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ON THE MULTIPLIER RULES

JOËL BLOT

Abstract. We establish new results of first-order necessary conditions of op-
timality for finite-dimensional problems with inequality constraints and for
problems with equality and inequality constraints, in the form of John’s the-
orem and in the form of Karush-Kuhn-Tucker’s theorem. In comparison with
existing results we weaken assumptions of continuity and of differentiability.
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1. Introduction

We consider first-order necessary conditions of optimality for finite-dimensional
problems under inequality constraints and under equality and inequality constraints.

Let Ω be a nonempty open subset of Rn, let fi : Ω → R (when i ∈ {0, ...,m})
be functions, let φ : Ω → R, gi : Ω → R (when i ∈ {1, ..., p}) and hj : Ω → R

(when j ∈ {1, ..., q}) be functions. With these elements, we build the two following
problems:

(I)







Maximize f0(x)
when x ∈ Ω

and when ∀i ∈ {1, ...,m}, fi(x) ≥ 0,

and

(M)















Maximize φ(x)
when x ∈ Ω
when ∀i ∈ {1, ..., p}, gi(x) ≥ 0

and when ∀j ∈ {1, ..., q}, hj(x) = 0.

We provide necessary conditions of optimality under the form of Fritz John’s
conditions and under the form of Karush-Kuhn-Tucker’s conditions. Our aim is
to weaken the assumptions which permit to obtain such results. We can delete
certain conditions of continuity and we can replace certain conditions of Fréchet-
differentiability by conditions of Gâteaux-differentiability.

The Farkas-Minkowski Theorem is one of the main tools that we use to estab-
lish the result for the problem (I) with inequality constraints. A (local) theorem
of implicit function permits to transform (locally) a problem with equality and in-
equality constraints (like (M)) into a problem with only inequality constraints (like
(I)); it is why the Implicit Function Theorem of Halkin is one of the main tools to
establish our result for (M).

These results are usual when we assume that all the functions are continuously
Fréchet-differentiable on a neighborhood of x̂, ([1], Chapter 3, Scetion 3.2)), ([13],
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Chapitre 13, Section 2), [9], [3], [14], [11], ([17], Chapter 11). In [8], Halkin gives a
multiplier rule only using the continuity on a neighborhood of x̂ and the Fréchet-
differentiability at x̂ of the functions. His proof uses his implicit function theorem
(Theorem 2.2). In ([12], Chapter 24, Section 24.7) Michel gives another proof of the
result of Halkin without to use an implicit function theorem but nevertheless using
the Fixed Point Theorem of Brouwer. The proof of Michel is also explained in ([4],
Appendix B). In [15] we find a result for (I) with only the Fréchet-differentiability
of the functions fi at x̂.

There exist several works on the multiplier rules for locally Lipschitzian func-
tions which are obtained by using the Clarke Calculus [6]. After a famous the-
orem of Rademacher on the Lebesgue-almost everywhere Fréchet-differentiability
of a locally Lipschtzian mapping, and since the Clarke-gradient is a upper semi-
continuous correspondence, we can say that the locally Lipschitzian generalize the
continuously Fréchet-differentiable mappings. Note that a mapping which is only
Fréchet-differentiable (even all over a naighborhood of a point) is not necessarily
locally Lipschtzian and a locally Lipschitzian mapping is not necessarily Fréchet-
differentiable at a given point. And so there exist two different ways for the gener-
alisation of the multiplier rules of the continuously differentiable setting: the locally
Lipschitzian setting, and the (only) Fréchet-differentiable (or differentiability in a
weaker sense than this one of Fréchet) setting. Our paper belongs to the second
way.

Now we briefly describe the contents of the paper. In Section 2 we precise our
notation and we recall two important tools. In Section 3 we state the new results
for (I) and for (M). In Section 4 we prove the theorem of necessary condition of
optimality for (I), and in Section 5, we prove the theorem of necessary condition
of optimality for (M).

