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Abstract A quasi-periodic Harmonic Balance Method (HBM)
coupled with a pseudo-arc length continuation algorithm is
developed and used for the prediction of the steady state
dynamic behaviour of rotor-stator contact problems. Quasi-
periodic phenomena generally involve two incommensurable
fundamental frequencies and at present the Harmonic Bal-
ance Method has been adapted to deal with cases where
those frequencies are known. The problem here is to im-
prove the procedure in order to be able to deal with cases
where one of the two fundamental frequencies is a priori
unknown, in order to be able to reproduce self-excited phe-
nomena such as the so-called quasi-periodic partial rub. Con-
sidering the proposed developments, the unknown funda-
mental frequency is automatically determined during calcu-
lation and an automatic harmonic selection procedure gives
both accuracy and performance improvements. The applica-
tion is based on a Jeffcott rotor model and results obtained
are compared with traditional time marching solutions. The
modified quasi-periodic HBM appears one order of magni-
tude faster than transient simulations while providing very
accurate results.
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1 Introduction

Improving turbomachines efficiency may be achieved by re-
ducing the operating gap between rotating and stationary
parts (rotor and stator). However this leads to an increased
risk of rotor-to-stator contact and, for safety reasons, design-
ers must ensure that such interactions cannot have serious
consequences. When an accurate prediction of the system
response is required, it is not sufficient to consider linear
models. When nonlinearities are considered, highly com-
plex dynamic behaviours are possible, even in the case of
very simple rotors [1]. The simplest rotor model encoun-
tered is the Jeffcott model described by only one node and
two degrees of translational freedom (one for each radial
direction). Edwards [2] studied a Jeffcott rotor with an ad-
ditional torsional degree of freedom, when subjected to a
mass unbalance and contact with a circular, rigid, fixed sta-
tor. He modelled the contact using a penalty method with a
Coulomb friction law and showed that even when the rotor
is only excited by a periodic force, this simple system may
exhibit a rich variety of phenomena due to the presence of
nonlinearity.

Many authors have studied nonlinear rotor models, using
time marching techniques [2–6]. This approach, although
essential when investigating the system’s transient behaviour
[3,7,8], is not optimal in terms of CPU time when the steady
state response is investigated, because many cycles need to
be simulated before the transient behaviour disappears com-
pletely. This can be problematic when parametric studies
need to be carried out and/or when more complex models
are used (such as finite element rotor models [5,9]).

On the other hand, some authors such as Jiang [10,11] or
Bently et al. [12] use analytical tools to study simple rotors
and determine the limits of existence for different types of
behaviours, according to a set of dimensionless parameters.
Considering Jiang’s model the stator is circular, rigid and
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2 Loı̈c Peletan et al.

Fig. 1 Schematic representation of a Jeffcott rotor with a circular rigid
stator, after [11].

fixed and contact is modelled by a penalty law using a dry
friction Coulomb approach (Fig. 1). His model is able to ex-
hibit the four classical types of steady-state rotor behaviour,
resulting from unbalance and rotor-to-stator contact. These
four types of behaviour are:

– ’no-rub motion’ in which there is no contact between the
rotor and the stator. The orbit is circular and the motion
is periodic.

– ’full annular rub’ in which the rotor remains in perma-
nent contact with the stator. The orbit is also circular and
the motion periodic.

– ’partial rub’ in which the rotor intermittently comes into
contact with the stator. The motion is quasi-periodic.

– ’backward whip’ in which the rotor rolls (with slippage)
on the inner surface of the stator. This motion is self-
excited and its frequency is not necessarily a direct func-
tion of rotational speed. The phenomenon is violent and
a priori quasi-periodic.

The governing equations of the rotor/stator contact system
can be written as

X′′ + 2ξX′ + βX + Θ

Å
1 −

R0

R

ã (
X − µsign (Vrel) Y

)
= Ω2 cosΩτ

Y ′′ + 2ξY ′ + βY + Θ

Å
1 −

R0

R

ã (
µsign (Vrel) X + Y

)
(1)

= Ω2 sinΩτ

Vrel = RdiskΩ + Rωb

Jiang’s study [11] is based on the following dimensionless
variables: X = x

e , Y =
y
e , R0 = r0

e , Rdisk = rdisk
e , Vrel = vrel

e ,

2ξ = c√
kbm

, β = ks
kb
, ωs =

»
kb
m , Ω = ω

ωs
, ωb = ωw

ωs
,

Ω
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Fig. 2 Rotor response characteristics in the Ω-µ plane with β = 0.04,
ξ = 0.05, R0 = 1.05 and Rdisk = 20R0, after [11]. Some characteristic
values of Ω associated to µ = 0.2 are highlighted.

where x and y represent the radial displacements along the
x and y axes respectively, e is the mass eccentricity, r0 the
initial clearance between the rotor and the stator, rdisk the
disk radius, vrel the relative velocity between the rotor and
the stator, c the damping factor, m the mass of the rotor, ks

and kb are the stiffnesses of the rotor and stator respectively,
ω is the rotational speed of the rotor, ωw the whirl frequency
of the rotor and ωs the natural frequency of the rotor system
without clearance. The coefficient of friction is denoted µ.

Fig. 2 is extracted from Jiang’s paper [11]. It shows the
analytical prediction of the response characteristics of the
rotor in the Ω-µ plane. The straight lines Ωl and Ωu indicate
the rotational speed limits where rotor eccentricity reaches
the initial clearance. Thus, the no-rub motion can appear
only at rotational speeds below Ωl and above Ωu. The curves
HP and SN were obtained numerically and correspond to
the limits of full annular rub motion. To the right of line HP,
the full annular rub becomes unstable and motion becomes
quasi-periodic (Hopf bifurcation). To the right of line SN,
the full annular rub no longer exists (saddle node bifurca-
tion). Line DF is the backward whip limit and line DW indi-
cates the point beyond which backward whip is triggered by
unbalance. Some of Jiang’s analytical equations had to be
solved with the help of numerical calculations. It explains
the dots on the HP and SN curves.

