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Abstract: This paper focuses on the lateral control of intelligent vehicles. The aim is
to minimize the lateral displacement of the autonomous vehicle with respect to a given
reference trajectory. The control input is the steering angle and the output is the lateral error
displacement. After passivity analysis of the system to establish the properties of passivity
between the inputs and outputs, we present design and validation of a robust lateral nested
controller based on passivity, to ensure robust stability and good performances with respect
to parametric variations and uncertainties encountered in driving applications. To validate the
control strategy, the simulation of the closed-loop system on Matlab-Simulink has been made
using the experimental data acquired on the vehicle DYNA of Heudiasyc laboratory (a Peugeot
308), according to several real driving scenarios. The validation shows robustness and good
performances of the proposed control approach, and puts in evidence the improvement brought
by the Nested PBC controller.

1. INTRODUCTION

The developments in the applications of ADAS (Advanced
Driver Assistance Systems) and autonomous driving have
been favored by technological advances in recent years.
Three main steps are necessary to ensure an autonomous
navigation: the perception and localization, the path plan-
ning and the vehicle control. The vehicle control can be
divided into two tasks: longitudinal control and lateral
control.

Lateral control consists on handling the vehicle using the
steering wheel to follow the reference trajectory. In recent
years, considerable researches have been made to provide
lateral guidance of autonomous vehicles. In literature,
many control strategies have been developed. Simple PID
controller have been proposed in (Broggi et al. [1999]).
We also have nested controller in (Marino et al. [2011]).
Moreover, other classical techniques have been used. We
can citeH∞ (Hima et al. [2011]), state feedback (Rajamani
[2006]), Lyapunov stability based control (Benine-Neto
et al. [2010]), fuzzy logic (Naranjo et al. [2008]), fuzzy
Takagi-Sugeno LQ (Soualmi et al. [2012]), linear quadratic
optimal predictive control (Kim et al. [2011]) and many
others. Model Predictive Control (MPC) appears to be
well suited to the trajectory following (Levinson et al.
[2011]).

In (Hingwe and Tomizuka [1997], Tagne et al. [2013a]),
Sliding Mode Control (SMC) has been applied to the

? This work was carried out in the framework of the Labex MS2T,
which was funded by the French Government, through the program
Investments for the future managed by the National Agency for
Research (Reference ANR-11-IDEX-0004-02).

lateral control. This robust control strategy is well suited
to driving applications, given its robustness against uncer-
tainties and its capacity to reject disturbances. However,
its main drawback is the chattering. Given the implicit
resemblance between the SMC and the Immersion and
Invariance (I&I) principle, in (Tagne et al. [2013b]), a
controller based on the I&I approach have been developed
to improve SMC perfomances.

Considering the high nonlinearity of the vehicle on one
hand, and the uncertainties and disturbances in automo-
tive applications on the other hand, an important issue to
be considered in the control design is the robustness. The
controller should be able to reject the disturbances and
deal with parameter uncertainties and variations. For ex-
ample, in (Levinson et al. [2011]), a recent presentation of
Junior; Stanford’s autonomous vehicle (the second at the
DARPA Urban Challenge), is carried out for the purpose
of ensuring robust autonomous driving.

Passivity is a concept that can be used in several areas
of science and explains some physical phenomena. The
theory of passivity is a framework for analyzing systems
and designing controllers using a description of the inputs-
outputs based on energy considerations. The main idea is
that a very large number of physical systems have some
properties of passivity between the inputs and outputs. We
study the passivity of the system to analyze the frequency
behavior, and determine the passive outputs (to easily
control the system). The interest of passivity results from
the feedback interconnection of passive systems. We can
therefore seek the passivity of the system as a way to
impose robust stability and good performances. This is
particularly relevant in applications of lateral control of



vehicles where the controller must ensure robust stability
and good performances with respect to variations of speed,
curvature, coefficient of friction of the road, wind and
uncertainties on parameters.

The design of the I&I controller in (Tagne et al. [2013b])
allows to prove a very strong stability criterion of the
closed-loop system. This result led us to study the prop-
erties of passivity of the different input-output maps of
the system to design robust controllers. The main pur-
pose of this paper is to establish the properties of pas-
sivity between the inputs and outputs. Finally, we de-
velop a Passivity-Based Controller (PBC). To design the
controller, we consider that the vehicle is equipped with
sensors and/or observers to measure the yaw rate, the
lateral error and its derivative. To validate the proposed
approach, tests were made with real data acquired on the
vehicle DYNA, on the tracks and circuits of CERAM 1 .
The simulation results show the performance and robust-
ness of the proposed approach.

