
HAL Id: hal-01061202
https://hal.science/hal-01061202v1

Preprint submitted on 5 Sep 2014 (v1), last revised 19 Jan 2015 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Typing weak MSOL properties
Sylvain Salvati, Igor Walukiewicz

To cite this version:

Sylvain Salvati, Igor Walukiewicz. Typing weak MSOL properties. 2014. �hal-01061202v1�

https://hal.science/hal-01061202v1
https://hal.archives-ouvertes.fr

Typing weak MSOL properties

Abstract
We consider non-interpreted functional programs: the result of the
execution of a program is its normal form, that can be seen as
the tree of calls to built-in operations. Weak monadic second-
order logic (wMSO) is well suited to express properties of such
trees. This is an extension of first order logic with quantification
over finite sets. Many behavioral properties of programs can be
expressed in wMSO. We use the simply typed lambda calculus with
the fixpoint operator, λY -calculus, as an abstraction of functional
programs that faithfully represents the higher-order control flow.

We give a type system for ensuring that the result of the execu-
tion of a λY -program satisfies a given wMSO property. The type
system is an extension of a standard intersection type system with
both: the least-fixpoint rule, and a restricted version of the greatest-
fixpoint rule. In order to prove soundness and completeness of the
system we construct a denotational semantics of λY -calculus that
is capable of computing properties expressed in wMSO. The model
presents many symmetries reflecting dualities in the logic and has
also other applications on its own. The type system is obtained from
the model following the domain in logical form approach.

Categories and Subject Descriptors D [2]: 4; F [3]: 1; F [4]: 2

1. Introduction
We are interested in dynamics of program behaviors rather than
in the final result. The analysis presented here aims particularly at
programs that interact with their environment without ever termi-
nating. The objective is to ensure, or verify, properties of the behav-
ior of a program without actually running it. We present a kind of
type and effect discipline [26] where a well typed program will sat-
isfy behavioral properties expressed in weak monadic second-order
logic (wMSO).

We consider the class of programs written in the simply-typed
calculus with recursion and finite base types: λY -calculus. This
calculus offers an abstraction of higher-order programs that faith-
fully represents higher-order control. The dynamics of an interac-
tion of a program with its environment is represented by the Böhm
tree of a λY -term that is a tree reflecting the control flow of the
program. For example, the Böhm tree of the term Y x.ax is the
infinite sequence of a’s, representing that the program does an in-
finite sequence of a actions without ever terminating. Another ex-
ample is presented in Figure 1. A functional program for the fac-
torial function is written as a λY -term Fct and the value of Fct

[Copyright notice will appear here once ’preprint’ option is removed.]

applied to a constant c is calculated. Observe that all constants
in Fct are non-interpreted. The Böhm tree semantics means call-
by-name evaluation strategy. Nevertheless, call-by-value evaluation
can be encoded, so can be finite data domains, and conditionals
over them [13, 20]. The approach is then to translate a functional
program to a λY -term and to examine the Böhm tree it generates.

Factorial(x) ≡ if x = 0 then 1 else x · Factorial(x− 1)

Fct ≡ Y F. λx. if (z x) 1 (m x (Fct(− x 1))))

BT (Fct c) is if
z

c

1 m

c if
z

−
c 1

1 m

...

Figure 1. Böhm tree of the factorial function

Since the dynamics of the program is represented by a poten-
tially infinite tree, monadic second-order logic (MSOL) is a natural
candidate for the language to formulate properties in. This logic
is an extension of first-order logic with quantification over sets.
MSOL captures precisely regular properties of trees [29], and it is
decidable if the Böhm tree generated by a given λY -term satisfies a
given property [27]. In this paper we will restrict to weak monadic
second-order logic (wMSO). The difference is that in wMSO quan-
tification is restricted to range over finite sets. While wMSO is a
proper fragment of MSO, it is sufficiently strong to express safety,
reachability, and many liveness properties. Over sequences, that is
degenerated trees where every node has one successor, wMSO is
equivalent to full MSO.

The basic judgments we are interested in are of the form
BT (M) � α meaning that the result of the evaluation of M ,
i.e. the Böhm tree of M , has the property α formulated in wMSO.
Going back to the example of the factorial function from Figure 1,
we can consider formula α ≡ ∀X.finite(X) saying that the whole
tree is finite. Of course this formula is not true in BT (Fct c). Ob-
serve that in α we have used quantification ∀X over sets of nodes
in the tree, and a predicate finite over sets of nodes. This predicate
is definable in the logic. A more complicated property would be
“all computations that eventually take the “if” branch of the condi-
tional are finite”. This property holds in BT (Fct c). The formula
describing the property is presented in Figure 2. It says that for all
nodes x that are labeled by m, the set of nodes that is not below
x is finite. The nodes not below x are those that contribute to the
computation that takes “if” branch just before x. Observe by the
way that BT (Fct c) is not regular – it has infinitely many non-
isomorphic subtrees as the number of subtractions is growing. In
general the interest of judgments of the form BT (M) � α is to

Typing weak MSOL properties 1 2014/9/5

be able to express liveness and fairness properties of executions,
like: “every open action is eventually followed by a close action”,
or that “there are infinitely many read actions”. Various other ver-
ification problems for functional programs can be reduced to this
problem [12, 20, 22, 28, 37].

Figure 2. A wMSO property of a Böhm tree. A possible valuation
of quantified variables x and Z is highlighted.

Technically, the judgment BT (M) � α is equivalent to deter-
mining whether a Böhm tree of a given λY -term is accepted by
a given weak alternating automaton. This problem is known to be
decidable thanks to the result of Ong [27], but here we present a
denotational approach. Our two main contributions are:

• A construction of a finitary model for a given weak alternating
automaton. The value of a term in this model determines if
the Böhm tree of the term is accepted by the automaton. So
verification is reduced to evaluation.

• Two typing systems. A typing system deriving statements of
the form “the value of a term M is bigger than an element d of
the model”; and a typing system for dual properties. These typ-
ing systems use standard fixpoint rules and follow the method-
ology coined as Domains in Logical Form [1]. Thanks to the
first item, these typing systems can directly talk about accep-
tance/rejection of the Böhm tree of a term by an automaton.
These type systems are decidable, and every term has a “best”
type that is simply its value in the model.

Having a model and a typing system has several advantages over
having just a decision procedure. First, it makes verification com-
positional: the result for a term is calculated from the results for
its subterms. In particular, it opens possibilities for a modular ap-
proach to the verification of large programs. Next, it allows seman-
tic based program transformations as for example reflection of a
given property in a given term [8, 13, 32]. It also implies the trans-
fer theorem for wMSO [33] with a number of consequences offered
by this theorem. Finally, models open a way to novel verification
algorithms be it through evaluation, type system, or through hybrid
algorithms using typing and evaluation at the same time [36].

Historically, Muller and Schupp [24] have proved that the MSO
theory of trees generated by pushdown automata is decidable.
Knapik, Niwinski, and Urzyczyn [18] have established the rela-
tion between higher-order pushdown automata and λY -calculus
by showing that Böhm trees of safe λY -terms are precisely trees

generated by such automata. They have also established the decid-
ability of the MSO theory of such trees. Ong [27] has shown the
decidability of the MSO theory of Böhm trees for all λY -terms.
This last result has been revisited in several different ways. Some
approaches take a term of the base type, and unroll it to some infi-
nite object: tree with pointers [27], computation of a higher-order
pushdown automaton with collapse [14], a collection of typing
judgments that are used to define a game [21], a computation of a
Krivine machine [31]. Very recently Tsukada and Ong [38] have
presented a compositional approach: a typing system is used to re-
duce the verification problem to a series of game solving problems.
Another recent advance is given by Hofmann and Chen who pro-
vide a type system for verifying path properties of trees generated
by first-order λY -terms [11]. In other words, this last result gives
a typing system for verifying path properties of trees generated
by deterministic pushdown automata. Compared to this last work,
we consider the whole λY -calculus and an incomparable set of
properties.

Already some time ago, Aeligh [2] has discovered an easy way
to prove Ong’s theorem restricted to properties expressed by tree
automata with trivial acceptance conditions (TAC automata). The
core of his approach can be formulated by saying that the verifi-
cation problem for such properties can be reduced to evaluation in
a specially constructed and simple model. Building on this result
Kobayashi proposed a type system for such properties and con-
structed a tool based on it [20]. This in turn opened a way to an
active ongoing research resulting in the steady improvement of the
capacities of the verification tools [9, 10, 19, 30]. TAC automata
can express only safety properties. Our model and typing systems
set the stage for practical verification of wMSO properties.

The model approach to verification of λY -calculus is quite re-
cent. In [32] it is shown that simple models with greatest fixpoints
capture exactly properties expressed with TAC automata. An exten-
sion is then proposed to allow to detect divergence. The simplicity
offered by models is exemplified by Haddad’s recent work [13] giv-
ing simple semantic based transformations of λY -terms.

We would also like to mention two other quite different ap-
proaches to integrate properties of infinite behaviors into typ-
ing. Naik and Palsberg [25] make a connection between model-
checking and typing. They consider only safety properties, and
since their setting is much more general than ours, their type sys-
tem is more complex too. Jeffrey [16, 17] have shown how to in-
corporate Linear Temporal Logic into to types using a much richer
dependent types paradigm. The calculus is intended to talk about
control and data in functional reactive programming framework,
and aims at using SMT solvers.