2. Notation and recall

First we precise the used notions of differentiability. Let E and F be two real
normed spaces, let Ω be a nonempty open subset of E, f : Ω → F be a mapping
and let x ∈ Ω and v ∈ E. When it exists, the directional derivative of f at x in the

direction of v is ~Df(x; v) := d
dt |t=0

f(x+tv). When ~Df(x; v) exists for all v ∈ E and

when [v 7→ ~Df(x; v)] is linear continuous, we say that f is Gâteaux-differentiable
at x; its Gâteaux-differential at x is DGf(x) ∈ L(E,F ) (the vector space of the

linear continuous mappings from E into F ) defined by DGf(x).v := ~Df(x; v). The
mapping f is Fréchet-differentiable at x when there exists Df(x) ∈ L(E,F ) (so-
called the Fréchet-differential of f at x) and a mapping ρ : Ω − x → F such that
limv→0 ρ(v) = 0 and f(x + v) = f(x) + Df(x).v + ‖v‖ρ(v) for all v ∈ Ω − x.
When f is Fréchet-differentiable at x then f is Gâteaux-differentiable at x, and
DGf(x) = Df(x). When E = E1 × E2, when k ∈ {1, 2}, Dkf(x) (respectively
DG,kf(x)) denotes the partial Fréchet (respectively Gâteaux)-differential of f at x
with respect to the k-th variable. For all these notions we refer to the books ([1],
Chapter 2, Section 2.2) and ([7], Chapter 4, sections 4.1, 4.2).

N denotes the set of the non negative integer numbers, N∗ : N\{0}, R denotes the
set of the real numbers and R+ denotes the set of the non negative real numbers.
When n ∈ N∗, we write R

n∗ := L(Rn,R) the dual space.

We recall the Farkas-Minkowski Theorem.
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Theorem 2.1. Let m,n ∈ N∗, ϕ1, ..., ϕm ∈ R
n∗, and a ∈ R

n∗. The two following
assertions are equivalent.

(i) For all x ∈ R
n, (∀i ∈ {i, ...,m}, ϕi.x ≥ 0) =⇒ (a.x ≥ 0).

(ii) There exists λ1, ..., λm ∈ R+ such that a =
∑

1≤i≤m λiϕi.

A complete proof of this result is given in ([16], Chapter, Sections 4.14-4.19) and
in ([10], Chapter 2, Sections 2.5, 2.6). This result is present in many books like, for
example ([13], Chapter 13, Section 2), ([17], p. 176), ([2], p. 164). A main difficulty
of the proof of this theorem is the closedness of a finitely generated convex cone; a
difficulty which is not ever well treated.

A second fundamental tool that we recall is the Implicit Function Theorem of
Halkin for the Fréchet-differentiable mappings which are not necessarily continu-
ously Fréchet-differentiable.

Theorem 2.2. Let X, Y , Z be three real finite-dimensional mormed vector spaces,
let A ⊂ X × Y be a nonempty open subset, let f : A → Z be a mapping, and let
(x̄, ȳ) ∈ A. We assume that the following conditions are fulfilled.

(i) f(x̄, ȳ) = 0.
(ii) f is continuous on a neighborhood of (x̄, ȳ)
(iii) f is Fréchet-differentiable at V and the partial Fréchet-differential D2f(x̄, ȳ)

is bijective.

Then there exist a neighborhood U of x̄ in X, a neighborhood V of ȳ in Y such that
U × V ⊂ A, and a mapping ψ : U → V which satisfy the following conditions.

(a) ψ(x̄) = ȳ

(b) For all x ∈ U , f(x, ψ(x)) = 0
(c) ψ is Fréchet-differentiable at x̄ and Dψ(x̄) = −D2f(x̄, ȳ)

−1 ◦D1f(x̄, ȳ).

This result is proven in [8]. Its proof uses the Fixed Point Theorem of Brouwer.
The electronic paper of Border [5] is very useful to understand the role of each
assumption of the theorem. Halkin does not use an open subset A; his function is
defined on X×Y . But it is easy to adapt his result. Since ψ is Fréchet-differentiable
at x̄, ψ is continuous at x̄ and then we can consider a neighborhood of ȳ and a
neighborhood U of x̄ such that ψ(U) ⊂ V and such that U × V ⊂ A.

3. The main results

For the problem (I) we state the following result.

Theorem 3.1. Let x̂ be a solution of (I). We assume that the following assump-
tions are fulfilled.

(i) For all i ∈ {1, ...,m}, fi is Gâteaux-differentiable at x̂.
(ii) For all i ∈ {1, ...,m}, fi is lower semicontinuous at x̂ when fi(x̂) > 0.

Then there exist λ0,..., λm ∈ R+ such that the following conditions hold.