This paper is organized as follows. Section 2 presents the
dynamical models of the vehicle used for control design
and the control problem definition. And then the passivity
analysis is presented in Section 3. The control strategy is
developed in Section 4. Section 5 presents the simulation
results. Finally, we conclude in Section 6, with some
remarks and future work directions.

2. DYNAMIC MODEL OF VEHICLE AND CONTROL
PROBLEM DEFINITION

2.1 Dynamic models of vehicle

In this work, we use two vehicle models. To design the
controller, a simple and widely used dynamic bicycle
model from (Rajamani [2006]) is considered. This model
is used to represent the lateral vehicle behavior and
assumes that the vehicle is symmetrical, and tire’s sideslip
angles on the same axle are equal. The roll and pitch
dynamics are neglected and angles are assumed to be small
(steering, sideslip, yaw). With a linear tire force model we
obtain a Linear Parameter Varying (LPV) model, where
the longitudinal velocity Vx is considered as a varying
parameter. Dynamic equations in terms of slip angle and
yaw rate of the bicycle model are given by:

β̇ = −µ(Cf + Cr)

mVx
β −

(
1 +

µ(LfCf − LrCr)

mV 2
x

)
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mVx
δ
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Iz
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µ(L2
f
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r
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ψ̇ +

µLfCf

Iz
δ

(1)

where β, ψ and δ represent respectively the sideslip angle,
the yaw angle of the vehicle and the steering wheel angle
(control input). Table 1 presents vehicle parameters and
nomenclature.

To validate the proposed controller in simulation, we used
a more representative model, namely, the 4-wheel model
to represent the behavior of the vehicle and Dugoff’s tire
model for longitudinal and lateral forces.

1 CERAM -”Centre d’Essais et de Recherche Automobile de Morte-
fontaine” is an automobile testing and research center located in
France.

Table 1. Vehicle Parameters and Nomenclature

Vx Longitudinal velocity - [m/s]

β Sideslip angle - [rad]

ψ̇ Yaw rate - [rad/s]

δ Steering wheel angle - [rad]

µ Road friction coefficient 1 -

m Mass 1719 [kg]

Iz Yaw moment of inertia 3300 [kgm2]

Lf Front axle-COG distance 1.195 [m]

Lr Rear axle-COG distance 1.513 [m]

Cf Cornering stiffness of the front tire 170550 [N/rad]

Cr Cornering stiffness of the rear tire 137844 [N/rad]

2.2 Control problem definition

The aim of the lateral control of intelligent vehicles is
to minimize the lateral displacement of the autonomous
vehicle with respect to a given reference trajectory. The
lateral error dynamic at the center of gravity of the vehicle,
with respect to a reference trajectory, is given by:

ë = ay − ayref
(2)

where ay and ayref
represent respectively the lateral accel-

eration of the vehicle, and the desired one on the reference
trajectory. Assuming that the desired lateral acceleration
of the vehicle can be written as ayref

= V 2
x ρ, where ρ is

the curvature of the road, and given that ay = Vx(β̇ + ψ̇),
we have:

ë = Vx(β̇ + ψ̇)− Vx2ρ (3)

Replacing β̇ by its expression in equation (1), the new

system state variables become x = (β, ψ̇, ė, e)>, corre-
sponding to the sideslip angle, the yaw rate, the lateral
error and its derivative. The new system has the following
dynamics:

ẋ = Ax+B1δ +B2ρ (4)

where,
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The aim of the lateral control is to cancel the lateral
error displacement. Then, for a given curvature ρ and
longitudinal velocity Vx, the desired behavior corresponds
to ė1 = e1 = 0. Hence, it is easy to prove that the desired
equilibrium point is:

(β, ψ̇, ė, e)> = (β?, ψ̇?, 0, 0)>

with



β? = (Lr −
LfmV

2
x

µCr(Lf + Lr)
)ρ

ψ̇? = Vxρ

(5)

At the equilibrium point, the control input is:

δ? =
LfCf − LrCr

LfCf
β? +

L2
f
Cf + L2

r
Cr

LfCfVx
ψ̇? (6)

Hence, define the new error variables:
β̃ = β − β?

˙̃
ψ = ψ̇ − ψ̇?