In the next section we introduce the main objects of our study:
λY -calculus, weak alternating automata, and models. The central
definition of a model recognizing a set of terms is also formulated
in this section. Section 3 presents the two type systems and states
their soundness and completeness properties. The soundness and
completeness can be straightforwardly formulated only for closed
terms of atomic type. For the proof though we need a statement
about all terms. This is where the model based approach helps.
Section 4 presents a model construction and proves some of its
basic properties. We then show in Section 5 that our models indeed
capture weak alternating automata (Theorem 17). In Section 6 we
come back to our type systems. The model construction allows us
to formulate a more general soundness and completeness property:
we show that types can denote every element of the model, and that
the type systems can derive precisely the judgments that hold in the
model (Theorem 25). In the conclusion section we mention other
applications of our model. Most of the proofs are included.

Typing weak MSOL properties 2 2014/9/5

2. Preliminaries
We quickly fix notations related to the simply typed λY -calculus
and to Böhm trees. We then recall the definition of weak alternating
automata on ranked trees. These will be used to specify properties
of Böhm trees. Finally, we introduce the notion of the greatest
fixpoint models for the λY -calculus. This notion allows us to adapt
the definition of recognizability from language theory, so models
can be used to define sets of terms. These sets of terms are closed
under reductions of the λY -calculus, moreover the meaning of
a term and its Böhm tree are the same in a model. We recall
the characterization, in terms of automata, of the sets of terms
recognizable by the greatest fixpoint models.

λY -calculus
The set of types T is constructed from a unique basic type o
using a binary operation → that associates to the right. Thus o
is a type and if A, B are types, so is (A → B). The order of
a type is defined by: order(o) = 0, and order(A → B) =
max(1+order(A), order(B)). We work with tree signatures that
are finite sets of typed constants of order at most 1. Types of order 1
are of the form o→ · · · → o→ o that we abbreviate oi → o when
they contain i + 1 occurrences of o. For convenience we assume
that o0 → o is just o. If Σ is a signature, we write Σi for the set of
constants of type oi → o. In examples we will often use constants
of type o→ o as this makes the examples more succinct. In proofs
we will sometimes restrict to type o2 → o that is representative for
the general case.

The set of simply typed λY -terms is built from the constants
in the signature, and constants Y A, ΩA for every type A. These
stand for the fixpoint combinator and undefined term, respectively.
Apart from constants, for each type A there is a countable set of
variables xA, yA, Terms are built from these constants and
variables using typed application and λ-abstraction. We shall write
sequences of λ-abstractions λx1. . . . λxn. M with only one λ:
either λx1 . . . xn. M , or even shorter λ~x. M . We will often write
Y x.M instead of Y (λx.M). Every λY -term can be written in this
notation since Y N has the same Böhm tree as Y (λx.Nx), and
the later term is Y x.(Nx). We take for granted the operational
semantics of the calculus given by β and δ reductions.

Definition 1 A Böhm tree of a term M is obtained in the following
way.

• If M →∗βδ λ~x.N0N1 . . . Nk with N0 a variable or a constant
then BT (M) is a tree having its root labeled by λ~x.N0 and
having BT (N1), . . . , BT (Nk) as subtrees.

• Otherwise BT (M) = ΩA, where A is the type of M .

Böhm trees are infinite normal forms of λY -terms. It is immediate
from the definition that a Böhm tree of a closed term of type o over
a tree signature is a potentially infinite ranked tree: a node labeled
by a constant a of type oi → o has i successors.

Example : As a simple example, let us take M = λx.ax. We
have a reduction sequence

YM →δ (λx.ax)(YM)→β a(YM)

→βδ a(a(YM))→ . . .

So BT (YM) is the infinite sequence aa . . .
For a more complicated example take (Y F. N)a where N =

λg.g(b(F (λx.g(g x)))). Both a and b have the type o → o; while
F has type (o→ o)→ o, and so doesN . Observe that we are using
a more convenient notation Y F here. The Böhm tree of (Y F.N)a
is

BT ((Y F.N)a) = aba2ba4b . . . a2n

b . . .

after every consecutive occurrence of b the number of occurrences
of a doubles because of the double application of g inside N .

wMSO and weak alternating automata
We will be interested in properties of trees expressed in weak
monadic second-order logic. This is an extension of first-order logic
with quantification over finite sets of elements. The interplay of
negation and quantification allows the logic to express many infini-
tary properties. The logic is closed for example under constructs:
“for infinitely many vertices a given property holds”, “every path
consisting of vertices having a given property is finite”. From the
automata point of view, the expressive power of the logic is cap-
tured by weak alternating automata.

A weak alternating automaton accepts trees over a fixed tree
signature Σ.

Definition 2 A weak alternating tree automaton over the signature
Σ is:

A = 〈Q,Σ, q0 ∈ Q, {δi}i∈N, ρ : Q→ N〉
where Q is a finite set of states, q0 ∈ Q is the initial state, ρ is the
rank function, and δi : Q × Σi → P(P(Q)i) is the transition
function. For q in Q, we call ρ(q) its rank. The automaton is
weak in the sense that when (S1, . . . , Si) is in δi(q, a), then the
rank of every q′ in

⋃
1≤j≤i Sj is not bigger than the rank of q,

ρ(q′) ≤ ρ(q).

Observe that since Σ is finite, only finitely many δi are nontrivial.
From the definition it follows that δ2 : Q × Σ2 → P(P(Q) ×
P(Q)) and δ0 : Q × Σ0 → {0, 1}. We will simply write δ
without a subscript when this causes no ambiguity. The weakness
requirement means that in the run the ranks cannot increase.

Automata will work on Σ-labeled binary trees that are partial
functions t : N∗ ·→ Σ ∪ {Ω} such that the number successors
of a node is determined by the label of the node. In particular, if
t(u) ∈ Σ0 ∪ {Ω} then u is a leaf.

The acceptance of a tree is defined in terms of games between
two players that we call Eve and Adam. A play between Eve and
Adam from some node v of a tree t and some state q ∈ Q proceeds
as follows. If v is a leaf and is labeled by some c ∈ Σo then Eve
wins iff δo(q, c) holds. If the node is labeled by Ω then Eve wins
iff the rank of q is even. Otherwise, v is an internal node; Eve
chooses a tuple of sets of states (S1, . . . , Si) ∈ δ(q, t(v)). Then
Adam chooses Sj (for j = 1, . . . , i) and a state q′ ∈ Sj . The play
continues from the j-th son of v and state q′. If the play is infinite
then the winner is decided by looking at ranks of states appearing
on the play. Due to the weakness of A the rank of states in a play
can never increase, so it eventually stabilizes at some value. Eve
wins if this value is even. A tree t is accepted by A from a state
q ∈ Q if Eve has a winning strategy in the game started from the
root of t and from q.

Observe that without a loss of generality we can assume that
δ is monotone, i.e. if (S1, . . . , Si) ∈ δ(q, a) then for every
(S′1, . . . , S

′
i) such that Sj ⊆ S′j ⊆ {q′ : ρ(q′) ≤ ρ(q)} we have

(S′1, . . . , S
′
i) ∈ δ(q, a). Indeed, adding the transitions needed to

satisfy the monotonicity condition does not give Eve more winning
possibilities.

An automaton defines a language of closed terms of type o
whose Böhm trees it accepts from its initial state q0:

L(A) = {M : M is closed term of type o, and

BT (M) is accepted by A from q0}
Observe thatL(A) is closed under βδ-conversion since the Church-
Roser property of the calculus implies that two βδ-convertible
terms have the same Böhm tree.

Typing weak MSOL properties 3 2014/9/5

Example Consider a weak alternating automaton A defining the
property “action b appears infinitely often”. The automaton has
states Q = {q1, q2}, and the signature Σ = {a, b} consisting of
two constants of type o → o. Over this signature, the Böhm trees
are just sequences. The transitions of A are:

δ(q1, a) = {q1} δ(q2, a) = {q1, q2}
δ(q1, b) = ∅ δ(q2, b) = q2

The ranks of states are indicated by their subscripts. When started
in q2 the automaton spawns a run from q1 each time it sees letter
a. The spawned runs must stop in order to accept, and they stop
when they see letter b (cf. Figure 3). So every a must be eventually
followed by b.

Figure 3. A run of an alternating automaton on a . . . ab . . .

Models
We use standard notions and notations for models for λY -calculus,
in particular for valuation/variable assignment and of interpreta-
tion of a term (see [15]). We shall write [[M]]Sν for the interpreta-
tion of a term M in a model S with the valuation ν. As usual, we
will omit subscripts or superscripts in the notation of the semantic
function if they are clear from the context.

The simplest models of λY -calculus are based on mono-
tone functions. A GFP-model of a signature Σ is a tuple S =
〈{SA}A∈T , ρ〉 where So is a finite lattice, called the base set of
the model, and for every type A → B ∈ T , SA→B is the lattice
mon[SA 7→ SB] of monotone functions from SA to SB ordered
coordinate-wise. The valuation function ρ is required to interpret
ΩA as the greatest element of SA, and Y A as the greatest fixpoint
of functions in SA→A. Observe that every SA is finite, hence all
the greatest fixpoints exist without any additional assumptions on
the lattice.

We can now adapt the definition of recognizability by semigorups
taken from language theory to our richer models.

Definition 3 A GFP model S over the base set So recognizes a
language L of closed λY -terms of type o if there is a subset
F ⊆ So such that L = {M | [[M]]S ∈ F}.

An direct consequence of Statman’s finite completeness theo-
rem [35] is that such models can characterize a term up to equality:
BT (M) = BT (N) iff the values of M and N are the same in
every monotone models. This property is sufficient for our pur-
poses. The celebrated result of Loader [23] implies that we cannot
hope for a much stronger completeness property, and have good
algorithmic qualities at the same time.

The following theorem characterizes the recognizing power of
GFP models.

Theorem 4 ([32]) A language L of λY -terms is recognized by a
GFP-model iff it is a boolean combination of languages recognized
by weak automata whose all states have rank 0.