There are some regions in which several behaviours co-
exist. Within regions labelled ’0’ no-rub and dry whip may
exist. In the region labelled ’1’, both full annular rub and dry
friction backward whirl are possible. The region labelled ’2’
shows the presence of partial rub and backward whirl. In
’3’, full annular rub and no-rub motions are simultaneously
present. Finally, a small region ’4’ exhibits no-rub, full an-
nular rub and backward whip possibilities. Time integration
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Quasi-Periodic Harmonic Balance Method for Rubbing Self-Induced Vibrations in Rotor-Stator Dynamics 3

methods would lead to only one of these solutions, depend-
ing on initial conditions.

Analytical methods have been extended to multi-mode
rotor models by Childs and Bhattacharya [13]. Their predic-
tions appear to be in good agreement with numerical simula-
tions and experiments. Nevertheless, these analytical meth-
ods require non-trivial mathematical developments and their
applicability is limited when considering complex models.

Alternatively, although widely used to solve other types
of problems, numerical techniques such as shooting or the
Harmonic Balance Methods (HBM) are rarely used for rotor-
stator contact problems. Although such techniques do not
require long transient simulations and are in practice much
faster, they are usually limited to the study of periodic mo-
tions. This limitation explains that those techniques are gen-
erally restricted to the study of geometric nonlinearities or
oil-film bearing nonlinearities [14], because with this kind
of nonlinearities the system response remains mostly peri-
odic. Fortunately, extension of the HBM to quasi-periodicity
is possible by introducing the concept of multidimensional
time and has already been performed for various applica-
tions. Lau [15] studied the quasi-periodic free response of
a clamped beam with large displacements. Legrand [16,17]
used the quasi-periodic HBM for the computation of limit
cycles for autonomous systems with application to aircraft
turbomachinery with rotor-stator interaction. Coudeyras [18]
used a similar approach applied to the study of break squeal.
Complex nonlinear normal modes can be computed with the
help of quasi-periodic HBM as done by Laxalde and Thou-
verez [19] for blade-casing contact problems. The quasi-
periodic HBM coupled with an arc-length continuation scheme
was also used by Guskov [20] for the forced response of a
multiple shaft rotor subject to quasi-periodic multi-excitations
with known frequencies. Some variants can be found in the
literature. For example, instead of computing a quasi-periodic
trajectory which takes place on the surface of an invariant
torus, Schilder et al. [21] focus on the direct computation
of the torus itself and solve a so-called Invariance PDE that
a torus function must satisfy, with application to non-linear
electrical engineering.

In the following, the nonlinear Jeffcott rotor model de-
scribed in [11] is first considered and analysed using a clas-
sical time marching procedure. The goal is to simulate the
transient rotor behaviour in order to analyse carefully the re-
sponses obtained. The highlighted important results lead to
the proposition of an improved Harmonic Balance Method
associated with a pseudo arc-length continuation technique,
able to reproduce efficiently quasi-periodic phenomena where
nothing is a priori known concerning the frequency induced
by the contact mechanism.

Partial rub

Backward whip

No rub

N
o 

ru
b

Full
annular

rub

Ω
D
F
=
0.

04

Ω
H

P
=
0.

29

Ω
D
W
=
0.

46

Ω
L
=
0.

16

Ω
U
=
0.

86

Fig. 3 Response curve for µ = 0.2.

2 Nonlinear Jeffcott rotor - numerical approach

The results shown in Fig. 3 have been examined via nu-
merical simulations based on a time marching procedure.
Considering the same parameter values as those presented in
Fig. 2, simulations were run with a fixed value for the fric-
tion coefficient µ and varying values of Ω. Solutions were
calculated for discrete values of Ω and the initial conditions
used at each step were given by the final steady state so-
lution of the previous one (incremental continuation tech-
nique). For each value of Ω, 100 revolutions were simulated
in order to reach the steady-state behaviour. Twenty-five ad-
ditional revolutions were then simulated and saved for anal-
ysis. This procedure was performed twice for each value of
µ. In the first round, simulations were made with progres-
sively greater values of Ω, whereas in the second progres-
sively smaller values of Ω were used. As numerical simula-
tions require the use of non dimensionless variables, the fol-
lowing parameters were set arbitrarily: e = 0.1 m, ks = 100
N.m−1, m = 1 kg and the other parameters deduced from
those. All the simulations were performed using Code Aster
[22] and user scripts in Scipy [23] environments. Although
simulations involved many values of µ, only the results ob-
tained for µ = 0.2, which are representative of all possi-
ble solutions, are presented in the following. The response
curve obtained for µ = 0.2, β = 0.04, ξ = 0.05, R0 = 1.05
and Rdisk = 20R0 is shown in Fig. 3. The y-axis represents
rotor eccentricity normalized with the initial clearance, on a
logarithmic scale, and the x-axis is the normalized rotational
speed Ω = ω

ωs
. Different behaviours are obtained according

to the analytical prediction (Fig. 2).
During the sweep-up, the no-rub motion is first observed

(Fig. 4). At Ωl ≈ 0.16, the full annular rub regime starts
with a rotor eccentricity slightly larger than the initial gap
due to the contact elasticity (Fig. 5). The transition between
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4 Loı̈c Peletan et al.

