
HAL Id: hal-01060951
https://hal.science/hal-01060951

Preprint submitted on 4 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The configuration space and principle of virtual power
for rough bodies

Lior Falach, Reuven Segev

To cite this version:
Lior Falach, Reuven Segev. The configuration space and principle of virtual power for rough bodies.
2014. �hal-01060951�

https://hal.science/hal-01060951
https://hal.archives-ouvertes.fr




2 Mathematics and Mechanics of Solids XX(X)

assume smoothness wherever necessary. Later on, Truesdell [3] adopted the structure suggested in Noll [1]. The
common ground for these early works is in the assumption that bodies in continuum mechanics should have a
smooth structure so that the classical versions of the notions of mathematical analysis apply. Noll [1] shows
that Cauchy’s original postulate on the dependence of the traction on the exterior normal may be replaced by an
additivity assumption on the system of forces and the principle of linear momentum.

Gurtin and Martins [4] introduce the notion of a Cauchy flux in order to represent the collection of total
forces applied to a collection of surface elements. A Cauchy flux is defined as an additive, area bounded set
function acting on the collection of compatible surface elements of the body, and a weakly balanced Cauchy
flux is defined as a volume bounded Cauchy flux.

It seems that Banfi and Fabrizio [5], and Ziemer [6], were the first to propose that the class admissible
bodies in continuum physics should consist of sets of finite perimeter. In Ziemer’s work, admissible bodies
are defined as sets of finite perimeter and a weakly balanced Cauchy flux is shown to be represented by a
measurable vector field. The works by Gurtin et al. [7] and Noll and Virga [8], which followed, further extended
these studies. Gurtin et al. [7] defined the class of admissible bodies as the class of normalized sets of finite
perimeter, while Noll and Virga [8] defined admissible bodies as fit regions, which are bounded regularly open
sets of finite perimeter and of negligible boundary. These postulates enabled the authors to apply versions of the
Gauss–Green theorem and consider sets that do not necessarily have smooth boundaries as bodies in continuum
mechanics for which balance laws may be written.

Silhavy [9, 10] considered bodies as sets of finite perimeter in a bounded open region of R
n. The author

employs a weak approach in the formulation of Cauchy’s flux theorem. A weakly balanced Cauchy flux of class
L1 is shown to be represented by a Borel measurable vector field q of class L1 with a divergence (in the sense
of distributions) of class L1. Silhavy’s approach gives rise to a Borel set N0 of Lebesgue measure zero such that
the flux vector field q represents the action of the Cauchy flux for any surface whose intersections with N0 has
Hausdorff area measure zero. The analysis presented in Silhavy’s work allows for singularities in the flux vector
field and provides, for the first time, the concept of almost every surface. In Silhavy [10], formal definitions of
the concepts of almost every body and almost every surface are given and a weakly balanced Cauchy flux of
class Lp is represented by a measurable vector field of class Lp with a divergence of class Lp.

The notions of almost every body and almost every surface are examined by Degiovanni et al. [11] and they
show that the Cauchy flux is determined by its action on a collection of rectangular planar surfaces with edges
parallel to the axes of R

n. A similar extension for Cauchy interaction is presented by Marzocchi and Musesti
[12].

In Segev [13], a weak formulation of pth-grade continuum mechanics, for any integer p ≥ 1, is presented
in the setting of differential manifolds. Configurations are viewed as Cp-embeddings of the body manifold
in the physical space, and forces are viewed as elements of the cotangent bundle to the infinite dimensional
configuration manifold of mappings. Forces are shown to be represented by measures on the pth jet bundle.
Such a measure serves as a generalization of the pth order stress. The representation of forces by stress measures
enables a natural restriction of forces to sub-bodies. The consistency conditions for such a system of pth order
forces are examined in Segev and deBotton [14].

The term fractal was coined in 1975 by Mandelbrot to indicate a highly irregular geometric object (see
[15]). Mandelbrot’s seminal work was the beginning of a very large body of research concerning the fractal
properties of various physical phenomena. A variety of approaches have been suggested for the adaptation of
fractal objects to branches of mechanics (see e.g. [16–23]).

In Rodnay [24] and Rodnay and Segev [25], Cauchy’s flux theory is formulated using Whitney’s geomet-
ric integration theory [26] and new developments by Harrison [27–30]. Bodies are viewed as r-dimensional
domains of integration in an n-dimensional Euclidean space with r ≤ n. A body is identified as an r-chain, the
limit of a sequence of polyhedral chains with respect to a norm which is induced by Cauchy’s postulates. Three
types of chains are examined: flat, sharp and natural chains, such that

polyhedral ⊂ flat chains ⊂ sharp chains ⊂ natural chains.