3. Type systems for wMSOL
In this section we describe the main result of the paper. We present
two type systems to reason about wMSO properties of Böhm trees
of terms. We will rely on the equivalence of wMSO and weak
alternating automata, and construct a type system for an automaton.
For a fixed weak alternating automaton A we want to characterize
the terms whose Böhm trees are accepted by A, i.e. the set L(A).
The characterization will be purely type theoretic (cf. Theorem 5).

Fix an automaton A = 〈Q,Σ, q0, {δi}i∈N, ρ〉. Let m be the
maximal rank, i.e., the maximal value ρ takes on Q. For every
0 ≤ k ≤ m we write

Qk = {q ∈ Q : ρ(q) = k} and Q≤k = {q ∈ Q : ρ(q) ≤ k} .
The type system we propose is obtained by allowing to use

intersections inside simple types. This idea has been used by
Kobayashi [20] to give a typing characterization for languages of
automata with trivial acceptance conditions. We work with, more
general, weak acceptance conditions, and this will be reflected in
stratification of types, and two fixpoint rules: greatest fixpoint rule
for even strata, and the least fixpoint rule for odd strata.

First, we define the sets of intersection types. They are indexed
by a rank of the automaton and by a simple type. In particular, every
intersection type will have a corresponding simple type. This is
a crucial difference with intersection types characterizing strongly
normalizing terms [4].

typesko = {q ∈ Q : ρ(q) = k} ,
typeskA→B = {T → s : T ⊆ TypeskA and s ∈ typeskB} ,

TypeskA =
⋃

0≤l≤k

typeslA .

The difference with simple types is that now we have a set con-
structor that will be interpreted as the intersection of its elements.

Example Suppose that in Q we have states q0, r0, q1 with ranks
given by their subscripts. A type {q0, r0} ⊆ Types0

o will type
terms whose Böhm tree is accepted both from q0 and from r0.
A type {{q0, r0} → {q1}} ⊆ types1

o→o will type terms that
when given a term of type {q0, r0} produce a Böhm tree accepted
from q1. Observe that, for example, {{q0, r0} → {q1}, {q1} →
{q1}} ⊆ Types1

o→o while {{q1}, {q1} → {q1}} is not an inter-
section type in our sense since the two types in the set have different
underlying simple types.

When we write typesA or TypesA we mean typesmA and
TypesmA respectively; where m is the maximal rank used by the
automaton A.

For S ⊆ TypeskA and T ⊆ typeskB we write S → T for
{S → t : t ∈ T}. Notice that S → T is included in typeskA→B .
Given S ⊆ TypesA→B and T ⊆ TypesA we write S(T) for the
set {t : (U → t) ∈ S ∧ U v T}.

We now give subsumption rules that express the intuitive de-
pendence between types. So as to make the connection with the
model construction later, we have adopted an ordering of intersec-
tion types that is dual to the usual one.

S ⊆ T ⊆ Q

S v0 T

∀s ∈ S,∃t ∈ T, s vA t

S vA T
s = t

s v0 t

T vA S s vB t

S → s vA→B T → t

The typing system presented in Figure 4 derives judgments of
the form Γ `M ≥ S where Γ is an environment containing all free
variables of the term M , and S ⊆ TypesA with A the type of M .

Typing weak MSOL properties 4 2014/9/5

As usual, an environment Γ is a finite list x1 ≥ S1, . . . , xn ≥ Sn
where x1 . . . , xn are pairwise distinct variables of type Ai, and
Si ⊆ TypesAi

. We will use a functional notation and write Γ(xi)
for Si. We shall also write Γ, x ≥ S with its usual meaning.

The rules in the first row of Figure 4 express standard in inter-
section types dependencies between typing and the subsumption on
types. The rules in the second line are specific to our fixed automa-
ton: they express the meaning of constraints. For clarity we have
separated the case of constants of type o. The third line contains the
usual rules for application and abstraction. The least fixpoint rule
in the next line is standard. Observe that we use Y x notation as ex-
plained on page 3. The greatest fixpoint rule in the last line is more
intricate. It is allowed only on even strata. If taken for k = 0 the
rule becomes the standard rule for the greatest fixpoint. For k > 0
the rule permits to incorporate T that is the result of the fixpoint
computation on the lower level. Intuitively, since we consider judg-
ments of the form Γ `M ≥ q, the least fixpoint rule can be safely
applied in any context, while the greatest fixpoint rule needs to be
restricted as otherwise we would be back in the case of automata
with trivial acceptance conditions from Theorem 4.

The main result of the paper says that the typing in this system is
equivalent to accepting with our fixed weak alternating automaton.

Theorem 5 For every closed term M of type o and every state q of
A: judgment `M ≥ q is derivable iff A accepts BT (M) from q.

Observe that typing is decidable. For a fixed automaton, there
are finitely many different types, and moreover the size of the
derivation tree is bounded by the size of the term being typed. From
an interpretation of judgments in a model it will immediately follow
that every term has a “best type”, that is the type denoting its value
in the model.

In order to prove Theorem 5 we will need to formulate and prove
an extension of it to terms of all types (Theorem 25). To describe
the properties of the type system in higher types, we will construct
a model from our fixed automaton A, and show (Theorem 17)
that the model recognizes L(A) in the sense of Definition 3. Then
Theorem 25 will say that the type system reflects the values of the
terms in the model.

Due to the symmetries in weak alternating automata, and in the
model we are going to construct, we will obtain also a dual type
system. This system can be used to show that the Böhm tree of a
term is not accepted by the automaton.

The dual type system is presented in Figure 7 on page 12. The
notation is as before but we now define S(T) to be {s : U → s ∈
S ∧U w T}. The rules for application, abstraction and variable do
not change and are not presented in Figure 7. By duality we obtain

Corollary 6 For every closed termM of type o and every state q of
A: judgment ` M � q is derivable iff A does not accept BT (M)
from q.

So the two type systems together allow us to derive both positive
and negative information about a program.

We finish this section with two moderate size examples of
typing derivations.

Example 1 Take a signature consisting of two constants c : o
and a : o → o. We consider an extremely simple weak alternating
automaton with just one state q of rank 1 and transitions:

δ(q, a) = {q} δ(q, c) = ∅ .

This automaton accepts the finite sequences of a’s ending in c.
Observe that these transition rules give us typing axioms

` a ≥ {q} → q ` c ≥ q
Notice that we omit some set parenthesis over singletons; so for
example we write c ≥ q instead of c ≥ {q}. In this example we
will still keep the parenthesis to the left of the arrow to underline
that we are in our type system, and not in simple types. In Example
2 we will omit them too.

First, let us look at a term G1 ≡ λfo→oλxo. f(fx). It has a
simple type τ1 ≡ (o→ o)→ o→ o. The judgment ` G1 ≥ γ1 is
derivable in our system; where γ1 ≡ {{q} → q} → {q} → q.

Γ ` f ≥ {q} → q

Γ ` f ≥ {q} → q Γ ` x ≥ q

Γ ` fx ≥ q

Γ ` f(fx) ≥ q

` λfλx. f(fx) ≥ γ1

here Γ ≡ f ≥ {q} → q, x ≥ q.
Consider now G2 ≡ λfτ1λxo→o. f(fx). We have that G2 is

of type τ2 ≡ τ1 → τ1. A derivation very similar to the above will
show ` G2 ≥ γ2 where γ2 ≡ {γ1} → γ1.

Then by induction we can define Gi ≡ λfτi−1λxτi−2 . f(fx)
that is of a type τi ≡ τi−1 → τi−1. Still a similar derivation as
above will show ` Gi ≥ γi where γi ≡ {γi−1} → γi−1.

One use of application rule then shows that GiGi−1 ≥ γi−1:

` Gi ≥ {γi−1} → γi−1 ` Gi−1 ≥ γi−1

` GiGi−1 ≥ γi−1

In consequence, we can construct by induction a derivation of

` GiGi−1 . . . G1ac ≥ q
This derivation proves that the Böhm tree of GiGi−1 . . . G1ac is a
sequence of a’s ending in c. While the length of this sequence is a
tower of exponentials in the height i, the typing derivation we have
constructed is linear in i (if types are represented succinctly). This
simple example, already analyzed in [20], shows the power of mod-
ular reasoning provided by the typing approach. We should note
though that if the initial automaton had two states, the number of
potential types would also be roughly the tower of exponentials in
i. Due to the complexity bounds [36], there are terms and automata
for which there is no small derivation. Yet one can hope that in
many cases a small derivation exists. For example, if we wanted to
show that the length of the sequence is even then automaton would
have two states but the derivation would be essentially the same.

Example 2 In the first example we have not used the fixpoint
rules. To see them at work consider once again the term (Y F.N)a
where N = λg.g(b(F (λx.g(g x)))). As we have seen in the ex-
ample on page 2, the Böhm tree of (Y F.N)a is the sequence
aba2ba4b . . . a2n

b We will construct a typing derivation show-
ing that there are infinitely many occurrences of b in the Böhm tree
of (Y F.N)a. To this end we take the automaton from the example
on page 4 expressing exactly this property. So our goal is to derive

` (Y F.N)a ≥ q2
First observe that from the definition of the transitions of the au-
tomaton we get axioms:

` a ≥ q1 → q1 ` a ≥ {q1, q2} → q2 ` b ≥ ∅ → q1 ` b ≥ q2 → q2

Looking at the typings of a, we can see that we will get our desired
judgment from the application rule if we prove

` Y F.N ≥ S where S is {q1 → q1, {q1, q2} → q2} → q2.