X

Y

Fig. 4 Orbit during the no rub motion at Ω = 0.14

X

Y

Fig. 5 Orbit during full annular rub at Ω = 0.26

no-rub and full annular rub (which corresponds to the Ωl

line in Fig. 2) occurs between approximately Ω = 0.155
and Ω = 0.160, which is highly consistent with the analyti-
cal value (Ωl = 0.1536). Beyond ΩHP ≈ 0.29, rotor motion
becomes quasi-periodic. The orbit at Ω = 0.33 is shown
in Fig. 6 and illustrates the partial rub motion predicted,
where the rotor does not remain in permanent contact with
the stator and the maximum rotor eccentricity is greater than
that predicted during full annular rub. At ΩDW ≈ 0.46, ec-
centricity suddenly increases by a factor of ten. Although
slightly different from the value found analytically (≈ 0.41),
the value obtained is coherent. In this backward dry whip
regime, rotor’s orbit is almost circular, as shown in Fig. 7.
The rotor then remains in the backward whip regime until
the end of the sweep-up.

During the sweep-down, the rotor starts with the no-rub
regime, until Ωu ≈ 0.86 where a sudden increase in ec-
centricity occurs, transferring the motion of the rotor to the
backward whip regime. The rotor remains in this regime un-
til a very small value of ΩDF ≈ 0.04 is reached, at which
eccentricity suddenly drops leading to the no rub regime.
This value of ΩDF is also in good agreement with the analyt-
ical value (Fig. 2). Transient simulations are used to anal-
yse more deeply the nature of the quasi-periodic regimes. A
Fast Fourier Transform of the nonlinear contact force, dur-
ing partial rub at Ω = 0.33, is shown Fig. 8. When analysing

X

Y

unit circle

Fig. 6 Orbit during partial rub at Ω = 0.33

Y

X

unit circle

Fig. 7 Backward whip orbit at Ω = 0.33. Rotor’s eccentricity is one
order of magnitude greater than clearance.

Ω
0a

=1

Ω
0b

=2.08

Ω
1a

=4.08

Ω
1b

=5.16

Ω
2a

=7.16

Ω
2b

=8.24

Ω
3a

=10.2
Ω

3b
=11.3

Ω
na

=(n+1)Ω
1
 + (n+0)Ω

2

Ω
nb

=(n+0)Ω
1
 + (n+1)Ω

2

with Ω
1
=1 Ω and Ω

2
=2.08 Ω

frequency

Fig. 8 Fast Fourier transform of the nonlinear contact force signal dur-
ing partial rub at Ω = 0.33.

those results, it appears that the frequencies obtained are all
linked by a linear combination of two incommensurable fre-
quencies. The lowest frequency Ω1 is associated to rotation
(1 × Ω) while the second Ω2 cannot be determined a priori
since it is not commensurable with Ω1, here Ω2 ≈ 2.08 × Ω.
For every simulated partial rub motions, spectral peaks ap-
pear in the contact force power spectrum at linear combina-
tions of the two incommensurable frequencies, according to
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Quasi-Periodic Harmonic Balance Method for Rubbing Self-Induced Vibrations in Rotor-Stator Dynamics 5

Fig. 9 Evolution of the second fundamental frequencyΩ2 as a function
of Ω1 with error bars.

Table 1 Ωna and Ωnb calculated for the first four values of n for partial
rub motion at Ω = 0.33. Here, Ω1 = 1 × Ω and Ω2 ≈ 2.08 × Ω.

n Ωna(×Ω) Ωnb(×Ω)
0 1 2.08
1 4.08 5.16
2 7.16 8.24
3 10.2 11.3

the following relations:

Ωna = (n + 1)Ω1 + (n + 0)Ω2 for n ∈ N (2)

Ωnb = (n + 0)Ω1 + (n + 1)Ω2 for n ∈ N (3)

Peaks appear in pairs and decrease in amplitude with n
(Fig. 8). Values of Ωna and Ωnb are given in Table 1 and
are coherent with those highlighted in Fig. 8.

Spectral analysis of the contact force during partial rub
for several values ofΩ shows not only thatΩ1 remains equal
to the rotating frequency (Ω1 = 1 × Ω), but also that Ω2 is
related to Ω1 without any trivial relationship (Ω2 = f (Ω1)).
The only evident point is thatΩ2 decreases whenΩ increases.
The evolution of Ω2 with Ω1 is given in Fig. 9. A nonlinear
decrease of Ω2 with Ω1 is observed. As the two fundamental
frequencies are incommensurable and due to limited spec-
tral resolution, only approximate measurements of Ω2 can
be obtained, with lower and upper bounds indicated by error
bars in Fig. 9.

Those direct simulations are highly computer time de-
manding. On the other hand the harmonic balance method is
very efficient but is limited to the study of periodic solutions
or quasi-periodic solutions in the case where the relation-
ship between the different frequency components is known.
In the following, after a brief presentation of the periodic
HBM and the pseudo arc-length continuation method, an
extension of the HBM is proposed. As required here, the
method handles situations where one of the two fundamen-
tal frequencies is a priori unknown.