δ̃ = δ − δ?
(7)

The error dynamics of the system (4) having the origin as

equilibrium point (β̃,
˙̃
ψ, ė, e)> = (0, 0, 0, 0)> become:

˙̃x = Ax̃+B1δ̃ (8)

where, A and B1 have been defined above (4).

3. PASSIVITY ANALYSIS

Theory of passivity is a framework for analyzing physical
systems and designing controllers using a description of the
input-output relationship based on energy considerations.
The Kalman-Yakubovich-Popov (KYP) lemma is consid-
ered to be one of the pillars for control and systems theory.
To demonstrate the passivity of an output, this lemma
is considered. It establishes an equivalence between the
conditions in the frequency domain (positive realness of a
system), in the time domain (an input-output relationship
of the system), and in the state-space representation where
conditions on the matrices describing the system should be
verified. The Lemma is given as follows:

Lemma 1. (KYP lemma) Lozano et al. [2000]

In the frequency domain

Consider the transfer function H(s) and the operator
returning the real part <(). H(s) is Positive Real (PR)
if and only if: {

H(s) is stable
< [H(jω)] ≥ 0,∀ω ∈ R (9)

In the time domain

A system with input u and output y where u(t), y(t) ∈ Rn

is passive if there is a constant υ such that

T∫
0

yT (t)u(t) ≥ υ (10)

for all function u and all T ≥ 0.

In the state-space representation

Let us consider a system described by the following state-
space representation: ẋ = Ax + Bu and y = Cx + Du.
Where x ∈ Rn, u, y ∈ Rm with n ≥ m. The transfer
function H(s) = CT (sI−A)−1B+D, with A ∈ Rn×n, B ∈
Rn×m, C ∈ Rm×n, D ∈ Rm×m is PR with H(s) ∈ Rm×m,

if and only if there exists matrices P > 0, P ∈ Rn×n,
L ∈ Rn×m and W ∈ Rm×m such that: PA+ATP = −LLT

PB − CT = −LW
D +DT = WTW

(11)

Remark : In view of the above conditions, it is clear that
unstable systems or non-minimum phase systems are not
positive real.

3.1 Strong Strict Passivity of the map δ̃ → ë

Proposition 1. The map δ̃ → ë is Strongly Strictly
Passive.

The proof of strong strict passivity is established showing
that the transfer function H0(s) of the map δ̃ → ë is
Strongly Strictly Positive Real (SSPR).

Assume that the road coefficient of friction µ = 1. Com-
bining dynamic equations of the bicycle model in terms
of slip angle and yaw rate (1) with the equation of lateral
error dynamic (3), and after some calculations, one can

find that the transfer function H0(s) between δ̃ as input
and ë as output is given by:

H0(s) =
ë(s)

δ̃(s)
=
as2 + bs+ c

s2 + ds+ f
(12)

where,

a =
Cf

m
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LrCfCr(Lf + Lr)

mIzVx
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mIz
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mVx
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f
Cf + L2

r
Cr)

IzVx
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CfCr(Lf + Lr)2

mIzV 2
x

+
(LrCr − LfCf )

Iz

(13)

The transfer function H0(s) has a relative degree equal to
0. Consequently, according to the KYP Lemma applied in
the frequency domain, the proof of SSPR is tantamount
to verifying :

<[H0(jω)] ≥ ζ > 0,∀ω ∈ (−∞,+∞), (14)

Whatever the uncertainties and variations encountered,
the model parameters (Cf , Cr, Lf , Lr,m, Iz) are always
positive. Thus, the coefficients a, b, c, d, f of H0(s) are
always positive. Note that f is always positive even if the
second fraction of f could become negative. According
to the criterion of Routh-Hurwitz, zeros and poles of
H0(s) are strictly stable, so H0(s) is minimum phase and
Hurwitz. Setting s = jω, the frequency response function
becomes

H0(jω) =
−aω2 + bjω + c

−ω2 + djω + f
=
RN0 + jIN0

RD + jID
(15)

where RN0, IN0, RD and ID are the real and imaginary
parts of the numerator and the denominator respectively,
given by:



RN0 = c− aω2, IN0 = bω

RD = f − ω2, ID = dω

Hence,

< [H0(jω)] =
RN0RD + IN0ID

R2
D + I2D

(16)

Knowing that R2
D + I2D > 0, <[H0(jω)] is positive if and

only if RN0RD + IN0ID > 0.

RN0RD + IN0ID = aω4 + (bd− af − c)ω2 + cf (17)

Given the order of magnitude of the parameters mentioned
above and whatever is Vx > 0, one can find that:{

a > 0
cf > 0
bd− af − c is not always positive.