(a) (λ0, ..., λm) 6= (0, ..., 0).
(b) For all i ∈ {1, ...,m}, λifi(x̂) = 0.
(c)

∑

0≤i≤m λiDGfi(x̂) = 0.

If, in addition, we assume that the following assumption is fulfilled,
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(iii) There exists w ∈ R
n such that, for all i ∈ {1, ...,m}, DGfi(x̂).w > 0 when

fi(x̂) = 0,

then we can take λ0 = 1.

The notion of lower semicontinuity is the classical one; see for instance [2] (p.74).
For the problem (M), we state the following result.

Theorem 3.2. Let x̂ be a solution of (M). We assume that the following assump-
tions are fulfilled.

(i) φ is Fréchet-differentiable at x̂.
(ii) For all i ∈ {1, ..., p}, gi is Fréchet-differentiable at x̂ when gi(x̂) = 0.
(iii) For all i ∈ {1, ..., p}, gi is lower semicontinuous at x̂ and Gâteaux-dif-

ferentiable at x̂ when gi(x̂) > 0.
(iv) For all j ∈ {1, ..., q}, hj is continuous on a neighborhood of x̂ and Fréchet-

differentiable at x̂.

Then there exist λ0, λ1,..., λp ∈ R+ and µ1,..., µq ∈ R such the following conditions
are satisfied.

(a) (λ0, λ1, ..., λp, µ1, ..., µq) 6= (, 0, ..., 0).
(b) for all i ∈ {1, ..., p}, λigi(x̂) = 0.
(c) λ0Dφ(x̂) +

∑

1≤i≤p λ
iDGgi(x̂) +

∑

1≤j≤q µ
jDhj(x̂) = 0.

Moreover, under the additional assumption

(v) Dh1(x̂),..., Dhq(x̂) are linearly independent,

we can take

(d) (λ0, λ1, ..., λp) 6= (0, 0, ..., 0).

Furthermore, under (v) and under the additional assumption

(vi) There exists w ∈
⋂

1≤j≤q KerDhj(x̂) such that, for all i ∈ {1, ..., p},

Dgi(x̂).w > 0 when gi(x̂) = 0,

we can take

(e) λ0 = 1.

Remark 3.3. The assumption (iii) is generally called the Mangarasian-Fromowitz’s
condition. In ([13], p. 289) the author associates this condition at a work of Abadie
in 1965 (it is difficult to find the reference). In ([17], p. 197) we find a catalog
of the variations of this condition due to Cottle, Zandwill, Kuhn and Tucker, and
Abadie.

In comparison with the Halkin’s multiplier rule, for problem (I) we have deleted
the assumptions of local continuity on a neighborhood of x̂ of the fi and we have
replaced their Fréchet-differentiability by their Gâteaux-differentiability, and for
problem (M), we have deleted the assumptions of local continuity on φ and on the
gi. In comparison with the result of [15] for problem (I), we have replaced the
Fréchet-differentiability of the fi by their Gâteaux-differentiability. Note that the
Gâteaux-differentiability of a mapping at a point does not imply the continuity of
this mapping at this point.
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4. Proof of Theorem 3.1

Doing a change of index, we can assume that {1, ..., e} = {i ∈ {1, ...,m} : fi(x̂) =
0}. If fi(x̂) > 0 for all i ∈ {1, ...,m}, the using the lower semicontinuity of (ii), there
exists an open neighborhood of x̂ on which x̂ maximizes f0 (without constraints).
Then using (i) we obtain DGf0(x̂) = 0, and we conclude by taking λ0 := 1 and
λi := 0 for all i ∈ {1, ...,m}. And so, for the sequel of the proof we assume that
1 ≤ e ≤ p.

4.1. Proof of (a), (b), (c). Ever using (ii) we can assert that there exists an open
neighborhood Ω1 ⊂ Ω of x̂ such that, for all x ∈ Ω1 and for all i ∈ {e + 1, ...,m},
fi(x) > 0 when e < m. When e = m we simply take Ω1 := Ω. Then x̂ is a solution
of the following problem.

(P)







Maximize f0(x)
when x ∈ Ω1

and when ∀i ∈ {1, ..., e}, fi(x) ≥ 0.