3 Periodic Harmonic Balance Method (HBM)

3.1 Basics of the HBM

The classical Harmonic Balance Method (HBM) is used to
compute periodic solutions of dynamical systems. With this
method the equations of motion are solved in the frequency
domain, rather than in the time domain. The general equa-
tion for dynamical systems is:

Mq̈(t) + Cq̇(t) + Kq(t) + f(q(t), q̇(t)) − p(t) = 0 (4)

where q is the displacement vector for all of the n degrees
of freedom; K, C and M are the generalized n × n stiffness,
damping and mass matrices; f is the nonlinear force vector
and p the external excitation force vector.
When the external excitations are periodic, it is possible to
assume that a steady state solution for Eq. (4) exists, and that
this solution is also periodic. The displacements, the exter-
nal and the nonlinear forces can thus be written as truncated
Fourier series with N harmonics:

q(t) = Q0 +

N∑
j=1

(
Q2 j−1 cos( jωt) + Q2 j sin( jωt)

)
Not all the harmonics contribute to the solution in the same
way. Some harmonics are prevailing while some others have
a nil contribution. If only the harmonics of interest (see sec-
tion 4.3 for harmonic selection) are retained in the solution,
then the truncated Fourier series for displacements, external
and nonlinear forces become:

q(t) = Q0 +

N∑
j=1

(
Q2 j−1 cos(m jωt) + Q2 j sin(m jωt)

)
(5)

p(t) = P0 +

N∑
j=1

(
P2 j−1 cos(m jωt) + P2 j sin(m jωt)

)
(6)

f(t) = F0 +

N∑
j=1

(
F2 j−1 cos(m jωt) + F2 j sin(m jωt)

)
(7)

Q =
[
Q0

T ,Q1
T , . . . ,QT

2N

]T
, F =

[
FT

0 ,FT
1 , . . . ,FT

2N

]T and
P =

[
PT

0 ,PT
1 , . . . ,PT

2N

]T are vectors of the Fourier coeffi-
cients for displacements, nonlinear forces and external exci-
tations, respectively. ω is the fundamental frequency of the
external excitation, and m j ∈ N (1 ≤ j ≤ N) represent the
indexes of the N harmonics of interest retained in the solu-
tion.

As described in [24] for example, Eqs. (5) (6) and (7) can
be substituted into Eq. (4) and a Galerkin procedure applied
to transform the nonlinear differential Eq. (4) of dimension
n, into an algebraic nonlinear system of dimension nHBM =

n(2N + 1):

R(Q, ω) = Z(ω)Q + F(Q) − P = 0 (8)
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6 Loı̈c Peletan et al.

where Z(ω) = diag
(
K,Z1(ω), . . . ,Z j(ω), . . . ,ZN(ω)

)
and:

Z j(ω) =

ñ
K −

(
m j
)2
ω2M

(
m j
)
ωC

−
(
m j
)
ωC K −

(
m j
)2
ω2M

ô
Eq. (8) has to be solved for Q. As this equation is still non-
linear, an incremental-iterative Newton-Raphson method is
used to derive a correct solution.

The Alternating Frequency Time (AFT) algorithm [25]
gives an efficient way to compute the nonlinear term F(Q)
and its derivative ∂F(Q)/∂Q at each Newton-Raphson itera-
tion. The nonlinear forces are usually much easily evaluated
in the time domain than in the frequency domain. Moreover,
the AFT scheme uses fast direct and inverse Fourier trans-
forms to quickly compute the nonlinear forces in the time
domain and then switch back to the frequency domain. A
combination with a pseudo-arc length continuation [14] al-
lows following efficiently the solution branches. The stabil-
ity of the solutions is determined using the Floquet’s theory
[26].

3.2 Pseudo arc-length continuation method

The interest of the pseudo arc-length continuation method
lies in its ability to follow response branches beyond turn-
ing points and thus completely describe a complex solution
branch with potentially several solutions for a given value of
ω. Let M(i)

(
Q(i), ω(i)

)
be a point that satisfies R(Q(i), ω(i)) =

0. Then the goal is to obtain a point M(i+1)
(
Q(i+1), ω(i+1)

)
that also satisfies R(Q(i+1), ω(i+1)) = 0, with Q(i+1) = Q(i) +

∆Q(i) and ω(i+1) = ω(i) + ∆ω(i). The continuation procedure
consists in two steps: a prediction and corrections.

ω

Q

e
(i)

e
(i+1)

Q
(i)
,ω

(i)

Q
(i+1)

,ω
(i+1)

(0)Q
(i+1)

,(0)ω
(i+1)
(k)Q

(i+1)
,(k)ω

(i+1)

∆s

P
re

di
ct
io
n

Corrections

R(Q,ω)=0

Fig. 10 Pseudo arc-length continuation.

3.2.1 Prediction

During the prediction step, the solution for the next value of
ω is assessed. The prediction is made in a direction tangent
to the solution branch. The following first order approxima-
tion can be made:

R(Q(i+1), ω(i+1))︸                ︷︷                ︸
=0

≈

R(Q(i), ω(i))︸          ︷︷          ︸
=0

+∆Q(i)
∂R
∂Q

∣∣∣∣
M(i)

+ ∆ω(i)
∂R
∂ω

∣∣∣∣
M(i)

(9)

with ∂R
∂Q = Z(ω) + dF

dQ and ∂R
∂ω

= dZ
dωQ.