(18)

Given that (bd−af − c) is not always positive, let x = ω2,
hence

RN0RD + IN0ID = f(x) = ax2 + (bd− af − c)x+ cf (19)

The derivative of this function is zero for

x0 =
bd− af − c
−2a

So, the unique extremum of the function is

f(x0) =
(bd− af − c)2

−4a
+ cf > 0 (20)

Moreover, given that f(0) = cf > 0 and f(∞) → a > 0,
then

f(x) = RN0RD + IN0ID ≥ ζ0 > 0 (21)

Given that

lim
ω→∞

<[H0(jω)] = a > 0 (22)

and

lim
ω→0
<[H0(jω)] =

c

f
> 0 (23)

one can prove that:

<[H0(jω)] ≥ ζ > 0,∀ω ∈ (−∞,+∞) (24)

hence, the transfer function H0(s) is Strongly Strictly
Positive Real (SSPR), yielding to the desired result.

3.2 Passivity of the map δ̃ → ė

Proposition 2. The map output δ̃ → ė is passive (P).

The transfer function H1(s) of the output ė with respect

to the input δ̃ is given by:

H1(s) =
1

s
H0(s) (25)

The transfer function H1(s) is a cascade connection of an
integrator with the strongly strictly positive real transfer
function H0(s). Hence, H1(s) is positive real, yielding the

passivity of the map δ̃ → ė, the desired result. For more
details see Lozano et al. [2000].

3.3 Strict Passivity of the map δ̃ → ˙̃
ψ

Proposition 3. The map δ̃ → ˙̃
ψ is Strictly Passive

(SP).

Proof.

The transfer function H2(s) of the yaw rate error
˙̃
ψ relative

to the input δ̃ is given by:

H2(s) =
˙̃
ψ(s)

δ̃(s)
=

gs+ h

s2 + ds+ f
(26)

where, 
d and f defined in (13),

g =
LfCf

Iz

h =
(Cf + Cr)(Lf + Lr)

mIzVx

(27)

The coefficients d, f , g and h are always positive. Then,
according to the Routh-Hurwitz criterion, poles of H2(s)

are stable. The proof of Strict Passivity of the map δ̃ → ˙̃
ψ

is equivalent to the proof of Strict Positive Realness (SPR)
of the transfer function H2(s). Given that the transfer
function H2(s) has a relative degree equal to 1, the SPR
is established verifying the following:

(P1) < [H2(jω)] > 0,∀ω ∈ (−∞,+∞),
(P2) lim

ω→∞
ω2< [H2(jω)] > 0.

Indeed, the frequency response function of H2(s) for s =
jω is

H2(jω) =
gjω + h

−ω2 + djω + f
=
RN2 + jIN2

RD + jID
(28)

where RN2, IN2, RD and ID are the real and imaginary
parts of the numerator and the denominator respectively,
given by:

RN2 = h, IN2 = gω

RD = f − ω2, ID = dω

Hence,

< [H2(jω)] =
RN2RD + IN2ID

R2
D + I2D

(29)

As above, R2
D + I2D > 0, then < [H2(jω)] is positive if and

only if RN2RD + IN2ID > 0.

RN2RD + IN2ID = (gd− h)ω2 + fh (30)

Given the order of magnitude of parameters mentioned
above and whatever is Vx > 0, one can find that:

gd− h > 0
fh > 0

}
⇒ < [H2(jω)] > 0,∀ω ∈ (−∞,+∞), (31)

verifying (P1). Furthermore,

lim
ω→∞

ω2< [H2(jω)] = gd− h > 0, (32)

verifying (P2). Hence, H2(s) is a Strictly Positive Real
transfer function.



Note that lim
ω→∞

<[H2(jω)] = 0. Then, the Strict Positive

Realness (SPR) of H2(s) is not Strong, yielding the desired

result of Strict Passivity of the map δ̃ → ˙̃
ψ.

3.4 Characteristics of the sideslip angle error β̃,

Proposition 4. The map δ̃ → β̃ is not passive.

Proof. The transfer function H3(s) of β̃, relative to the

input δ̃ is given by:

H3(s) =
β̃(s)

δ̃(s)
=

ks+ l

s2 + ds+ f
(33)

where, 
d and f defined in (13),

k =
Cf

mVx

l =
LrCfCr(Lf + Lr)

mIzV 2
x

− LfCf

Iz

The transfer function H3(s) has a relative degree equal to
1. The variables d, f and k are always positive, but l can
be either positive or negative depending on the value of Vx
and other parameters. When l < 0, H3(s) has a negative
zero, and is not positive real, what proves the proposition.