For all k ∈ {0, ..., e} we introduce the set

Ak := {v ∈ R
n : ∀i ∈ {k, ..., e}, DGfi(x̂).v > 0}. (4.1)

We want to prove that A0 = ∅. To realize that, we proceed by contradiction; we
assume that A0 6= ∅, and so there exists w ∈ R

n such that DGfi(x̂).w > 0 for all
i ∈ {0, ..., e}. Since Ω1 is open, there exists θ∗ ∈ (0,+∞) such that x̂+ θw ∈ Ω1 for
all θ ∈ [0, θ∗]. After (i), for all i ∈ {0, ..., e}, the function σi : [0, θ∗] → R, defined by
σi(θ) := fi(x̂ + θw), is differentiable at 0, and its derivative is σ′

i(0) = DGfi(x̂).w.
The differentiability of σi at 0 implies the existence of a function ρi : [0, θ∗] → R such
that limθ→0 ρi(θ) = 0 and such that σi(θ) = σi(0)+σ

′
i(0)θ+θρi(θ) for all θ ∈ [0, θ∗].

Translating this last equality we obtain fi(x̂+ θw) = fi(x̂)+ θ(DGfi(x̂).w+ ρi(θ)).
Since DGfi(x̂).w > 0 and since limθ→0 ρi(θ) = 0, we obtain the existence of θi ∈

(0,t heta∗] such that DGfi(x̂).w+ ρi(θ) > 0 for all θ ∈ (0, θi]. Setting θ̂ := min{θi :

i ∈ {0, ..., e} we obtain that fi(x̂ + θw) > fi((x̂) for all θ ∈ (0, θ̂] and for all
i ∈ {0, ..., e}. Then using i ∈ {1, ..., e}, this last relation ensures that x̂ + θw is

admissible for (P) when θ ∈ (0, θ̂], and using this last relation when i = 0 we

obtain f0(x̂+ θw) > f0((x̂) when θ ∈ (0, θ̂], that is impossible since x̂ is a solution
of (P). And so the reasoning by contradiction is complete, and we have proven

A0 = ∅. (4.2)

When Ae = ∅ there is not any v ∈ R
n such that DGfe(x̂).v > 0, that implies that

DGfe(x̂) = 0. Then taking λe := 1 and λi := 0 when i ∈ {0, ...,m} \ {e}, we obtain
the conclusions (a), (b), (c). And so we have proven

Ae = ∅ =⇒ ((a), (b), (c) hold). (4.3)

Now we assume that Ae 6= ∅. Since we have A0 = ∅ after (4.2) and Ai ⊂ Ai+1 we
can define

k := min{i ∈ {1, ..., e} : Ai 6= ∅}. (4.4)

Note that Ak 6= ∅ and that Ak−1 = ∅. We consider the following problem

(Q)







Maximize DGfk−1(x̂).v
when v ∈ R

n

and when ∀i ∈ {k, ..., e}, DGfi(x̂).v ≥ 0.
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We want to prove that 0 is a solution of (Q). To do that, we proceed by contradic-
tion; we assume that there exists y ∈ R

n such that (∀i ∈ {k, ..., e}, DGfi(x̂).y ≥ 0)
and DGfk−1(x̂).y > 0 = DGfk−1(x̂).0. Since Ak 6= ∅, there exists z ∈ R

n such
that DGfi(x̂).z > 0 when i ∈ {k, ..., e}. We cannot have DGfk−1(x̂).z > 0 since
Ak−1 = ∅. Therefore we have DGfk−1(x̂).z ≤ 0. If DGfk−1(x̂).z < 0 we choose ǫ

such that 0 < ǫ <
DGfk−1(x̂).y
DGfk−1(x̂).z

. Then we have DGfk−1(x̂).y+ ǫDGfk−1(x̂).z > 0. If

DGfk−1(x̂).z = 0 we arbitrarily choose ǫ ∈ (0,+∞) and we have alsoDGfk−1(x̂).y+
ǫDGfk−1(x̂).z > 0. We set uǫ := y + ǫz, and we note that DGfk−1(x̂).uǫ =
DGfk−1(x̂).y + ǫDGfk−1(x̂).z > 0. Furthermore, when i ∈ {k, ..., e}, we have
DGfi(x̂).uǫ = DGfi(x̂).y + ǫDGfi(x̂).z > 0 since the three terms are positive.
Therefore we have uǫ ∈ Ak−1 that is impossible since Ak−1 = ∅. And so the
reasoning by contradiction is complete, and we have proven

Ae 6= ∅ =⇒ (0 solves (Q)). (4.5)

Since 0 solves (Q), we have, for all v ∈ R
n,

(∀i ∈ {k, ..., e}, DGfi(x̂).v ≥ 0) =⇒ (DGfk−1(x̂).v ≥ 0).