To this end, we apply weakening rule and the greatest fixpoint rule:

Typing weak MSOL properties 5 2014/9/5

Γ, x ≥ S ` x ≥ S
Γ `M ≥ S Γ `M ≥ T

Γ `M ≥ S ∪ T

Γ `M ≥ S T v S

Γ `M ≥ T

Γ ` c ≥ {q : δo(q, c) holds}
(S1, . . . , Si) ∈ δ(a, q)

Γ ` a ≥ {S1 → · · · → Si → q}

Γ `M ≥ S Γ ` N ≥ T

Γ `MN ≥ S(T)

S ⊆ Typesk, T ⊆ typesk Γ, x ≥ S `M ≥ T

Γ ` λx.M ≥ S → T

Γ ` (λx.M) ≥ S Γ ` (Y x.M) ≥ T
Y odd

Γ ` Y x.M ≥ S(T)

S ⊆ types2k
A , T ⊆ Types2k−1

A , Γ ` λx.M ≥ (S ∪ T)→ S Γ ` Y x.M ≥ T
Y even

Γ ` Y x.M ≥ S ∪ T

Figure 4. Type system

` λF.N ≥ (S ∪ T)→ S ` Y F.N ≥ T
Y even

` Y F.N ≥ S ∪ T

` Y F.N ≥ S
where T = {(q1 → q1)→ q1}

The derivation of the top right judgment uses the least fixpoint rule:

g ≥ q1 → q1 ` g ≥ q1 → q1 g ≥ q1 → q1 ` b(F (λx.g(g x))) ≥ q1

g ≥ q1 → q1 ` g(b(F (λx.g(g x)))) ≥ q1

` λFλg.g(b(F (λx.g(g x)))) ≥ ∅ → (q1 → q1)→ q1
Y odd

` FY.N ≥ (q1 → q1)→ q1

We have displayed only one of the two premises of the Y odd rule
since the other is of the form ≥ ∅ so it is vacuously true. The
top right judgment is derivable directly from the axiom on b. The
derivation of the remaining judgment ` λF.N ≥ (S ∪ T)→ S is
as follows.

Γ ` g ≥ {q1, q2} → q2

...

Γ ` b(F (λx.g(g x))) ≥ q1, q2

Γ ` g(b(F (λx.g(g x)))) ≥ q2

` λFλg.g(b(F (λx.g(g x)))) ≥ (S ∪ T)→ S

where Γ is F ≥ S ∪ T, g ≥ {q1 → q1, {q1, q2} → q2}. So the
upper left judgment is an axiom. The other judgment on the top is
an abbreviation of two judgments: one to show ≥ q1 and the other
one to show ≥ q2. These two judgments are proven directly using
application and intersection rules.

4. Models for weak automata
The first step towards proving soundness and completeness of the
typing systems is to capture weak alternating automata with models
similarly to Theorem 4. The model we construct will depend only
on the states of the automaton and the ranks of those states. The
transitions of the automaton will be encoded in the interpretation
of constants. In this section we will define a model for λY -terms
constructed from the states of an automaton. In the next section we
will show that such a model can indeed recognize the set of terms
accepted by the automaton.

Theorem 4 points out the challenge for such a construction.
The fixpoints in a model capturing wMSO must be something
different than the least or the greatest fixpoint. The structure of
a weak automaton will provide a solution here. The automaton
is stratified into states of different rank: the transitions for states
of rank i depend only on states of rank ≤ i. We will find this
stratification in our model too. At each stratum we will use the least
or the greatest fixpoint depending on the parity of the stratum. In
the whole model, the fixpoint computation will perform a sort of
zig-zag as represented in Figure 6.

We fix a finite set of statesQ and a ranking function ρ : Q→ N.
Let m be the maximal rank, i.e., the maximal value ρ takes on Q.
Recall that for every 0 ≤ k ≤ mwe letQk = {q ∈ Q : ρ(q) = k}
and Q≤k = {q ∈ Q : ρ(q) ≤ k}.

We define by induction on k ≤ m an applicative structure
Dk = (DkA)A∈types and a logical relation Lk (for 0 < k) between
Dk−1 and Dk.

For k = 0, the model D0 is just the model of monotone
functions over the powerset of Q0:

D0
0 = P(Q0) and D0

A→B = mon[D0
A 7→ D0

B],

For k > 0 we have:

Dk0 =P(Q≤k)

Lk0 ={(R,P) ∈ Dk−1
0 ×Dk0 : R = P ∩Q≤(k−1)},

LkA→B ={(f1, f2) ∈ Dk−1
A→B ×mon[DkA 7→ DkB] :

∀(g1, g2) ∈ LkA. (f1(g1), f2(g2)) ∈ LkB}
DkA→B ={f2 : ∃f1 ∈ Dk−1

A→B . (f1, f2) ∈ LkA→B)}

Observe that the structures Dk are defined by a double induc-
tion: the outermost on k and the auxiliary induction on the size
of the type. Since Lk is a logical relation between Dk−1 and Dk,
each Dk is an applicative structure. Each DkA is ordered. Indeed,
each Dk can be seen as a part of the model of monotone functions
over P(Q≤k). The order in the later is the inclusion in type 0, and
the coordinate-wise ordering for other types.

The next lemma is the main technical lemma summarizing the
essential properties of the model. These properties are expressed
in terms of the logical relation LkA ⊆ Dk−1

A × DkA. For notational
convenience we write LkA(d1) for the set of elements d2 in the re-
lation with d1: LkA(d1) = {d2 : LkA(d1, d2)}. Figure 5 represents
schematically some of the properties stated in the lemma.

Typing weak MSOL properties 6 2014/9/5

Figure 5. Relation between models Dk−1 and Dk. Every element
in Dk−1 is related to a sub-lattice of elements in Dk.

Lemma 7 For every 0 < k ≤ m, and every type A, we have:

0. LkA is a lattice: if (d1, d2), (e1, e2) are in LkA, then so are
(d1 ∨ e1, d2 ∨ e2) and (d1 ∧ e1, d2 ∧ e2).

1. Given (d1, d2) and (e1, e2) in Lk,A, if d2 ≤ e2 then d1 ≤ e1.
2. Given d2 in DkA, there is a unique d1 in Dk−1

A , so that (d1, d2)

in LkA. Let us denote this unique element d↓2.
3. If d1 ≤ e1 in Dk−1

A , then:
(a) there is e↑∨1 in LkA(e1) so that for every d2 in LkA(d1) we

have d2 ≤ e↑∨1 ,
(b) there is d↑∧1 in LkA(d1) so that for every e2 in LkA(e1) we

have d↑∧2 ≤ e2.

Proof
Item 0 can be proved by a straightforward induction on the size of
types.

The proof of items 1, 2, 3, is by simultaneous induction on the
size of A. Notice that item 2 is an immediate consequence of item
1. We shall therefore not prove it, but we feel free to use it as an
induction hypothesis.

We start with the case when A is the base type 0:
Ad 1. In that case DkA = Q≤k, e1 = e2 ∩ Q≤k−1 and d1 =
d2 ∩ Q≤k−1. Thus, we indeed have that d2 ≤ e2 implies that
d1 ≤ e1.
Ad 3. Here, we have Dk−1,A = Q≤k−1 and then letting e↑∨1 =

e1 ∪Qk and d↑∧2 = d2 is enough to conclude.
Let us now suppose that A = B → C:

Ad 1. Given f1 in Dk−1
B , by induction hypothesis, using item 3,

we know that there exist f2 in DkB so that (f1, f2) is in LkB . Thus,
we have (d1(f1), d2(f2)) and (e1(f1), e2(f2)) in Lk,C . With the
assumption that d2 ≤ e2, we obtain d2(f2) ≤ e2(f2). By induction
hypothesis we get e1(f1) ≤ d1(f1). As f1 is arbitrary, we can
conclude that e1 ≤ d1.
Ad 3. By induction hypothesis, using item 2, for f2 in DkB , there is
a unique element f↓2 of Dk−1

B so that (f↓2 , f2) is in LkB . Given h1

in Dk−1
A we define for every element f2 in DkB :

h↑∨1 (f2) = (h1(f↓2))↑∨ h↑∧1 (f2) = (h1(f↓2))↑∧ .

We will verify only item 3(a), the case of h↑∧1 being analogous.
We need to check that h↑∨1 is in DkA. First of all we need to

check that it is in mon[DkB 7→ DkC]. Take g2 and f2 in DkB so that
g2 ≤ f2. By induction hypothesis, using item 1, we have that g↓2 ≤
f↓2 . Then h1(g↓2) ≤ h1(f↓2) by monotonicity of h1. From item
3 of induction hypothesis we obtain (h1(g↓2))↑∨ ≤ (h1(f↓2))↑∨ ;
proving that h↑∨1 is monotone.

Next, we show that (h1, h
↑∨
1) is in LkA. If we take (f↓2 , f2)

in Lk,B , we obtain by the induction hypothesis, item 3, that

(h1(f↓2), (h1(f↓2))↑∨) is in LkC . But, by our definition, this im-
plies that (h1(f↓2), h↑∨1 (f2)) is in LkC . As f2 is arbitrary we obtain
that (h1, h

↑∨
1) is indeed in LkA proving then that h↑∨1 is in DkA.

It remains to prove that, given d1 ≤ e1 in DkA, for all d2

in LkA(d1) we have d2 ≤ e↑∨1 . Given (f↓2 , f2) in LkB , we have
(d1(f↓2), d2(f2)) in LkC . Using induction hypothesis, item 3, we
get d2(f2) ≤ (d1(f↓2))↑∨ . Since d1 ≤ e1 we obtain d2(f2) ≤
(e1(f↓2))↑∨ that is the desired d2(f2) ≤ e↑∨1 (f2). As f2 is arbi-
trary, this shows that d2 ≤ e↑∨1 . �

Some consequence of this lemma are spelled out in the follow-
ing corollaries.

