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ABSTRACT 

 

Studying successional processes and related factors in salt marshes encompasses both 

fundamental (community structuration) and applied (biodiversity conservation and 

restoration) issues. Current managed realignment projects and sites where, in the past, large 

storm events led to breaches in embankments create unique experimental conditions for such 

challenges by re-instating tidal inundation and salt-marsh development. We conducted a pair-

matched approach using natural and recreated (either accidentally or managed) salt marshes 

and studied changes in invertebrate communities over time during a field experiment (Essex, 

UK). Trophic guild was assigned to all invertebrates, and detailed analyses conducted on most 

abundant (amphipods, Orchestia sp., 9666 individuals) and diversified (spiders, 43 species) 

groups. A total of 27,180 invertebrates (almost all arthropods: 99 % of specimens) was 

collected in 2005. The conservation equivalency was achieved quickly (which was shown 

here with spider assemblages), but that did not translate into a complete functional 

equivalency. Indeed neither the structure of trophic guilds, nor the potential role of marine 

enrichment and fish nursery, estimated through the population size of amphipods, were 

achieved by managed realignments. We finally argue that the study of invertebrates brings 

information complementary to those brought by plants, and underline that functional and 

conservation equivalency have to be assessed separately. 

 

Key-words: restoration; intertidal systems; macro-arthropods; Essex 
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1. Introduction 

 

Salt marshes are intertidal ecosystems, located at the interface between marine and terrestrial 

systems. They are among the most surface-restricted habitats in the world, dramatically 

declining in Europe where they currently have a high interest in terms of nature conservation, 

especially in relation to global change and sea-level rise. Salt marshes make excellent systems 

to demonstrate both fundamental and applied ecological principles. They have strong 

directional and predictable physical and ecological gradients and a limited species pool of 

specialist fauna and flora. Salt-marsh dynamics are driven by the frequency of tidal 

inundation and sediment supply. When there is net accumulation of sediment, vegetation 

communities respond driving succession, defined as a non-seasonal, directional pattern of 

plant species change (e.g. Adam 1990). Succession mechanisms have been extensively 

studied for plants. Without the impact of herbivores, salt marshes move towards typical late 

successional stages over time (Kuijper et al. 2004). Grazing by both small herbivores (mainly 

hare and geese) and large herbivores (i.e., cattle, sheep) retards succession. This general 

scheme is in reality much more complex and factors acting on plant succession are numerous 

and produce many feedbacks (Olff et al., 1997).  Although complex, there has been much 

research carried out on plant assemblages along successional schemes, and this is in contrast 

with work on invertebrates. 

Self-sustaining plant communities are often a primary goal of habitat creation efforts as they 

can perform biological and economically desirable functions within wetland ecosystems. 

There is little evidence however that shows similar trends in assembly rule between plants and 

other groups. Dispersal is generally not considered to be a limiting factor for plant 

reassembly, due to the general connectivity of the system through tidal flooding (Wolters et 

al., 2005; Erfanzadeh et al., 2010). In contrast, dispersal has been proved to be a critical 
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element in arthropod assemblage structuring (e.g. Varet et al. 2013), and few comparisons 

between plants and arthropod succession can be made in European salt marshes. Late 

successional stages of vegetation development are characterised by low diversity Elytrigia 

atherica swards (Kuijper et al., 2004). Conversely, late successional spider communities 

generally show an increase in diversity and in density (Pétillon et al., 2005). Mechanisms and 

processes of succession in salt marshes thus largely differ between plants and other groups of 

animals. 

Current intertidal habitat creation schemes and sites where, in the past, large storm events led 

to accidental breaches in embankments resulted in the re-instatement of tidal inundation and 

salt-marsh development have created unique experimental conditions for studying salt-marsh 

successions, and critical study sites for restoration ecology (e.g. Teal and Weishar, 2005). 

„Historic‟ sites can be used as analogues for modern day managed realignment and, along 

with current managed realignment sites, give space for time examples of saltmarsh 

development on former agricultural land (Hinkle and Mitsch, 2005). 

One recent study, based on vegetation analysis, showed that restoration of tidal inundation to 

former agricultural land remains insufficient measures to ensure “equivalent biological 

characteristics” to natural reference sites (Mossman et al., 2012). We conducted a similar 

survey at a subset of the same sites (pair-matched natural and recreated, either accidentally or 

by managed realignment, salt marshes) on invertebrate communities in a field experiment in 

UK, and assessed both the conservation (condition at a given time) and functional (proxy of 

process over time) equivalencies (sensu Zedler and Lindig-Cisneros, 2000) between recreated 

and natural salt marshes.  