The norm of the tangent vector e(i) = [∆QT
(i), ∆ω(i)] is:

‖e(i)‖
2 = ∆QT

(i)∆Q(i) + ∆ω2
(i)

Let consider a(i) = ∆ω(i), ∆Q(i) = a(i)∆Q̂(i) and the norm of
the tangent vector set at unity, then:

a(i) = ±
1»

∆Q̂T
(i)∆Q̂(i) + 1

(10)

The sign of a(i) is chosen so that two consecutive tangent
vectors have a positive scalar product (direction conserva-
tion). Eq. (9) becomes:

∆Q(i)
∂R
∂Q

∣∣∣∣
M(i)

+ ∆ω(i)
∂R
∂ω

∣∣∣∣
M(i)

= 0 (11)

Considering the expressions of a(i) (a(i) = ∆ω(i)) and ∆Q(i)

(∆Q(i) = a(i)∆Q̂(i)), Eq. (11) becomes:

��a(i)∆Q̂(i)
∂R
∂Q

∣∣∣∣
M(i)

+��a(i)
∂R
∂ω

∣∣∣∣
M(i)

= 0 (12)

Hence, the procedure to compute e(i) can be summarized as
follows:

– Solve ∂R
∂Q

∣∣∣
M(i)

∆Q̂(i) = − ∂R
∂ω

∣∣
M(i)

for ∆Q̂(i)

– Compute a(i) from Eq. (10)
– Deduce e(i) = [∆QT

(i), a(i)]

Once the normalised tangent vector is calculated, prediction
can be made:

Q(0)
(i+1) = Q(i) + ∆s(i) · e(i) (13)

with ∆s(i) being the step size.
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Quasi-Periodic Harmonic Balance Method for Rubbing Self-Induced Vibrations in Rotor-Stator Dynamics 7

3.2.2 Corrections

The prediction does not a priori satisfies equilibrium. It has
to be corrected iteratively in order to cancel the error. The
kth iteration gives:

R(Q(k)
(i+1), ω

(k)
(i+1))︸                ︷︷                ︸

=R(k)

= Z(ω(k)
(i+1))︸      ︷︷      ︸

=Z(k)

Q(k)
(i+1) + F(Q(k)

(i+1))︸      ︷︷      ︸
=F(k)

−P

The (i + 1) notation will now be dropped for clarity. Cor-
rections are forced to be orthogonal to the tangent vector e.
Thus, the following system has to be solved:ñ
∂R(k)

∂Q
∂R(k)

∂ω

∆Q̂T
(i) ∆ω(i)

ô ï
∆Q(k+1)

∆ω(k+1)

ò
=

ï
−R(k)

0

ò
(14)

Both ω and Q are corrected at each iteration. Iterations are
carried out until convergence. This continuation procedure
is illustrated in Fig. 10.

3.3 Application to the Jeffcott rotor

The results provided by the HBM with pseudo arc-length
continuation and stability analysis have been added to the
response curve in Fig. 11. As expected, only no-rub and full
annular rub motions are obtained by the periodic HBM pro-
cedure. The stability analysis shows a loss of stability of the
full annular rub beyondΩHP ≈ 0.29. The Floquet multipliers
of the unstable solution at Ω ≈ 0.3 can be seen in Fig. 12.
A pair of Floquet multipliers are not within the unit circle,
with a non-zero imaginary component indicating a Hopf bi-
furcation and a loss of stability. This Hopf bifurcation cor-
responds to the appearance of a second frequency in the real
response of the rotor, and the initiation of a quasi-periodic
regime. This means that although, theoretically, the periodic
full annular rub response still exists beyond this point, it is
in practice no longer possible to achieve this response, due
to its instability. The value of ΩHP obtained with the HBM
is very consistent with the predicted value (see Fig. 2).

The HBM is able to predict only a portion of the time
transient simulations. However, stability analysis can detect
unstable solutions and then the DF curve can be determined
in addition to theΩl andΩu lines. The DW and DF lines can-
not be predicted by the periodic HBM. Nonetheless, a per-
fect match is found between stable HBM solutions and time
integration results. In the following it will be shown that the
HBM can be extended to quasi-periodic analysis allowing
the partial rub and backward whip regimes to be predicted
too.

4 Quasi-periodic HBM

As shown above, only the external excitation frequency ω1

is known here and the second fundamental frequency ω2 re-
mains an additionnal unknown.

Partial rub

Backward whip

Full annular rub

Full
annular

rub

No rub No rub

N
o 

ru
b

N
o 

ru
bex

ce
nt

ric
ity

 / 
ga

p

Periodic HBM
Time integration

rotating speed

Fig. 11 Response for µ = 0.2. HBM stable (N), HBM unstable (•).

Fig. 12 Real and imaginary parts of Floquet’s multipliers for the un-
stable solution at Ω ≈ 0.33 (secondary Hopf bifurcation).

4.1 Extension of the HBM to bi-periodic solutions

The concept of hyper-time is used to extend the Harmonic
Balance Method to quasi-periodicity. When two fundamen-
tal frequencies are taken into account, the hyper-time is bi-
dimensional and the solution is supposed to be periodic for
each of the dimensions. Thus, the form of the truncated Fourier
series presented in Eqs. (5), (6) and (7) must be adapted. Dis-
placement q is approximated by trigonometric polynomials
with two basic frequencies ω1 and ω2:

q(t) = Q0 +

N∑
j=1

(
Q2 j−1 cos((m j1ω1 + m j2ω2)t)

+Q2 j sin((m j1ω1 + m j2ω2)t)
)

(15)

where m j1 and m j2 ∈ Z (1 ≤ j ≤ N) represent the indexes
of the N harmonics of interest retained in the solution for
ω1 and ω2 respectively. Introducing the bi-dimensional vec-
tor of basic frequencies ω = [ω1, ω2], the bi-dimensional
harmonic index m j =

[
m j1,m j2

]
, and the hyper-time θ =

[θ1, θ2] = ωt, this equation can be rewritten in a form very
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8 Loı̈c Peletan et al.