Corollary 8 For each k ≤ m, and each typeA,DkA is a non-empty
lattice.

The mappings (·)↓ and (·)↑∨ form a Galois connection between
DkA and Dk−1

A . For every d2 ∈ DkA and e1 ∈ Dk−1
A we have:

d↓2 ≤ e1 iff d2 ≤ e↑∨1 .
Similarly (·)↓ and (·)↑∧ form a Galois connection between

Dk−1
A and DkA. For every d1 ∈ Dk−1

A and e2 ∈ DkA we have:
d↑∧1 ≤ e2 iff d1 ≤ e↓2.

From now on, ⊥kA and >kA will denote the least and the greatest
element of DkA.

Corollary 9 Given d2 inDkB→C and e2 inDkB , we have (d2(e2))↓ =
d↓2(e↓2). Given d1 in Dk−1

B→C and e2 in DkB , we have: d↑∧1 (e2) =

(d1(e↓2))↑∧ and d↑∨1 (e2) = (d1(e↓2))↑∨ .

Finally, we show one more decomposition property of our mod-
els that will allow to show a correspondence between types and
elements of the model (Lemma 24).

Definition 10 We define an operation d on the elements d of DkA
by induction on A:

• if A = 0, then d = d ∩Qk,
• if A = B → C, then for e in Dk,B , d(e) = d(e).

Lemma 11 For every 0 < k ≤ m, and every d in DkA; let
d be as defined above, and let d̃ = (>k−1

A)↑∧ ∨ d. We have
d = ((d↓)↑∧) ∨ d and d = ((d↓)↑∨) ∧ d̃.

Proof
We prove only the first identity. The proof is by induction on the
size of A.

In case A = o, from definitions we get d = d ∩ Qk while
(d↓)↑∧ = d ∩Q≤k−1. Thus we indeed have d = ((d↓)↑∧) ∨ d.

In caseA = B → C. Given e inDkB , we have that (d↓)↑∧(e) =

(d↓(e↓))↑∧ = ((d(e))↓)↑∧ . Moreover, d(e) = d(e). Therefore,
(((d↓)↑∧) ∨ d)(e) = (((d(e))↓)↑∧) ∨ d(e). But, by induction, we
have d(e) = (((d↓)↑∧) ∨ d)(e) = (((d(e))↓)↑∧) ∨ d(e). As e is
arbitrary, we get the identity. �

This lemma shows that every element d2 in LkA(d1) is of the
form d↑∧1 ∨ e2 with e2 in LkA(⊥k−1

A) and of the form d↑∨1 ∧ e2

with e2 in LkA(>k−1
A). Thus not only LkA puts every element d1 in

relation with a lattice Lk(d1), but also this lattice is isomorphic
to LkA(⊥k−1

A) and to LkA(>k−1
A). Therefore, we can see DkA as

isomorphic to the lattice Dk−1
A × Lk,A(⊥k−1

A) or to the lattice
Dk−1
A × Lk,A(>k−1

A).

We can now define fixpoint operators in every applicative struc-
ture Dk.

Typing weak MSOL properties 7 2014/9/5

Definition 12 For f ∈ D0
A→A we define

fix0
A(f) =

∧
{fn(>0) : n ≥ 0}

For 0 < 2k ≤ m and f ∈ D2k
A→A we define

fix2k
A (f) =

∧
{fn(e) : n ≥ 0} where e = (fix2k−1

A (f↓))↑∨

For 0 < 2k + 1 ≤ m and f ∈ D2k+1
A→A we define

fix2k+1
A (f) =

∨
{fn(d) : n ≥ 0} where d = (fix2k

A (f↓))↑∧

Observe that, for even k, e is obtained with (·)↑∨ ; while for odd k,
(·)↑∧ is used.

The intuitive idea behind the definition of the fixpoint is pre-
sented in Figure 6. On stratum 0 it is just the greatest fixpoint. Then
this greatest fixpoint is lifted to stratum 1, and the least fixpoint
computation is started from it. The result is then lifted to stratum
2, and once again the greatest fixpoint computation is started, and
so on. The Galois connections between strata guarantee that this
process makes sense.

Figure 6. A computation of a fixpoint: it starts inD0, and then the
least and the greatest fixpoints alternate.

It remains to show that equipped with the interpretation of
fixpoints given by Definition 12 the applicative structure Dk is a
model of the λY -calculus. First, we check that fixkA is indeed an
element of the model and that it is a fixpoint.

Lemma 13 For every 0 ≤ k ≤ m and every type A we have that
fixkA is monotone, and if k > 0 then (fixk−1

A , fixkA) ∈ Lk(A→A)→A.
Moreover for every f in DkA→A, f(fixkA(f)) = fixkA(f).

Proof
For 0 the statement is obvious. We will only consider the case
where k is even, the other being dual.

Consider the case 2k > 0. First we show monotonicity. Suppose
g ≤ h are two elements of D2k

A→A. By Lemma 7 we get g↓ ≤ h↓.
Consider g1 = fix2k−1

A (g↓) and h1 = fix2k−1
A (h↓). By induction

hypothesis fix2k−1
A is monotone, so g1 ≤ h1. Then, once again

using the Lemma 7, we have (g1)↑∨ ≤ (h1)↑∨ . This implies
fix2k

A (g) ≤ fix2k
A (h).

Now we show (fix2k−1
A , fix2k

A) ∈ L2k
(A→A)→A. We take an

arbitrary pair (f1, f2) ∈ L2k
A→A and we need to show that

(fix2k−1
A (f1),fix2k

A (f2)) ∈ L2k
A . This follows from the following

calculation

(fix2k−1(f1), (fix2k−1(f1))↑∨) ∈L2k
A by Lemma 7

(f1(fix2k−1(f1)), f2((fix2k−1(f1)↑∨)) ∈L2k
A by logical relation

(fix2k−1(f1), f2((fix2k−1(f1)↑∨)) ∈L2k
A since fix2k−1(f1)

is a fixpoint of f1

(fix2k−1(f1), f i2((fix2k−1(f1)↑∨)) ∈L2k
A for every i ≥ 0

Moreover, from Lemma 7, we have that f2((fix2k−1(f1)↑∨) ≤
(fix2k−1(f1))↑∨ . This implies

f i+1
2 ((fix2k−1(f1)↑∨) ≤ f i2((fix2k−1(f1))↑∨)

for every i ∈ N. Therefore, (f i2((fix2k−1(f1))↑∨)i∈N is a decreas-
ing sequence ofD2k

A . Since the model is finite this sequence reaches
the fixpoint, namely fix2k

A (f2) = f i2((fix2k−1
A (f1)↑∨)) for some i.

Thus, at the same time, this shows that (fix2k−1
A (f1), fix2k

A (f2)) ∈
L2k
A and that fix2k(f2) is a fixpoint of f2.

�

This lemma has the following interesting corollary that will
prove useful in the study of type systems.

Corollary 14 For k > 0, A a type, and f ∈ DkA→A we have

fix2k
A (f) =

∨
{d | f(d) ≥ d and d↓ = fix2k−1

A (f)}

fix2k+1
A (f) =

∧
{d | f(d) ≤ d and d↓ = fix2k

A (f)}

Moreover the fundamental lemma on logical relation has the
following consequence.

Lemma 15 For every k > 0, every term M and valuation ν into
Dk−1 we have ([[M]]k−1

ν , [[M]]kν↑∧) ∈ Lk and ([[M]]k−1
ν , [[M]]kν↑∨) ∈

Lk; where ν↑∧ and ν↑∨ are as expected.

Standard techniques show that equipped with this interpretation
of the fixpoint, each Dk forms a model of the λY -calculus

Theorem 16 For every finite set Q, and function ρ : Q → N. For
every k ≤ 0 the applicative structure Dk is a model of the λY -
calculus.

5. Correctness and completeness of the model
We show that the models introduced in the previous section are
expressive enough to recognize all properties definable by weak
alternating automata. For a given automaton we will take a model
as defined above, and show that with the right interpretation of
constants the model can recognize the set of terms whose Böhm
trees are accepted by the automaton (Theorem 17).

For the whole section we fix a weak alternating automaton
A = 〈Q,Σ, q0, δo, δo2→o, ρ〉 where Q is a set of states, Σ is the
alphabet, δo ⊆ Q× Σ and δo2→o : Q× Σ→ P(P(Q)× P(Q))
are transition functions, and ρ : Q → N is a ranking function. For
simplicity of the notation in this section we assume that the only
constants in the signature are either of type o or o2 → o.

Recall that weak means that the states in a transition for a state
q have ranks at most ρ(q), in other words, for every (S0, S1) ∈
δ(q, a), S0, S1 ⊆ Q≤ρ(q). As noted before, without a loss of
generality, we assume that δ is monotone, i.e. if (S0, S1) ∈ δ(q, a)
and S0 ⊆ S′0 ⊆ Q≤ρ(q) and S1 ⊆ S′1 ⊆ Q≤ρ(q) then (S′0, S

′
q) ∈

δ(q, a). Let

A(M) = {q ∈ Q : A accepts BT (M) from q}
be the set of states from which A accepts the tree BT (M).

We want to show that our model Dm can calculateA(M); here
m is the maximal value of the rank function of A. The following
theorem states a slightly more general fact. Before proceeding we
need to fix the meaning of constants:

[[c]]k ={q ∈ Q≤k : (c, q) ∈ δo}
[[a]]k(S0, S1) ={q ∈ Q≤k : (S0, S1) ∈ δo2→o(q, a)}

Typing weak MSOL properties 8 2014/9/5

Notice that, by our assumption about monotonicity of δ, these
functions are monotone.