The conservation value of salt marshes was estimated through two classical conservation 

criteria, i.e. abundance of halophilic species and species richness. In salt marshes spiders are 

the most abundant and diversified of terrestrial macro-arthropods, and host some specialist, 
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halophilic, species, with behavioural and physiological adaptations to flood and saline stress 

(e.g. Foucreau et al., 2012). Trophic guilds were used to evaluate the functional restoration of 

invertebrate communities (e.g. Gratton and Denno, 2005). One more particular focus was 

done on amphipods because of their role as decomposers (thereby controlling the magnitude 

of organic matter outwelling toward marine systems) and as main food item for juveniles of 

several fish species (nursery function of salt marshes: e.g. Laffaille et al., 2005).  

 

2. Material and Methods 

 

2.1. Study sites 

We selected 20 study sites varying in their restoration age (including 4 managed realigned 

sites coded MR and aged 3 to 15 years, and 6 accidentally realigned sites coded AR and aged 

from 52 to 107 years), allowing 11 comparisons natural (coded Reference) /recreated salt 

marshes (for a full description of the sites, see Garbutt and Wolters, 2008). We were not 

interested here in the comparison AR vs MR per se, but instead in assessing the influence of 

age since restoration on the recolonization process of salt-marsh invertebrates. Sites were 

therefore considered as forming a continuum over time (chrono-sequence approach). Natural 

and recreated sites had 100m-study transect at the same elevation, and located along the 

Blackwater Estuary (Essex, UK). All MR/AR sites were under agricultural use prior to re-

exposure to tidal flooding. The Essex marshes are amongst the oldest in the UK, probably 

developed from the Holocene period after the last ice age.  

 

2.2 Sampling design 

Pitfall traps (80mm in diameter and 105mm deep), containing a solution of 50:50 

water/ethylene-glycol, were inserted into the ground 10 meters apart to avoid interference and 
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pseudo-replication (Topping and Sunderland, 1992), ensuring that the rim of the trap was at 

ground level. Ten pitfall traps were set along each transect and were active 2 times 3-days (i.e. 

when tides permitted sampling) during June 2005. We used a large number of traps (220*2 

sessions in total) to increase spatially the sampling effort. Thirty sweep net samples were 

taken along each of the three 30m lengths of the sampling transect (i.e. approximately 1 

sweep/m) to give three samples per transect. Four 20 second suction samples by Vortis 

(diameter: 16cm) were taken within a 1m² area, centred on the pitfall traps. The three 1m² 

sampling areas were selected by randomisation of the number of pitfall traps (from1 to 10). 

Both sweep netting and vortexing were carried out during August 2005 (at low tide). 

Percentage cover of each plant species (and bare soil) and litter depth (to the nearest mm) 

were finally estimated within 1m² around each trap at the same time. 

 

2.3. Data analysis 

Data from pitfall traps were used to study ground-dwelling spider assemblages. The target 

species were halophilic species, defined by their preference or exclusive presence in salt 

marsh habitats, which can be assessed using distribution maps and habitat preferences 

(Pétillon et al., 2005). The fraction of spider species pool was calculated for the total number 

of individuals and species richness (of all species and that of halophilic species, for the two 

parameters), and analysed over time using Spearman’s rank correlation. The fraction of the 

population pool was then calculated for the three most abundant spider species (here more 

than 80 individuals) and analysed over time using Spearman’s rank correlation. ANOSIM 

(using Bray-Curtis similarity index) and Non-metric Multi-dimensional Scaling (NMDS) 

were also used to test for differences in spider assemblages among salt-marsh types. 

Samples from individual sites were grouped by marsh types into MR, AR and reference marsh 

data sets. All invertebrates collected by the three sampling methods were assigned to trophic 
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guilds. For amphipods, only data from pitfall traps were used because the activity-densities of 

Orchestia sp. obtained through this method can be used a proxy of biomasses of that 

arthropod (Mantzouki et al,. 2012). Abundances of amphipods, number of individuals per 

guild and habitat characteristics were compared among classes of habitat with GLMM 

(Generalized Linear Mixed Model). Fixed effect was the marsh type (MR, AR, Reference) 

and the random effect was the study sites. In the absence of significant random effect, the 

statistic used was a GLM (Generelized Linear Model). Indval was calculated to estimate the 

fidelity of plant species to the different types of habitats (i.e. natural salt marshes vs polders, 

AR vs MR; Dufrêne and Legendre, 1997; 1000 permutations). 

All analyses were performed in R 2.14.2 (R Development Core Team 2012, see the full list of 

packages in ESM: Table A.1). Throughout the paper, means are presented ± se and 

significance was assumed for P<0.05. 