Q

ω
1

ω
2

ω
2
 = f(ω

1
)

R(Q,ω
1
,ω

2
)=0e
1

e
2

(k)

Δs

Q
(i)

,ω
1(i)

,ω
2(i)

Q
(i+1)

,ω
1(i+1)

,ω
2(i+1)

prediction

co
rre

ct
io
ns

Fig. 13 Pseudo arc-length continuation with two parameters linked by
an unknown function.

similar to Eq. (5) used for periodic HBM:

q(θ) = Q0 +

N∑
j=1

(
Q2 j−1 cos〈m j, θ〉 + Q2 j sin〈m j, θ〉

)
(16)

where 〈·, ·〉 stands for the classical dot product. The Galerkin
procedure in this case leads to the following algebraic sys-
tem:

R(Q, ω1, ω2) = Z(ω1, ω2)Q + F(Q) − P = 0 (17)

where Z(ω1, ω2) = diag
(
K,Z1, . . . ,Z j, . . . ,ZN

)
and:

Z j =

ï
K − 〈m j, θ〉

2M 〈m j, θ〉C
−〈m j, θ〉C K − 〈m j, θ〉

2M

ò
As for periodic HBM, the purpose is to minimise the resid-
ual R. The same tools (Newton-Raphson solver, AFT, pseudo
arc-length continuation) are used but need to be adapted to
the quasi-periodic case. In particular, the pseudo arc-length
continuation scheme must be adapted so that the second fun-
damental frequency is solved during the Newton-Raphson
procedure.

4.2 Extension of the pseudo arc-length continuation
procedure

The pseudo arc-length continuation algorithm is extended to
a parametric study with two parameters (ω1 and ω2). These
two parameters are not independant but are linked by an a
priori unknown function (see Fig. 13).

As before M(i) (Q(i), ω1(i), ω2(i)) is a point that satisfies
R(Q(i), ω1(i), ω2(i)) = 0, and we are looking for a point M(i+1)

(Q(i+1) = Q(i) +∆Q(i), ω1(i+1) = ω1(i) +∆ω1(i), ω2(i+1) = ω2(i) +

∆ω2(i)) that also satifies R(Q(i+1), ω1(i+1), ω2(i+1)) = 0.

4.2.1 Prediction

Here also, the following first order approximation can be
made:

R(Q(i+1), ω1(i+1), ω2(i+1))︸                           ︷︷                           ︸
=0

≈ R(Q(i), ω1(i), ω2(i))︸                   ︷︷                   ︸
=0

+ ∆Q(i)
∂R
∂Q

∣∣∣∣
M(i)

+ ∆ω1(i)
∂R
∂ω1

∣∣∣∣
M(i)

+ ∆ω2(i)
∂R
∂ω2

∣∣∣∣
M(i)

(18)

with,
∂R
∂Q = Z(ω1, ω2) + dF

dQ
∂R
∂ω1

= ∂Z
∂ω1

Q
∂R
∂ω2

= ∂Z
∂ω2

Q
The norm of the tangent vector e1(i) = [∆QT

(i), ∆ω1(i), ∆ω2(i)]
is:

||e1(i)||
2 = ∆QT

(i)∆Q(i) + ∆ω2
1(i) + ∆ω2

2(i)

Let’s denote c(i) the local relationship between variations of
ω1 andω2 so that c(i) = ∆ω2

∆ω1
. As this relationship is unknown,

the following finite differences approximation can be made,
using the previouly calculated points:

c(i) =
ω2(i) − ω2(i−1)

ω1(i) − ω1(i−1)

The developments are totally similar to those previously
presented with a(i) = ∆ω1(i)

»
1 + c2

(i) and ∆Q(i) = a(i)∆Q̂(i).
In this case, the procedure can be summarised as follows:

– Solve the following system for ∆Q̂(i):

∂R
∂Q

∣∣∣∣
M(i)

∆Q̂(i) = −
1»

1 + c2
(i)

Ç
∂R
∂ω1

∣∣∣∣
M(i)

+ c(i)
∂R
∂ω2

∣∣∣∣
M(i)

å
– Compute a(i) from Eq. (10)
– Deduce ∆ω1(i) and ∆ω2(i):

∆ω1(i) =
a(i)»
1 + c2

(i)

; ∆ω2(i) = c(i)∆ω1(i)

This gives vector e1 = [∆Q̂(i), ∆ω1(i), ∆ω2(i)]. The prediction
of point M(i+1) is made at a distance ∆s from Mi along the
direction given by e1:

M(0)
(i+1) = M(i) + ∆s.e1

4.2.2 Corrections

The residual vector R at iteration k is given by:

R(Q(k)
(i+1), ω

(k)
1(i+1), ω

(k)
2(i+1))︸                           ︷︷                           ︸

=R(k)

= Z(ω(k)
1(i+1), ω

(k)
2(i+1))︸                  ︷︷                  ︸

=Z(k)

Q(k)
(i+1)

+ F(Q(k)
(i+1))︸      ︷︷      ︸

=F(k)

−P

Pr
od

ui
t p

ar
 H

AL
 - 

16
 S

ep
 2

01
4



Quasi-Periodic Harmonic Balance Method for Rubbing Self-Induced Vibrations in Rotor-Stator Dynamics 9

As before, subscript (i + 1) will be dropped for clarity. Cor-
rections are made orthogonally to the tangent vector e1 and
the system at iteration k becomes:ñ
∂R(k)

∂Q
∂R(k)

∂ω1

∂R(k)

∂ω2

∆Q̂T
(i) ∆ω1(i) ∆ω2(i)

ô∆Q(k+1)

∆ω(k+1)
1

∆ω(k+1)
2

 =

ï
−R(k)

0

ò
(19)

This system is underdetermined because of the presence of
the additional unknown ∆ω(k+1)