The zero of the transfer function H3(s) is stable if and
only if l is positive, i.e.

−LfCf

Iz
+
LrCfCr(Lf + Lr)

mIzV 2
x

> 0,

hence,

Vx <

√
LrCr(Lf + Lr)

Lfm
. (34)

This fact can be understood as if the map δ̃ → β̃ is passive
when the speed is limited as in (34), and this characteristic
is stolen at high speeds. Using the parameters given in
Table I, the speed limit of equation (34) corresponds to
Vx < 16.5m/s ' 60km/h.

Proposition 5. The map ˙̃
ψ → ë is Strictly Passive

and the map ˙̃
ψ → ė is Passive.

Proof. The proof is established at the same manner of
the previous subsections.

To summarize, considering the error system (8), the pas-
sivity maps can be resumed in the Fig. 1.

Fig. 1. Passivity maps of the system

4. CONTROL STRATEGY

Probably the main property used in PBC for passive
systems is the fact that the feedback interconnection of
passive systems is passive. So passivity is invariant under
negative feedback interconnection. Therefore, passive sys-
tems can be decomposed into passive subsystems. Thus,
in this methodology, the controller can be designed as a
passive system. However, it will be also useful to know that
interconnections not only preserve the passivity properties
of the subsystems but, in certain cases, passivity can be
strengthened.

Considering the Fig. 1 and knowing that the yaw rate
dynamic is faster than the lateral error dynamic, we
can decompose the lateral controller into two passive
nested controllers. This is a major interest since e and
˙̃
ψ are controlled simultaneously. We can therefore create
two separate controllers for each own dynamic based
on its characteristic of passivity. In this subsection, we
develop a control strategy of an autonomous vehicle using
two passive controllers to ensure guidance and stability
(lateral error and yaw rate error) in two separate loops.
The outer controller minimizes lateral error. The inner
controller minimizes the yaw rate error by providing the
corresponding steering angle. The particularity of such a
strategy is doubled: it helps to design a robust controller
while preserving the passivity properties of the closed–
loop system to ensure good performance. If necessary,
two controllers of different natures can be used, in order
to benefit from the robustness of each. It also allows an
independent control of the lateral error and yaw rate error.
Consequently, the scheme in Fig. 2 illustrates the proposed
control strategy.

Fig. 2. Nested PBC control strategy

Proposition 6. Consider the diagram in Fig. 2, where the
control is achieved by two PI controllers, the closed-loop
system is stable and passive.

The proof is relatively simple, the corollary 4.1 in (Lozano
et al. [2000]) allows to show it.

Synthesis of the outer controller:

This controller is designed to cancel the lateral error e.
The control input is the yaw rate error.

Subsystem
∑

1 :
˙̃
ψ 7−→ ė is passive (P), so any Input

Strictly Passive (ISP) controller guarantees stability and
passivity of the closed-loop system. In this paper, we
choose a simple PI. We remind that a PI applied to the
passive output ė is equivalent to a PD applied to the



output e. So, the control input given by the outer controller
is:

˙̃
ψ = −KD1ė−KP1e (35)

where KD1 and KP1 are positive gains.

Synthesis of the inner controller:

This controller is designed to cancel yaw rate error with
respect to the reference given by the outer controller. The
control input is the steering angle δ̃.

Subsystem
∑

2 : δ̃ 7−→ ˙̃
ψ is strictly passive (SP), so any

passive (P) controller guarantees stability and passivity of
the closed-loop system. In this paper, we choose a PI. The
control input given by the inner controller is:

δ̃ = −KI2

∫
˙̃
ψ −KP2

˙̃
ψ (36)

where KI2 and KP2 are positive gains.

Given the strict passivity (SP) of the output
˙̃
ψ for an

input δ̃, the closed–loop system with a PI controller is
stable and passive. Note that any passive controller, a
simple proportional for example, would achieve the same
result. The addition of integral action, well known to reject
constant disturbances, also has the advantage that the
controller can be implemented without the knowledge of
δ? which depends on the uncertain model parameters.