 

3. Results 

 

A total of 27180 invertebrates was sampled, of which 6418 were collected by Vortis, 5915 by 

sweep net and 14847 by pitfall trap. Amphipods and spiders constituted the most abundant 

and diversified groups of macro-arthropods respectively, with 9666 individuals (Orchestia 

sp.) and 42 spider species (see taxonomic list in ESM: Table A.2). 

 

3.1. Conservation equivalency 

Spider species richness significantly decreased over time since reintroduction of tidal flooding 

(Spearman: P<0.001; Rho=-0.34; Fig. 1a). No correlation was found between time since 

restoration and fraction of halophilic species pool (Spearman: P=0.401; Fig.1b), fraction of 

activity-density of all species (Spearman: P=0.183; Fig.1c) and fraction of activity-density of 
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halophilic species (Spearman: P=0.205; Fig.1d). Spider species composition of MR sites was 

significantly different from that of reference and accidentally realigned sites (ANOSIM, 

R=0.265, P<0.001 and R=0.227, P<0.001, respectively; see also the NMDS in Fig.A.1 of 

ESM). The difference in spider species composition between AR and Reference sites was less 

obvious (R=0.029, P<0.001). Abundance of Pardosa prativaga (Fig. 2b; Spearman: P=0.033, 

Rho=-0.20) and Pardosa purbeckensis (Fig. 2c; Spearman: P<0.001, Rho=-0.31) decreased 

over time while that of Pirata piraticus increased in the meantime (Fig. 2a; Spearman: 

P<0.001, Rho=0.37).  

 

3.2 Functional equivalency 

Abundance of predator and phytophagous species decreased from managed realignment to 

reference salt marshes (Fig. 3a, c). The number of polyphagous arthropods was higher in 

managed realignment salt marsh compared to accidental one, with an intermediate value for 

reference salt marsh (Fig. 3b). Abundance of detritivores was significantly higher in reference 

sites, with a significantly lower mean in MR compared to AR sites (Fig. 3d). Vegetation 

height decreased from managed realignment to reference salt marsh (Fig. 3e). Litter depth 

significantly differed between the three classes of salt marsh, with a maximum mean in AR 

sites and a minimum in MR sites (Fig. 3f). Abundance of Orchestia gammarella increased 

from managed realignements to reference sites (Fig. 4). Several plant species, Atriplex 

portulacoides, Bostrychia scorpioides, Cochlearia officinalis, Limonium vulgare, Puccinellia 

maritima, Spergularia media and Triglochin maritima, were indicator of reference salt 

marshes (IndVal=64.75, IndVal=19.13, IndVal=28.00, IndVal=29.08, IndVal=56.41, 

IndVal=18.84, and IndVal=21.99, respectively; P=0.017) compared to MR and AR sites. 

Only Spartina anglica was characteristic of all realigned sites (IndVal=37.40, P=0.017), but it 

was significant in MR sites (IndVal=32.82, P=0.017) only (i.e. not in AR sites alone). 
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4. Discussion 

 

The conservation equivalency between managed realigned, accidentally realigned and 

reference sites was reached for spiders, after only a few (3-15) years of succession. All 

conservation parameters were similar between sites, except the diversity of spider species 

which decreased over time. This is in contrast with plants, for which managed realignment did 

not lead to the restoration of equivalent halophytic communities (Mossman et al., 2012), with 

high percentages of target species lacking (Garbutt and Wolters, 2008). The same pattern is 

observed in this study with the only characteristic plant species of restored (either by managed 

realignment or accidentally, the pioneer and invasive Spartina anglica) sites different from 

typical, target, species from natural salt marshes (mainly Atriplex portulacoides). The great 

long-distance dispersal abilities of spiders likely explain the early colonization of realigned 

sites by halophilic species, with a possible fast colonization of most sites from the regional 

species pool (Pétillon and Garbutt, 2008; Cristofoli et al., 2010). These dispersal capacities 

are probably higher than those of ground beetles (Varet et al., 2013), group in which 

incomplete restoration has been shown after dozen of years in littoral habitats (Desender et 

al., 2007). Studying recolonization of restored sites by ground beetles could therefore be 

interesting in the future, although they are much less abundant and diversified than spiders 

there (number of adults and species 5 and 4 times lower respectively: Pétillon and Garbutt, 

unpublished data). In salt marshes, long-distance dispersal of certain ground beetles can be 

reduced in old and large sites due to an increase in the percentage of apterous specimens 