2 . In fact, since θ2 = ω2t does
not appear in the forcing term of the equations of motion
(4), if q(θ1, θ2) is a solution then a phase-shifted function
q(θ1, θ2 + σ) is also a solution, for any value of σ, i.e. the
phase is arbitrary. To define a unique solution an extra con-
straint is needed. This additional equation is often referred to
as a ”phase condition” and consists in fixing one of the vari-
ables other than ω1 and ω2, i.e. one component of vector Q
or, within the Newton-Raphson procedure, one component
of correction ∆Q. There is no systematic way for choos-
ing the variable to be fixed. Several phase conditions can
be found in textbooks dealing with periodic solutions [27,
28]. They can be considered as ”orthogonality conditions”
because they can be written as a null scalar product between
the vector of unknowns and a vector e2 with non-null com-
ponents along ∆Q only, i.e. e2 =

[
e2Q, 0, 0

]
. With this addi-

tional equation, the system to solve becomes: ∂R(k)

∂Q
∂R(k)

∂ω1

∂R(k)

∂ω2

∆Q̂T
(i) ∆ω1(i) ∆ω2(i)

e2Q 0 0

∆Q(k+1)

∆ω(k+1)
1

∆ω(k+1)
2

 =

−R(k)

0
0

 (20)

Two constructions for e2 are proposed in the present paper,
which differ in the way ∆Q is constrained. The first choice is
the simplest one and consists in directly fixing one arbitrar-
ily chosen component of ∆Q by considering the following
phase equation:

∂∆qi

∂θ2
(θ) = 0 (21)

with ∆qi being the displacement correction of the ith degree
of freedom with i arbitrarily chosen between 1 and n. This
means that a zero phase shift relatively to the second hyper-
time dimension θ2 is forced for this particular degree of free-
dom. Once processed to the frequency domain, Eq. (21) be-
comes:

N∑
j=1

m j2∆Q2 ji = 0 (22)

Using Eq. (22) is equivalent to using system (20) with the
following e2 vector:

e2 = [0, . . . , 0︸     ︷︷     ︸
n

, 0, . . . , 0,m12, 0, . . . , 0︸                       ︷︷                       ︸
2n

, . . . , 0, . . . , 0,m j2, 0, . . . , 0︸                       ︷︷                       ︸
2n

,

. . . , 0, . . . , 0,mN2, 0, . . . , 0︸                        ︷︷                        ︸
2n

, 0, 0] (23)

with m j2 at (n(2 j − 1) + i)th position, j ∈ [1..N]. With this
phase equation, the system is well determined and the Newton-
Raphson procedure can be carried out. This specific e2 vec-
tor is used for each iteration of the Newton-Raphson solver.

Alternatively, a second possible choice for e2 relies on
geometric considerations. It consists in requiring the current
correction to be orthogonal to the previous one as in the con-
jugate gradient procedure. Thus, vector e2 can be chosen as
e(k)

2 = [∆Q(k)T , 0, 0]. For the applications considered in this
paper, this approach appears slightly more effective than the
previous one. However, the drawback here is that it is not
possible to build vector e2 at the first iteration of the Newton-
Raphson procedure. One way to overcome this problem is to
perform a least square minimisation step on the under deter-
mined system (19) or to use the phase equation for the first
iteration.

4.3 Automatic harmonic selection

Usually, simulations are carried out using an arbitrary set
of harmonics. For instance, Chua and Ushida in [29] and
Kim and Choi in [30] select harmonics as a function of an
arbitrary number M. Harmonics are then chosen so that:

|m j1| + |m j2| ≤ M

Legrand in [16] uses an even less restrictive formula:

|m j1| ≤ M and |m j2| ≤ M

Using one of these formulae leads to use a large number of
harmonics because the total number of harmonics rapidly
increases with M and the number of harmonics has a direct
impact on performance. However many of these harmonics
may be unnecessary and some important harmonics may not
have been selected.

To overcome these problems, a technique for automatic
selection of predominant harmonics can be implemented.
Several selection criteria were proposed in the context of
conventional periodic HBM. Among those, a simple selec-
tion procedure based on the error on the approximated non-
linear forces was presented by Laxalde in [31]. Another cri-
terion was presented by Jaumouillé in [32] in order to take
into account the global system behavior. It relies on the evo-
lution of strain energy with an increasing number of har-
monics. However, this incremental criterion requires an ex-
tra calculation cost for strain energy and the selection proce-
dure can end prematurely if one harmonic has no contribu-
tion. An improved criterion based on local selection of har-
monics per degree-of-freedom was proposed by Grolet [33]
to overcome the limitations of previous procedures. How-
ever, this criterion requires a more complex numerical im-
plementation.
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10 Loı̈c Peletan et al.
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Fig. 14 Automatic harmonic selection, step 1.

Aliasing suppression

S
hift

Fig. 15 Automatic harmonic selection, step 2.
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0
1
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3
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Detection

Fig. 16 Automatic harmonic selection, step 3.

The procedure described here applies to quasi-periodic
bi-dimensional HBM. For the sake of simplicity of imple-
mentation, it also relies on the approximation of the non-
linear forces but differs from [31] in the way harmonics are
selected. It consists in three steps.

Once a converged solution of the nonlinear system (17)
is obtained for a given set of harmonics with the Newton-
Raphson procedure described in section 4.2 :

– Step 1: Bi-dimensional FFT of nonlinear forces. The
nonlinear forces are calculated in the time domain from
displacements. In Fig. 14, the nonlinear forces are plot-
ted as a function of θ1 and θ2 besides their FFT repre-
sentation where each pixel represents a frequency com-
ponent. A blue pixel represents a component with a very
low contribution and a red pixel a high energy compo-

nent. The spectrum yielded by FFT has aliasing and in-
formation is redundant.

