels, areas of interac-
tion, knowledge or planning may exist and it depends mainly
on the architecture.

Each hybrid agent must have at least two layers of different
architectures. The general behavior of the agent will depend
concepts of architecture but also the alignment of these archi-
tectures. The architecture of our agents as illustrated by figure
6 is hybrid and each actor of our system has the following
properties:

• A set of states

• A set of goals

• A knowledge base (KB)

• Capabilities

• Actions

Fig. 6. General Goal-based Reflex Agent Architecture

V. CONCLUSION

In this work we present a modeling and simulation strategy
for embedded control systems based on Tropos and Agentogy.
Our approach differs from existing control system simulation
approaches in the following way. Current approaches rely
mostly on general-purpose simulation modeling paradigms
based on continuous, discrete or hybrid simulation techniques.
This trend is explained by the high degree of interaction
between mechanical and electrical components in embedded
control systems. Among others, our contribution is the use
of agent-based simulations because these models are often
appropriate and interesting to study the behavior of the entire



system where its characteristics are known. This paper is a first
attempt to make ERTMS /ETCS modeling and simulation more
specifically goals oriented. Future work is needed to validate
these models in practice and to propose a detailed model and
architectures for subsequent steps of simulations.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their
helpful and constructive comments and suggestions on this
research.

REFERENCES

[1] W. Michael and N. R. Jennings, The Gaia Methodology for Agent-

Oriented Analysis and Design,In: Autonomous Agents and Multi-Agent
System, 2000.

[2] J. Castro, M. Kolp and J. Mylopoulos A requirement-driven development

Methodology,In: Lecture Notes in Computer Science, pages 108-123.
Springer, 2001

[3] E. Yu Towards Modeling and Resoning Support for Early-Phase Re-

quirement Engineering,In: Proceedings of the 3th IEEE International
Symposium on Requirements Engineering, Washington, 1997.

[4] C. Bernon, M-P, Gleizes S. Peyruqueou and G. Picard ADELFE:

a Methodology for Adaptive Multi-Agent Systems Engineering,Third
International Workshop ”Engineering Societies in the Agents World”,
Madrid, 2002.

[5] A.Van Lamsweerde, Requirements Engineering, From System Goals to

UML Models to Software Specifications,Wiley, 2009.

[6] T. Salamon, Design of Agent-based Models, Academic series, 2011

[7] D. Bertolini, A. Perini, A. Susi and H. Mouratidis. The Tropos visual

modeling language. A MOF 1.4 compliant meta-model. 2004

[8] W. Royce, Managing the Development of Large Software Systems,
Proceedings of IEEE WESCON 26 (August): 19, 1970

[9] UNISIG, ERTMS Users Group , Functional System Requirements Spec-

ification, FRS, FRS V4.29, 1999

[10] A. Dardenne, A. V. Lamsweerde, S. Fickas Goal-directed require-

ments acquisition, In: Science Computer Program, vol. 20, page 3-50,
April 1993

[11] J. Pavon, J. Gomez-sanz Agent Oriented Software Engineering

with INGENIAS, In: Third International central and Eastern European
Conference on Multi-Agent Systems (CEEMAS), Springer verlag, 2003

[12] P. Burrafato and M. Cossentino Designing a Multi-Agent Solution

for a Bookstore with the PASSI Methodology, In: AOIS’02 at CAiSE’02,
Toronto, May 2002

[13] A. Omicini, SODA: Societies and infrastructures in the analysis and

design of agent-based systems, In: Agent Software Engineering, vol. 1975
of LNCS Springer, 2001

[14] A. Bauer, J.P. Muller, J. Odell, Agent UML: A Formalism for

Specifying, In: Multiagent Software Systems Proceedings, ICSE 2000
Workshop on Agent-Oriented Software Engineering AOSE. Limerick,
Springer Verlag, page 121-140, 2000