(Desender et al., 1998). Spiders are also less dependent on soil properties than plants. The role 

of habitat structure in itself has indeed been proved repetitively in determining species 

richness of spiders (more than age of habitats for example: Hurd and Fagan, 1992), and this 
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parameter is overall constant in the sites we studied (Garbutt et al., 2006). In contrast, 

enhanced pH and salinity and reduced oxygenation and porosity are likely to delay plant 

succession (Mossman et al., 2012), and also to reduce litter decomposition (as suggested by 

both the low number of detritivores and a deep litter layer in restored sites). Although the 

species richness and total number of individuals were overall constant over time, assemblage 

composition significantly varied through years, tending to be closer to assemblages from 

natural salt marshes over time from restoration (results from Anosim). Exclusive competition 

probably occurred between spider species, as suggested here by the opposite population 

patterns over time of the three dominant lycosid species (also stressed in Pétillon & Garbutt 

2008). 

Using a space-for-time approach to saltmarsh development upon re-exposure to tidal flooding, 

we deduce a clear shift in functional equivalency from managed realigned to natural salt 

marshes through accidentally realigned sites, and most of the parameters studied exhibited a 

graduate, either increasing or decreasing response to time. Our main results fit well to the 

assembly rule found by Schrama et al. (2012) in an European salt-marsh, through a chrono-

sequence of 100 years. They indeed described that, at the beginning of the succession, most 

incoming fluxes of organic matter and decomposers are mostly marine, whereas the 

importance of terrestrial matter and invertebrates increases over time. Yet, we did not observe 

an increase of vegetation height over time, but the inverse, mainly due to the dominance of 

Spartina anglica in early stages. The number of amphipods, even accounting for the increase 

between managed realigned and accidentally realigned sites, was much lower (more than 3 

times) in restored than in natural salt marshes. This can be explained by reduced content of 

organic matter (Garbutt et al. 2006) and could have strong implications for the food 

provisioning ability of regenerated marshes for fish species, and also a likely reduced export 

of organic matter toward marine adjacent ecosystems (as amphipods represent key-component 
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in the decomposition of organic matter: Graça et al. 2000).  

As a conclusion, this study underlines the necessity to study both conservation and functional 

traits of restored systems, and to multiply monitoring with different model groups even when 

they are time-costly to sample and identify. Indeed, conservation equivalency can be quickly 

achieved (which is shown here with spider assemblages), but that does not translate into a 

complete functional equivalency (which was also stressed by Zedler and Lindig-Cisneros, 

2000 for the restoration of salt marshes in USA). In this study, neither the salt-marsh trophic 

structure, nor the potential role of marine enrichment and fish nursery (estimated through the 

population size of amphipods) were achieved by managed realignments. We finally urge the 

scientific community to consider managed realignments as excellent study systems for applied 

and fundamental purpose (assuming a long chrono-sequence), with a particular attention to 

less-studied taxa like terrestrial arthropods. 
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Fig. A.1. Non-metric multi-dimensional scaling ordination of spider assemblages from 

reference, accidentally and managed realigned saltmarshes. 
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Figure captions 

 

Fig. 1. Fraction of spider species pool that have colonized realigned saltmarshes in relation to 

the time since restoration; managed realignment sites (grey circles), accidentally realigned 

sites (black circles). The fraction of the species pool was calculated for the species richness of 

all species (a) and that of halophilic species (b); and number of individuals of all species (c) 

and that of halophilic species (d). The box plot shows the percentage of species found on 

reference sites (n = 90). 

 

Fig. 2. Fraction of spider population pool that have colonized realigned saltmarshes in relation 

to the time since restoration; managed realignment sites (grey circles), accidentally realigned 

sites (black circles). The fraction of population pool was calculated for the activity-density of 

Pirata piraticus (a) Pardosa prativaga (b) and Pardosa purbeckensis (c). The box plot shows 

the percentage of species found on reference sites (n = 90). 

 

Fig. 3. Comparisons of total number of individuals per guild and habitat characteristics among 

classes of habitat. (a): phytophagous arthropods, (b) polyphagous arthropods, (c) predator 

arthropods, (d) detrivorous arthropods, (e) vegetation height and (f) litter depth. Different 

successive letters indicate significant differences among means (Bonferroni post-hoc tests 

following GLM for phytophagous arthropods and GLMMs for other parameters). 

 

Fig. 4. Comparisons of total number of amphipods among classes of habitat. Different 

successive letters indicate significant differences among means (Bonferroni post-hoc tests 

following GLMMs). 
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a b

a 

c

a 



18 

 

 

Figure 3. Pétillon et al. 
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Figure 4. Pétillon et al. 

 