– Step 2: Suppression of redundancy (see Fig. 15) and
spectrum shift. The first half of rows or the first half of
columns of the spectrum may be arbitrarily kept. For in-
stance, here, the first half of rows are kept and the right
half of the first row removed. For convenience, the right
half of the spectrum is shifted with the left half.

– Step 3: Harmonics detection (see Fig. 16). The com-
ponents with the highest contribution are extracted from
the spectrum and added, one by one, until the error be-
tween nonlinear forces in the time domain and their re-
construction from the remaining harmonics equals a thresh-
old value. The error is a norm of the difference between
the two signals computed on the whole time vector. In
other words, only important harmonics are retained. In
the given example, sixteen harmonics are detected (indi-
cated by an orange dot): {(0,1); (1,0); (1,2); (2,1); (2,3);
(3,2); (3,4); . . . }. Despite being not nil, harmonic (4, 5)
for instance is not retained due to a too small contribu-
tion.

The nonlinear system (17) is solved again using this new set
of harmonics and the three steps are carried out again. This
procedure is repeated until convergence of the harmonics. In
general, one or two iterations are requiered for convergence.
In the exemple presented here, this automatic selection pro-
cedure converged to a set of harmonics that verifies the em-
pirical formulae (2) and (3). This proves the reliability of the
procedure. With this procedure, only harmonics that really
contribute to the response are used resulting to faster and
more accurate simulations.

Both periodic and quasi-periodic HBM algorithms, with
pseudo arc-length continuation and automatic harmonic se-
lection, have been implemented in Code Aster via Python
user scripts which give access to Aster objects and com-
mands like FEM elementary matrix computations.

4.4 Application to the Jeffcott rotor

Data from the time transient simulations, corresponding to
one point of the branch, has been used to initialise the quasi-
periodic HBM. Then the pseudo arc-length continuation pro-
cedure allows following the solution branch. Fig. 17 shows
the same response curve than presented in Fig. 11 with the
addition of the response curve given by the quasi-periodic
HBM. The branch corresponding to the quasi-periodic par-
tial rub phenomena is perfectly reproduced. The response
curve given by the quasi-periodic HBM has been ploted in
Fig. 18 as a function of Ω1 and Ω2. The evolution of Ω2

against Ω1 as yielded by the HBM has been ploted in Fig.
19. The evolution of Ω2 as a function of Ω1 found by the ex-
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Fig. 17 Response curve including the quasi-periodic HBM response.
Close up view. HBM stable (N), HBM unstable (�).

Fig. 18 Response curve given by quasi-periodic HBM as a function
of Ω1 and Ω2. Projections of this curve onto the three plans are also
ploted.

tended pseudo arc-length continuation method is very con-
sistent with the evolution obtained from time integration.

Table 2 gives the computational time required to calcu-
late the quasi-periodic partial rub branch using traditional
time integration (Runge-Kutta) and the proposed quasi-periodic
HBM. The proposed method appears to be more than seven
times faster than the time integration method while provid-
ing very accurate results. It appeared that the AFT proce-
dure is the most time consuming step. Bi-dimensional FFT
are also more costly compared to the FFT used for periodic
HBM.

Fig. 19 Evolution of the second fundamental frequency Ω2 as a func-
tion of Ω1.

Table 2 Comparison of the CPU time required for the computation of
the partial rub branch using the proposed method and traditional time
integration.

Time Quasi-periodic
integration HBM

Nb. of unknowns 2 67
Nb. of points in branch 36 274

CPU time (s) 1336 184 (7.30 speed-up)

The backward whip branch should also be obtained from
the quasi-periodic HBM technique as well and will be con-
sidered in the next developements.

5 Conclusion

The capabilities of the Harmonic Balance Method (HBM),
with pseudo arc-length continuation and stability assessment,
have been investigated for the computation of the steady-
state behaviour of rotor-to-stator contact problems. The HBM
results have been compared with classical time marching so-
lutions and analytical results [11]. The application considers
a simple Jeffcott rotor, with a circular, rigid, static stator. It
has been demonstrated that although the rotor is submitted
to unbalance only, there are four possible kinds of solution:
two of these are periodic (no-rub motion and full annular
rub), whereas the remaining two are quasi-periodic (partial
rub and backward whip).

The periodic HBM is shown to be capable of accurately
predict the two periodic solutions. The periodic HBM can
also predict initiation of the quasi-periodic partial rub regime,
which corresponds to a loss of stability of the periodic so-
lution. However, the partial rub and backward whip motions
cannot be described by means of the periodic HBM in the
presented form.

An extension of the HBM to the treatment of quasi-periodic
solutions has been proposed. This new method automati-

Pr
od

ui
t p

ar
 H

AL
 - 

16
 S

ep
 2

01
4



12 Loı̈c Peletan et al.

cally determines the second fundamental frequency of the
system which is the result of a self-excitation caused by
contact. An extension of the pseudo arc-length continuation
method made possible the continuation of a quasi-periodic
branch despite the second frequency having an a priori un-
known evolution along the branch. In addition, in order to
improve both performance and accuracy of simulations, an
automatic harmonic selection procedure has been proposed.
With this procedure, only predominant harmonics are auto-
matically used during simulation, requiring no intervention
from the user. This method allowed to determine the par-
tial rub branch and its results were very consistent with time
integration results at a much lower cost.

The proposed quasi-periodic HBM currently requires to
be initialised with data from time integration simulations.
However, this requirement could be removed with the help
of a branch switching procedure [34,35] that would allow
a smooth transition between periodic full annular rub and
quasi-periodic partial rub. This possibility is currently being
investigated.

Although results presented here concern mainly academic
examples, the method has been successfully applied to in-
dustrial rotating machinery finite-element models [36].
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