Theorem 17 For every closed term M of type 0, and for every
0 ≤ k ≤ m we have: [[M]]k = A(M) ∩Q≤k.

The rest of this section is devoted to the proof of the theorem.
For k = 0 the model D0 is just the GFP model over Q0. More-

over A restricted to the states in Q0 is an automaton with trivial
acceptance conditions. The theorem follows from Theorem 4.

For the induction step consider even k > 0. The case of odd
k is similar and we will not present it here. The two directions
of Theorem 17 are proved using different techniques. The next
lemma shows left to right inclusion and is based on a rather simple
unrolling. The other inclusion is proved using logical relations
(Lemma 22)

Lemma 18 [[M]]k ⊆ A(M).

Proof
We take q ∈ [[M]]k and describe a winning strategy for Eve in the
acceptance game of A on BT (M) from q (cf. page 3). If the rank
of q < k then such a strategy exist by the induction assumption. So
we suppose that ρ(q) = k.

If M does not have a head normal form then BT (M) consists
just of the root ε labeled with Ω. Then Eve wins by the definition
of the game since k is even.

If the head normal form of M is a constant c : o then since
q ∈ [[c]]k we have (q, c) ∈ δo. Eve wins by the definition of the
game.

Suppose then that M has a head normal form aM0M1. As
[[M]]k = [[aM0M1]]k we have q ∈ [[aM0M1]]k. By the semantics
of a we know that ([[M0]]k, [[M1]]k) ∈ δ(q, a). The strategy of
Eve is to choose ([[M0]]k, [[M1]]k). Suppose Adam then selects
i ∈ {0, 1} and qi ∈ [[Mi]]

k. If ρ(qi) < k then Eve has a winning
strategy by induction hypothesis. Otherwise, if ρ(qi) = k we repeat
the reasoning.

This strategy is winning for Eve since a play either stays in
states of even rank k or switches to a play following a winning
strategy for smaller ranks. �

It remains to show thatA(M)∩Q≤k ⊆ [[M]]k. For this we will
define one logical relation between Dk and the syntactic model of
λY and show a couple of lemmas.

Definition 19 We define a logical relation between the model Dk
and closed terms

Rk0 ={(P,M) : A(M) ∩Q≤k ⊆ P}
RkA→B ={(f,M) : ∀(g,N)∈RA

. (f(g),MN) ∈ RB} .

Since Rk is a logical relation we have:

Lemma 20 If M =βδ N and (f,M) ∈ RkA then (f,N) ∈ RkA.

The next lemma shows a relation between Rk and Rk−1.

Lemma 21 For every type A, f ∈ DkA, g ∈ Dk−1
A :

• if (f,M) ∈ RkA then (f↓,M) ∈ Rk−1
A ;

• if (g,M) ∈ Rk−1
A then (g↑∨ ,M) ∈ Rk;

Proof
The proof is an induction on the size of the type. The base case is
when A = o.

For the first item suppose (f,M) ∈ RkA. By definition, this
meansA(M)∩Q≤k ⊆ f . ThenA(M)∩Q≤k−1 ⊆ f ∩Q≤k−1 =
f↓. So (f↓,M) ∈ Rk−1

A .
For the second item suppose (g,M) ∈ Rk−1

A . So A(M) ∩
Q≤k−1 ⊆ g. We haveA(M)∩Q≤k ⊆ (A(M)∩Q≤k−1)∪Qk ⊆
g ∪Qk = g↑∨ .

For the induction step letA be B → C. Let us consider the first
item. Suppose (f,M) ∈ RkB→C . Take (h,N) ∈ Rk−1

B , we need to
show that (f↓(h),MN) ∈ Rk−1

C . By the second item of the induc-
tion hypothesis we get (h↑∨ , N) ∈ RkB . Then (f(h↑∨), N) ∈ RkC ,
by the definition ofRkB→C . Using the first item of the induction hy-
pothesis we get ((f(h↑∨))↓, N) ∈ Rk−1

C . Then using Corollaries 8
and 9 we obtain (f(h↑∨))↓ = f↓((h↑∨)↓) = f↓(h).

For the proof of the second item consider (g,M) ∈ Rk−1
B→C

and (h,N) ∈ RkB . We need to show that (g↑∨(h),MN) ∈ RkC .
From the first item of the induction hypothesis we obtain (h↓, N) ∈
Rk−1
B , so (g(h↓),MN) ∈ Rk−1

C . The second item of the induction
hypothesis gives us ((g(h↓))↑∨ ,MN) ∈ RkC . We are done since
g↑∨(h) = (g(h↓))↑∨ by Corollary 9. �

Lemma 22 Let v be a valuation, and σ a substitution of closed
terms such that (v(xA), σ(xA)) ∈ RkA for every variable xA

in the domain of σ. For every term M of a type A we have
([[M]]kv ,M.σ) ∈ RkA.

Proof
The proof is by induction on the structure of M .

If M is a variable then the proof is immediate.
If M is a constant a then we show that ([[a]], a) ∈ Rk0→0→0.

For this we take arbitrary (S0, N0), (S1, N1) ∈ Rk0 , and we show
that ([[a]]k(S0, S1), aN0N1) ∈ Rk0 . Take q ∈ A(aN0N1) ∩Q≤k.
Let us look at Eve’s winning strategy in the acceptance game from
q on BT (aN0N1). In the first round of this game she chooses
some (T0, T1) ∈ δ(a, q). So q ∈ [[a]](T0, T1). Since her strategy is
winning we have T0 ⊆ A(N0) and T1 ⊆ A(N1), and by weakness
of the automaton T0, T1 ⊆ Q≤k. From the definition of Rk0 we get
A(N0) ∩ Q≤k ⊆ S0 and A(N1) ∩ Q≤k ⊆ S1. By monotonicity
we get the desired q ∈ [[a]](S0, S1).

If M is an application NP then the conclusion is immediate
from the definition of RkA.

If M is an abstraction λx. N : B → C, then we take (g, P) ∈
RkB . By induction hypothesis ([[N]]kv[g/x], N.σ[P/x]) ∈ RkC . So
([[M]]kv(g),MP) ∈ RkC by Lemma 20.

If M = Y (A→A)→A. Take (f, P) ∈ RkA→A. By Lemma 21
we have (f↓, P) ∈ Rk−1

A→A. As by the outermost induction hy-
pothesis (fixk−1

A , Y (A→A)→A) ∈ Rk−1
(A→A)→A, and we obtain

(fixk−1
A (f↓), Y P) ∈ Rk−1

A . Once again using Lemma 21 we get
((fixk−1

A (f↓))↑∨ , Y P) ∈ RkA. By the choice of (f, P) we obtain
(f((fixk−1

A (f↓))↑∨), P (Y P)) ∈ RkA. Since Y P =βδ P (Y P),
we have (f i((fixk−1

A (f↓))↑∨), Y P) ∈ RkA for all i ≥ 0. Since
the sequence of f i((fixk−1

A (f↓))↑∨) is decreasing, it reaches the
fixpoint fixkA(f) in a finite number of steps and (fixkA(f), Y P) is
in RA. As (f, P) is an arbitrary element of RkA→A, this shows that
(fixkA, Y) is in Rk(A→A)→A. �

6. From models to type systems
We are now in a position to show that our type system from Figure 4
can reason about the values of λY -terms in a stratified model
(Theorem 25). Thanks to Theorem 17 this means that the type
system can talk about acceptance of the Böhm tree of a term by the

Typing weak MSOL properties 9 2014/9/5

automaton. This implies soundness and completeness of our type
system, Theorem 5.

Throughout this section we work with a fixed signature Σ and
a fixed weak alternating automaton A = 〈Q,Σ, q0, δo, δo2→o, ρ〉.
As in the previous section, for simplicity of notation we will assume
that the constants in the signature are of type o or o→ o→ o. We
will also prefer notation Y x.M to Y (λx.M).

The type system we introduced in Section 3 can be understood
as means for reasoning about the values of a term in a model.
Indeed, we will show that types can denote all elements in the
model (Lemma 24). This follows Abramsky’s idea of domains in
logical form [1] further adapted to the typed setting in [34].

The arrow constructor in types will be interpreted as a step
function in the model. For the dual system we will also need co-
step functions, so we recall the two notions here. Step and co-step
functions are particular monotone functions from a lattice L1 to a
lattice L2. For d in L1 and e in L2, the step function d ⇁ e and the
co-step function d ⇀ g are defined by:

(d ⇁ e)(h) =

{
e when d ≤ h
⊥ otherwise

(d ⇀ e)(h) =

{
e when h ≤ d
> otherwise .

To emphasize that we work in Dl we will write d ⇁l e and
d ⇀l e.

Types defined on page 4 can be meaningfully interpreted at
every level of the model. So [[t]]l will denote the interpretation of t
in Dl defined as follows.

[[q]]l =

{
{q} if the rank of q is at most l
∅ otherwise

[[S]]l =
∨
{[[t]]l : t ∈ S} for S ⊆ TypesA

[[T → s]]l = [[T]]l ⇁l [[s]]l for (T → s) ∈ TypesA

Directly from the definition we have [[S1 ∪ S2]]l = [[S1]]l ∨ [[S2]]l,
and [[S → T]]l = [[S]]l ⇁l [[T]]l.

The next lemma summarizes basic facts about the interpretation
of types. Recall that the application operation S(T) on types (cf.
page 4) means {t : (U → t) ∈ S ∧ U v T}. The proof of the
lemma uses Corollaries 9 and 8.