5. SIMULATION RESULTS

To validate our control law, the experimental data used
were acquired by the vehicle DYNA (a Peugeat 308)
on the CERAM test circuits. This vehicle is equipped
with different sensors and observers providing all the
dynamic variables of the vehicle and its traveled path.
The simulations in closed-loop are performed using as
a reference, the real data with the full vehicle model.
For the control law, we used the following values of
the gains: KD1 = 0.08, KP1 = 10, KP2 = 5 and
KI2 = 1. To highlight the improvements brought by the
PBC controller, a comparison with a previously developed
Immersion and Invariance (I&I) controller was made
(Tagne et al. [2013b]).

5.1 Test of the controller with nominal parameters

This test (Fig. 3) was made with the purpose of testing the
ability of the controller to track the reference trajectory
during normal driving with known nominal parameters.
Note that in this scenario we have a large turn to test the
ability of the controllers to ensure proper path tracking for
hard maneuvers. Fig. 3-(a) shows the longitudinal speed
variations. Fig. 3-(b) presents different curves: the refer-
ence path and the trajectories followed by the controlled
vehicle with two different controllers; the lateral error and
the yaw angle error. Both controllers ensure the reference
tracking with low errors (the lateral displacement of the
controlled vehicle remains less than 10cm in this test
conditions).

In this scenario, the assumption of small angles is not
respected (the steering angle is greater than 12 degrees
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Fig. 3. (a) Longitudinal speed, (b) Trajectories ; reference
and closed–loop simulations

during the turning). In spite of that, the controllers are
able to follow the path with low errors. Both nonlinear
controllers are robust to variations in longitudinal speed.
So, this test show the good performance of the I&I
and Nested PBC controller during normal driving and at
varying speeds for known nominal parameters. We will
evaluate the robustness of these controllers with respect
to parametric uncertainties.

5.2 Robustness to vehicle parameter uncertainties

As mentioned previously, one of the major challenges for
trajectory tracking is the robustness of the controller.
In this subsection, we evaluate the robustness of the
controllers with respect to parametric uncertainties of
the vehicle. It is important to note that the parametric
uncertainties can be due to the fact that the parameters
may vary, but are considered to be fixed for the command.
This is the case of the mass of the vehicle for example.

It is difficult to estimate accurately the cornering stiffness
of the tires. Moreover, this parameter varies greatly de-
pending on the type of the road, the vertical load, camber,
etc. It is therefore important to assess the robustness of
the controllers over cornering stiffness and mass variations.
Fig. 4 presents lateral errors with uncertainties of +/−10%
on the value of the cornering stiffness. For uncertainties in
the order of 10%, on the value of cornering stiffness or
mass, Nested PBC controller is able to follow the path
with similar errors (to those of nominal conditions). The
errors of the I&I remain acceptable.

Several other tests were performed, including scenarios of
driving at high speed as well as situations where there is
a saturation of lateral forces. With the I&I controller, the
error depends on the value of the parametric uncertainty.
Therefore with sensitivity study, we can estimate in ad-
vance the maximum error according to the knowledge of
the parametric uncertainty. The passive controller (Nested
PBC) is more robust to parameter uncertainties. Indeed,
the inputs of the controller depend only on passive outputs
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(errors), which do not depend on uncertain parameters.
However, the input of the I&I controller depends on these
parameters. Furthermore, the PBC controller also has the
advantage of using less measurements than the previous
one. Indeed, with the I&I controller, the estimation of the
sideslip angle is necessary. So, these results put in evidence
the improvement brought by the Nested PBC controller.

6. CONCLUSION

In this paper, after a detailed study of the passivity prop-
erties of the model, a controller based on these properties
has been proposed to ensure robust trajectory following of
autonomous vehicles. The design of the controller has been
presented. It guarantees robust stability and the passivity
of the closed-loop system.

Results have shown that a greater consideration of struc-
tural features of the model during the design of the con-
troller, and the passivity properties of the closed-loop sys-
tem, can significantly improve the robustness of the con-
troller for autonomous driving application. To illustrate
this improvement, a comparison has been made with the
I&I controller developed previously. The validation has
shown robustness and good performance of the proposed
Nested PBC controller.

The study of passivity is done considering the vehicle
speed as a varying parameter. This is a non-restrictive
assumption because the lateral dynamic is relatively faster
than longitudinal dynamic. In this paper, the study of
passivity properties has been done considering the road
coefficient of friction µ = 1. An analysis for variant µ
will be studied by the authors. In addition, a study of
robustness based on sensitivity analysis will be performed.
We will also evaluate the robustness against sensor noise
like in (Althoff and Dolan [2011]). Very soon, we will test
these control laws on the laboratory robotized vehicle.
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