Then we use Theorem 2.1 that ensures the existence of αk,..., αe ∈ R+ such that
DGfk−1(x̂) +

∑

k≤i≤e α
iDGfi(x̂) = 0. We set

λi :=















0 if i ∈ {0, ..., k − 2}
1 if i = k − 1
αi if i ∈ {k, ..., e}
0 if i ∈ {e+ 1, ...,m},

and we obtain

Ae 6= ∅ =⇒ ((a), (b), (c) hold). (4.6)

Then, with (4.3) and (4.6) the conclusions (a), (b), (c) are proven.

4.2. Proof of (d). The assumption (iii) means that A1 6= ∅, and by (4.2) we know
that A0 = ∅. Proceeding like in the proof of (4.5) we prove that 0 is a solution of
the following problem







Maximize DGf0(x̂).v
when v ∈ R

n

and when ∀i ∈ {1, ..., e}, DGfi(x̂).v ≥ 0.

Then using Theorem 2.1, there exist α1,..., α ∈ R+ such that

DGf0(x̂) +
∑

1≤i≤e

αiDGfi(x̂) = 0.

We conclude by setting

λi :=







1 if i = 0
αi if i ∈ {1, ..., e}
0 if i ∈ {e+ 1, ...,m}.

And so the proof of Theorem 3.1 is complete.

Remark 4.1. The use of the sets Ak comes from the book of Alexeev-Tihomirov-
Fomin [1], end the proof of formula (4.6) is similar to their proof (p. 247-248).
The use of the set A0 is yet done in [8].
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5. Proof of Theorem 3.2

We split this proof in seven steps.

5.1. First step : a first simple case. If Dh1(x̂), ..., Dhq(x̂) are linearly de-
pendent, there exist µ1,..., µq ∈ R such that (µ1, ..., µq) 6= (0, ..., 0) and such that
∑

1≤j≤q µ
jDhj(x̂) = 0. Then it suffices to take λi = 0 for all i ∈ {0, ..., p} to obtain

the conclusions (a), (b), (c).

Now in the sequel of the proof we assume that the assumption (v) is
fulfilled.

5.2. Second step : To delete the non satured inequality constraints. Doing
a change of index, we can assume that {1, ..., e} := {i ∈ {1, ..., p} : gi(x̂) = 0}. Using
the lower semicontinuity at x̂ of the gi when i ∈ {e+1, ..., p}, we can say that there
exists an open neighborhood Ω1 of x̂ in Ω such that gi(x) > 0 when x ∈ Ω1 and
when i ∈ {e+ 1, ..., p}. And so x̂ is a solution of the following problem

(M1)















Maximize φ(x)
when x ∈ Ω1

when ∀i ∈ {1, ..., e}, gi(x) ≥ 0
and when ∀j ∈ {1, ..., q}, hj(x) = 0.

5.3. To delete the equality constraints. We consider the mapping h : Ω1 →
R

q defined by h(x) := (h1(x), ..., hq(x)). Under (iv) and (v), h continuous on a
neighborhood of x̂, and it is Fréchet-differentiable at x̂ with Dh(x̂) onto.

We set E1 := KerDh(x̂) and we take a vector subspace of Rn such that E1⊕E2 =
R

n. And we can do the assimilitation R
n = E1×E2. We set (x̂1, x̂2) := x̂ ∈ E1×E2.

Then the partial differential D2h(x̂) is an isomorphism from E2 onto R
q. Now we

can use Theorem 2.2 and assert that there exist a neighborhood U1 of x̂1 in E1, a
neighborhood U2 of x̂2 in E2, and a mapping ψ : U1 → U2 such that ψ(x̂1) = x̂2,
h(x1, ψ(x1)) = 0 for all x1 ∈ U1, and such that ψ is Fréchet-differentiable at x̂1
with Dψ(x̂1) = −D2h(x̂)

−1 ◦D1h(x̂) = 0 since D1h(x̂) = Dh(x̂)|E1
= 0.