Lemma 23 For every typeA, if S ⊆ TypesA and k ≤ mwe have:
[[S]]k = [[S ∩ TypeskA]]

k
, [[S ∩ TypeskA]]

k+1
= ([[S]]kA)↑∧ and

[[S]]k = ([[S]]k+1)↓. For every S ⊆ TypeskA→B and T ⊆ TypeskA
we have: [[S(T)]]k = [[S]]k([[T]]k).

We can now show that every element of DkA is representable by
a type. For this we use (·) operation (cf. Definition 10).

Lemma 24 For every k ≤ m and every type A. For every d in DkA
there is S ⊆ TypeskA so that [[S]]k = d, and there is S′ ⊆ typeskA
so that [[S′]]

k
= d.

Proof
We proceed by induction on k.

The case where k = 0 has been proved in [32].
For the case k > 0, as we have seen with Lemma 11, that

f = (f↓)↑∧ ∨ f . From the induction hypothesis there is S1 ⊆
Typesk−1

A such that [[S1]]k−1 = f↓. By Lemma 23 we get [[S1]]k =
(f↓)↑∧ .

It remains to describe f with types from typeskB→C . Take
d ∈ DkB and recall that f(d) = f(d). By induction hypothesis

we have Sd ⊆ TypeskB and Sf(d) ⊆ typeskC such that [[Sd]]
k = d

and [[Sf(d)]]
k = f(d). So the set of types Sd → Sf(d) is included

in typeskB→C and [[Sd → Sf(d)]] = d ⇁k f(d). It remains to take
S2 =

⋃
{Sd|d ∈ DkB}. We can conclude that S2 ⊆ typeskA and

[[S2]]k = f . Therefore [[S1 ∪ S2]]k = f . �

The next theorem is the main technical result of the paper. It
says that the type system can derive all lower-approximations of
the meanings of terms in the model. For an environment Γ, we write
[[Γ]]k for the valuation such that [[Γ]]k(x) = [[Γ(x)]]k.

Theorem 25 For k = 0, . . . ,m and S ⊆ Typesk: [[M]]k[[Γ]]k ≥
[[S]]k iff Γ `M ≥ S is derivable.

The above theorem implies Theorem 5 stating soundness and
completeness of the type system. Indeed, let us take a closed term
M of type o, and a state q of our fixed automaton A. Theorem 17
tells us that [[M]] = A(M); where A(M) is the set of states from
whichA acceptsBT (M). So `M ≥ q is derivable iff [[M]] ⊇ {q}
iff q ∈ A(M).

The theorem is proved by the following two lemmas.

Lemma 26 If Γ ` M ≥ S is derivable, then for every k ≤ m:
[[M]]k[[Γ]]k ≥ [[S]]k.

Proof
This proof is done by a simple induction on the structure of the
derivation of Γ ` M ≥ S. For most of the rules, the con-
clusion follows immediately from the induction hypothesis (using
Lemma 23). We shall only treat here the case of the rules Y odd
and Y even .

In the case of Y odd , when we derive Γ ` Y x.M ≥
S(T) from Γ ` λx.M ≥ S and Γ ` Y x.M ≥ T with
S, T ∈ Types2l+1

A , the induction hypothesis gives that for ev-
ery k, [[λx.M]]k[[Γ]]k ≥ [[S]]k and [[Y x.M]]k[[Γ]]k ≥ [[T]]k. There-
fore [[Y x.M]]k[[Γ]]k = [[(λx.M)(Y x.M)]]k[[Γ]]k ≥ [[S]]k([[T]]k) =

[[S(T)]]k, using Lemma 23.
In the case of Y even we consider the case k = 2l. Let νk−1

stand for [[Γ]]k−1 and νk for [[Γ]]k.
By induction hypothesis we have [[Y x.M]]k−1

νk−1
≥ [[T]]k−1.

Since Lemma 15 implies ([[Y x.M]]k−1
νk−1

, [[Y x.M]]kνk) ∈ Lk, we

have [[Y x.M]]kνk ≥ ([[T]]k−1)↑∧ by Lemma 7. By Lemma 23 we
know ([[T]]k−1)↑∧ = [[T]]k. In consequence we have

[[λx.M]]kνk ([[T]]k) ≥ [[T]]k.

Also by induction hypothesis we have [[λx.M]]kνk ≥ [[(S ∪ T)→ S]]k.
This means [[λx.M]]kνk ([[S ∪ T]]k) ≥ [[S]]k. Put together with what
we have concluded about [[T]]k we get

[[λx.M]]kνk ([[S ∪ T]]k) ≥ [[S ∪ T]]k.

Now we use Lemma 14 telling us that

[[Y x.M]]kνk =
∨
{d | [[λx.M]]k(d) ≥ d and d↓ = [[Y x.M]]k−1

νk−1
} .

This gives us immediately the desired [[Y x.M]]kνk ≥ [[S ∪ T]]k. �

Lemma 27 Given a type S ⊆ Typesk , if [[M]]k[[Γ]]k ≥ [[S]]k then
Γ `M ≥ S.

Typing weak MSOL properties 10 2014/9/5

Proof
This theorem is proved by induction on the pairs (M,k) ordered
component-wise. Suppose that the statement is true for M , we
are going to show that it is true for Y x.M , the other cases are
straightforward.

The first observation is that, if T → S is such that [[λx.M]]k[[Γ]]k ≥
[[T → S]]k, then Γ ` λx.M ≥ T → S is derivable. Indeed,
since, letting ν = [[Γ, x ≥ T]]k, if [[M]]kν ≥ [[S]]k holds then,
Γ, x ≥ T ` M ≥ S is derivable by induction hypothesis. So
Γ ` λx.M ≥ T → S is derivable.

There are now two cases depending on the parity of k. First
let us assume that k is even. Suppose [[Y x.M]]k[[Γ]]k = [[S ∪ T]]k

where S ⊆ typesk and T ⊆ Typesk−1. Lemma 24 guaranties the
existence of such S and T as every element ofDk is expressible by
a set of types. We have [[λx.M]]k[[Γ]]k ≥ [[S ∪ T]]k ⇁k [[S ∪ T]]k.
By the above we get that Γ ` λx.M ≥ (S ∪ T) → (S ∪ T) is
derivable and thus Γ ` λx.M ≥ (S∪T)→ S is also derivable. We
also have [[Y x.M]]k−1 ≥ [[T]]k−1 which gives that Γ ` Y x.M ≥
T is derivable. This allows us to derive Γ ` Y x.M ≥ S∪T . Using
the subsumption rule and the fact that the subsumption reflects the
order on types, every other valid judgment Γ ` Y x.M ≥ U is
derivable.

Now consider the case where k is odd. Suppose [[Y x.M]]k[[Γ]]k =

[[S ∪ T]]k with T ⊆ Typesk−1 and S ⊆ typesk. By induction
hypothesis on k, we have that Γ ` M ≥ T is derivable. Take d =
[[λx.M]]k[[Γ]]k

. Lemma 24 guarantees us a set of types U ⊆ Typesk

such that [[U]]k = d. By the observation we have made above, there
is a derivation of Γ ` λx.M ≥ U . Then iteratively using the rule
Y odd we compute the least fixpoint by letting U0(T) = T and
Un+1(T) = U(Un(T)). �

As we have seen, the applicative structureDkA is a lattice, there-
fore each construction can be dualized: in Abramsky’s methodol-
ogy, this consists in considering ∧-prime elements of the models,
meets and co-step functions instead of ∨-primes, joins and step
functions. It is worth noticing that dualizing at the level of the
model amounts to dualizing the automaton. So, in particular, we
can define a system so that BT (M) is not accepted by A from
state q iff Γ ` M � q is derivable. While the first typing sys-
tem establishes positive facts about the semantics, the second one
refutes them. For this, we use the same syntax to denote types, but
we give types a different semantics that is dual to the first semantics
we have used.

〈〈q〉〉k =Q≤k − {q} ,

〈〈S → f〉〉k =
(∧
{〈〈g〉〉k : g ∈ S}

)
⇀k 〈〈f〉〉k .

The dual type system is presented in Figure 7. The notation is
as before but we use � instead of ≥. Similarly to the definition
of [[·]]k, we write 〈〈S〉〉k for

∧
{〈〈s〉〉k : s ∈ S} and we have that

〈〈T → S〉〉k = 〈〈T 〉〉k ⇀k 〈〈S〉〉k. We also need to redefine S(T)
to be {s : U → s ∈ S ∧ U w T}. With those notations, the rules
for application, abstraction, and variable do not change and are not
presented in the Figure 4. By duality, from Theorem 25 we obtain:

Theorem 28 For S ⊆ Typesk: Γ ` M � S is derivable iff
[[M]]k[[Γ]]k ≤ 〈〈S〉〉

k.

Together Theorems 25 and 28 give a characterization by typing
of [[M]] = L(A), that is the set of states from which our fixed
automaton A accepts BT (M).

Corollary 29 For a closed term M of type o:

[[M]] = [[S]] iff both `M ≥ S and `M � (Q− S).

7. Conclusions
We have shown how to construct a model for a given weak alter-
nating tree automaton so that the value of a term in the model de-
termines if the Böhm tree of the term is accepted by the automaton.
Our construction builds on ideas from [32] but requires to bring
out the modular structure of the model. This structure is very rich,
as testified by Galois connections (Corollary 8) and decomposition
principles (Lemma 11). This structure allows us to derive type sys-
tems for wMSO properties following the “domains in logical form”
approach.

The type systems are relatively streamlined: the novelty is the
stratification of types used to restrict applicability of the greatest
fixpoint rule.

Typing is decidable, actually the height of the derivation is
bounded by the size of the term. Yet the width can be large, that
is unavoidable given that the typability is n-EXPTIME hard for
terms of order n [36]. Due to the correspondence of the typing with
semantics, every term has a “best” type.