We define f0 : U1 → R by setting f0(x1) := φ(x1, ψ(x1)), and fi : U1 → R by
setting fi(x1) := gi(x1, ψ(x1)) for all i ∈ {1, ..., e}. Since x̂ is a solution of (M1),
x̂1 is a solution of the following problem without equality constraints

(R)







Maximize f0(x1)
when x1 ∈ U1

and when ∀i ∈ {1, ..., e}; fi(x1) ≥ 0.

5.4. Fourth step : To use Theorem 3.1. Since ψ is Fréchet-differentiable at x̂1,
the mapping [x1 7→ (x1, ψ(x1))] is Fréchet-differentiable at x̂1, and using (i) and (ii),
we obtain that fi is Fréchet-differentiable (and therefore Gâteaux-differentiable) at
x̂1, for all i ∈ {0, ..., e}. Note that fi(x̂1) = 0 for all i ∈ {1, ..., e}. Consequently
we can use Theorem 3.1 on (R) that permits us to ensure the existence of λ0,λ1,...,
λe ∈ R+ such that

(λ0, λ1, ..., λe) 6= (0, 0, ..., 0) (5.1)

∀i ∈ {1, ..., e}, λifi(x̂1) = 0 (5.2)
∑

0≤i≤e

λiDGfi(x̂1) = 0. (5.3)
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5.5. The proof of (a), (b), (c). Since DGf0(x̂1) = Df0(x̂1) = D1φ(x̂)+D2φ(x̂)◦
Dψ((x̂1) = D1φ(x̂) since Dψ(x̂1) = 0,DGfi(x̂1) = Dfi(x̂1) = D1gi(x̂) +D2gi(x̂) ◦
Dψ(x̂1) = D1gi(x̂), for all i ∈ {1, ..., e}, the formula (5.3) implies

λ0D1φ(x̂) +
∑

1≤i≤e

λiD1gi(x̂) = 0. (5.4)

We set

M := −(λ0D2φ(x̂) +
∑

1≤i≤e

λiD2gi(x̂)) ◦D2h(x̂)
−1) ∈ R

q∗. (5.5)

Then we have

λ0D2φ(x̂) +
∑

1≤i≤e

λiD2gi(x̂) +M ◦D2h(x̂) = 0.

Denoting by µ1,..., µq ∈ R the coordinates of M in the canonical basis of Rq∗, we
obtain

λ0D2φ(x̂) +
∑

1≤i≤e

λiD2gi(x̂) +
∑

1≤j≤q

µjD2hj(x̂) = 0. (5.6)

Since E1 = KerDh(x̂) =
⋂

1≤j≤q KerDhj(x̂), we have D1hj(x̂) = Dh(x̂)|E1
= 0 for

all j, from (5.4) we obtain

λ0D1φ(x̂) +
∑

1≤i≤e

λiD1gi(x̂) +
∑

1≤j≤q

µjD1hj(x̂) = 0. (5.7)

From (5.6) and (5.7) we obtain

λ0Dφ(x̂) +
∑

1≤i≤e

λiDgi(x̂) +
∑

1≤j≤q

µjDhj(x̂) = 0. (5.8)

We set λi := 0 when i ∈ {e+1, ..., p}, and so (5.8) implies (c). With (5.1) we obtain
(a), and with (5.2) we obtain (b). And so the proof of (a), (b), (c) is complete.

5.6. The proof of (d). The relation (5.3) provides the conclusion (d).

5.7. The proof of (e). When i ∈ {1, ..., e}, we have yet seen that Dfi(x̂1) =
D1gi(x̂ = Dgi(x̂)|E1

. And so the translation of the assumption (vi) gives

∃w ∈ E1 s.t. ∀i ∈ {1, ..., e}, Dfi(x̂1).w > 0.

That permits us to use the last assertion of Theorem 3.1 on (R) to ensure that we
can choose λ0 = 1.
Then the proof of Theorem 3.2 is complete.

Remark 5.1. We see in this proof that the assumption of Fréchet-diffferentiability
of the hj is used to can apply the Implicit Function of Halkin. The assumption
of Fréchet-diffferentiability of φ and of the gi for which the associated constraint
is satured is used to obtain the differentiability when we compose them with hj (to
obtain the differentiability of the fi). The Hadamard-differentiability is sufficient
to do that, but in finite-dimensional spaces, the Hadamard-differentiability and the
Fréchet-differentiability coincide ([7], p. 266).
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