This paper focuses on typing, but our model construction can be
also used in other contexts. It allows us to immediately deduce re-
flection [8] and transfer [33] theorems for wMSO. Our techniques
used to construct models and prove their correctness rely on usual
techniques of domain theory [3], offering an alternative, and ar-
guably simpler, point of view to techniques based on unrolling.

The idea behind the reflection construction is to transform a
given term so that at every moment of its evaluation every subterm
“knows” its meaning in the model. In [8] this property is formulated
slightly differently and is proved using a detour to higher-order
pushdown automata. Recently Haddad [13] has given a direct proof
for all MSO properties. The proof is based on some notion of
applicative structure that is less constrained than a model of the
λY -calculus. One could apply his construction, or take the one
from [32].

The transfer theorem says that for a fixed finite vocabulary of
terms, an MSOL formula ϕ can be effectively transformed into an
MSOL formula ϕ̂ such that for every term M of type 0 over the
fixed vocabulary: M satisfies ϕ̂ iff the Böhm tree of M satisfies ϕ.
Since the MSO theory of a term, that is a finite graph, is decidable,
the transfer theorem implies decidability of MSO theory of Böhm
trees of λY -terms. As shown in [33] it gives also a number of other
results.

A transfer theorem for wMSO can be deduced from our model
construction. For every wMSO formulaϕwe need to find a formula
ϕ̂ as above. For this we transformϕ into a weak alternating automa-
tonA, and construct a modelDϕ based onA. Thanks to the restric-
tion on the vocabulary, it is quite easy to write for every element d
of the model Dϕ a wMSO formula αd such that for every term M
of type 0 in the restricted vocabulary: M � αd iff [[M]]Dϕ = d.
The formula ϕ̂ is then just a disjunction

∨
d∈F αd, where F is the

set elements of Dϕ characterizing terms whose Böhm tree satisfies
ϕ.

The fixpoints in our models are non-extremal: they are neither
the least nor the greatest fixpoints. From Theorem 4 we know that
this is unavoidable. We are aware of very few works considering
such cases. Our models are an instance of cartesian closed cat-
egories with internal fixpoint operation as studied by Bloom and
Esik [6]. Our model satisfies not only Conway identities but also a
generalization of the commutative axioms of iteration theories [5].
Thus it is possible to give semantics to the infinitary λ-calculus in
our models. It is an essential step towards obtaining an algebraic
framework for weak regular languages [7].

Typing weak MSOL properties 11 2014/9/5

S ⊆ T ⊆ Q

S w0 T

∀s ∈ S,∃t ∈ T, s wA t

S wA T

T wA S s wB t

S → s wA→B T → t

Γ ` c ≥ {q : δo(q, c) does not hold}
∀(S1, S2) ∈ δ(a, q), (T1 ∩ S1) ∪ (T2 ∩ S2) 6= ∅

Γ ` a � T1 → T2 → q

S ⊆ types2k+1
A , T ∈ Types2k

A , Γ ` λx.M � (S ∪ T)→ S Γ ` Y x.M � T
Y odd

Γ ` Y x.M � S ∪ T

Γ ` (λx.M) � S Γ ` (Y x.M) � T
Y even

Γ ` Y x.M � S(T)

Figure 7. Dual type system

References
[1] S. Abramsky. Domain theory in logical form. Ann. Pure Appl. Logic,

51(1-2):1–77, 1991.
[2] K. Aehlig. A finite semantics of simply-typed lambda terms for infinite

runs of automata. Logical Methods in Computer Science, 3(1):1–23,
2007.

[3] R. M. Amadio and P.-L. Curien. Domains and Lambda-Calculi,
volume 46 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 1998.

[4] H. Barendregt, M. Coppo, and M. .Dezani-Ciancaglini. A filter lambda
model and the completeness of type assignment. J. Symb. Log., 4:931–
940, 1983.

[5] S. L. Bloom and Z. Ésik. Iteration Theories: The Equational Logic
of Iterative Processes. EATCS Monographs in Theoretical Computer
Science. Springer, 1993.

[6] S. L. Bloom and Z. Ésik. Fixed-point operations on CCC’s. part I.
Theoretical Computer Science, 155:1–38, 1996.

[7] A. Blumensath. An algebraic proof of Rabin’s tree theorem. Theor.
Comput. Sci., 478:1–21, 2013.

[8] C. Broadbent, A. Carayol, L. Ong, and O. Serre. Recursion schemes
and logical reflection. In LICS, pages 120–129, 2010. .

[9] C. H. Broadbent and N. Kobayashi. Saturation-based model checking
of higher-order recursion schemes. In CSL, volume 23 of LIPIcs,
pages 129–148. Schloss Dagstuhl, 2013.

[10] C. H. Broadbent, A. Carayol, M. Hague, and O. Serre. C-shore: a
collapsible approach to higher-order verification. In ICFP, pages 13–
24. ACM, 2013.

[11] W. Chen and M. Hofmann. Buchi abstraction. In LICS, 2014. To
appear.

[12] R. Grabowski, M. Hofmann, and K. Li. Type-based enforcement of
secure programming guidelines - code injection prevention at SAP. In
Formal Aspects in Security and Trust, volume 7140 of LNCS, pages
182–197, 2011.

[13] A. Haddad. Model checking and functional program transformations.
In FSTTCS, volume 24 of LIPIcs, pages 115–126, 2013.

[14] M. Hague, A. S. Murawski, C.-H. L. Ong, and O. Serre. Collapsible
pushdown automata and recursion schemes. In LICS, pages 452–461.
IEEE Computer Society, 2008.

[15] J. R. Hindley and J. P. Seldin. Lambda-Calculus and Combinators.
Cambridge University Press, 2008.

[16] A. S. A. Jeffrey. LTL types FRP: Linear-time Temporal Logic propo-
sitions as types, proofs as functional reactive programs. In ACM Work-
shop Programming Languages meets Program Verification, 2012.

[17] A. S. A. Jeffrey. Functional reactive types. In LICS, 2014. to appear.
[18] T. Knapik, D. Niwinski, and P. Urzyczyn. Higher-order pushdown

trees are easy. In FoSSaCS, volume 2303, pages 205–222, 2002.
[19] N. Kobayashi. Types and higher-order recursion schemes for verifica-

tion of higher-order programs. In POPL, pages 416–428, 2009.

[20] N. Kobayashi. Model checking higher-order programs. J. ACM, 60
(3):20–89, 2013.

[21] N. Kobayashi and L. Ong. A type system equivalent to modal mu-
calculus model checking of recursion schemes. In LICS, pages 179–
188, 2009.

[22] N. Kobayashi, N. Tabuchi, and H. Unno. Higher-order multi-
parameter tree transducers and recursion schemes for program veri-
fication. In POPL, pages 495–508, 2010.

[23] R. Loader. Finitary pcf is not decidable. Theor. Comput. Sci., 266
(1-2):341–364, 2001.

[24] D. E. Muller and P. E. Schupp. The theory of ends, pushdown
automata, and second-order logic. Theor. Comput. Sci., 37:51–75,
1985.

[25] M. Naik and J. Palsberg. A type system equivalent to a model checker.
ACM Trans. Program. Lang. Syst., 30(5), 2008.

[26] F. Nielson and H. R. Nielson. Type and effect systems. In Correct
System Design: Recent Insight and Advances, volume 1710 of LNCS,
pages 114–136. Springer-Verlag, 1999.

[27] C.-H. L. Ong. On model-checking trees generated by higher-order
recursion schemes. In LICS, pages 81–90, 2006.

[28] C.-H. L. Ong and S. Ramsay. Verifying higher-order programs with
pattern-matching algebraic data types. In POPL, pages 587–598,
2011.

[29] M. O. Rabin. Decidability of second-order theories and automata on
infinite trees. Transactions of the AMS, 141:1–23, 1969.

[30] S. J. Ramsay, R. P. Neatherway, and C.-H. L. Ong. A type-directed
abstraction refinement approach to higher-order model checking. In
POPL, pages 61–72. ACM, 2014.

[31] S. Salvati and I. Walukiewicz. Krivine machines and higher-order
schemes. In ICALP, volume 6756 of LNCS, pages 162–173, 2011.

[32] S. Salvati and I. Walukiewicz. Using models to model-check recursive
schemes. In TLCA, volume 7941 of LNCS, pages 189–204, 2013.

[33] S. Salvati and I. Walukiewicz. Evaluation is MSOL-compatible. In
FSTTCS, volume 24 of LIPIcs, pages 103–114, 2013.

[34] S. Salvati, G. Manzonetto, M. Gehrke, and H. Barendregt. Loader
and Urzyczyn are logically related. In ICALP, volume 7392 of LNCS,
pages 364–376. Springer, 2012.

[35] R. Statman. Completeness, invariance and lambda-definability. J.
Symb. Log., 47(1):17–26, 1982.

[36] K. Terui. Semantic evaluation, intersection types and complexity of
simply typed lambda calculus. In RTA, volume 15 of LIPIcs, pages
323–338. Schloss Dagstuhl, 2012.

[37] Y. Tobita, T. Tsukada, and N. Kobayashi. Exact flow analysis by
higher-order model checking. In FLOPS, volume 7294 of LNCS,
pages 275–289, 2012.

[38] T. Tsukada and C.-H. L. Ong. Compositional higher-order model
checking via ω-regular games over Böhm trees. In LICS, 2014. To
appear.

Typing weak MSOL properties 12 2014/9/5

	Introduction
	Preliminaries
	Type systems for wMSOL
	Models for weak automata
	Correctness and completeness of the model
	From models to type systems
	Conclusions