Flat (n − 1)-chains may represent the fractal boundaries of bodies and sharp chains are shown to represent
even less regular (n − 1)-dimensional objects. Fluxes of a given extensive property are postulated to be (n − 1)-
cochains, i.e., elements of the dual to the Banach space of (n−1)-chains. With the duality structure of Whitney’s
theory, as one allows for less regular domains of integration (chains), the resulting fluxes (cochains) become
more regular, automatically.
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Falach and Segev 3

Rough bodies, introduced by Silhavy [31], are sets whose measure theoretic boundaries are fractals in the
sense that the outer normal is not defined almost everywhere with respect to the (n − 1)-Hausdorff measure.

The present work, describes a framework where the mechanics of bodies with fractal boundaries may be
studied. Unlike Rodnay and Segev [25], the point of view of geometric measure theory as in Federer [32] is
mainly adopted.

The universal body is modeled as an open subset of R
n and bodies are modeled as flat n-chains. In addition

to the properties of the class of admissible bodies, special attention is given to the study of the kinematics
of such bodies in space. The appropriate class of admissible configurations appears to be the set of Lipschitz
embeddings. This class enjoys two significant properties. Firstly, the set of Lipschitz embeddings of the universal
body into space is an open subset of the locally convex topological vector space of all Lipschitz mappings of the
universal body into space equipped with the Whitney, or strong, topology. In addition, for Lipschitz mappings
there is a well defined pushforward action on flat chains, such as those representing bodies. Therefore, the
images of bodies under the pushforward action induced by a Lipschitz embedding preserves their structure and
relevant properties (e.g. the availability of a generalized Stokes theorem).

Adopting the point of view that virtual velocities are elements of the tangent bundle of the configuration
manifold, as the configuration space is open in the space of Lipschitz mappings, virtual velocities may be
identified with Lipschitz mappings of the universal body into space. Considering force and stress theory, it is
noted that forces which are required only to be continuous linear functionals relative to the Lipschitz topology,
as would be the analogue of Segev [13], seem to be too irregular for the setting adopted here. In order to
constitute a consistent force system which is represented by an integrable stress field, balance and weak balance
are postulated. It is shown further that balance and weak balance are equivalent together to continuity relative
to the flat norm of chains.

The paper is constructed as follows. Sections 2–5 contain a short outline of the various notions of geometric
measure theory which are used in this work. Section 2 reviews the notion of differential forms, currents, flat
chains and cochains. Section 3 presents sets of finite perimeter as well as the corresponding definitions for
bodies and material surfaces as currents. In Section 4 we discuss some of the properties of locally Lipschitz
maps. In particular, the image of a flat chain under a Lipschitz mapping is examined. In addition, Lipschitz
embeddings and the properties of the set they constitute are considered. This enables the presentation of a
Lipschitz type configuration space in Section 6. In Section 5 we discuss the product of locally Lipschitz maps
and flat chains. This multiplication operation is used in the definition of a local virtual velocity. Our main
theorem is presented in Section 7 where we prove that a system of forces obeying balance and weak balance
is equivalent to a unique n-tuple of flat (n − 1)-cochains. Generalized bodies and surfaces are introduced in
Section 8. Virtual strains, or velocity gradients, stresses and a generalized form of the principle of virtual work
are presented in Sections 9 and 10.

2. Review of elements of homological integration theory
In this section, some of the fundamental concepts form the theory of currents in R

n are presented. Throughout,
the notation is mainly adopted from Chapter 4 of Federer [32]. The notion of flat forms needed for Wolfe’s
representation theorem, originally presented in Chapter VII of Whitney’s Geometric Integration Theory [26], is
formulated in this section by the tools of Federer’s Geometric Measure Theory.

Let U be an open set in R
n and V a vector space. The notation Dm (U , V ) is used for the vector space of

smooth, compactly supported V -valued differential m-forms defined on U and Dm (U) is used as an abbreviation
for Dm (U , R). The notation dφ is use for the exterior derivative of φ ∈ Dm(U), an element of Dm+1(U). The
vector space Dm(U) will be endowed with a locally convex topology induced by a family of semi-norms [32] as
in the theory of distributions.

A continuous linear functional T : Dm(U) → R is referred to as an m-dimensional current in U . The
collection of all m-dimensional currents defined on U forms the vector space Dm(U) which is the vector space
dual to Dm(U). Let T ∈ Dm(U) with m ≥ 1, then ∂T , the boundary of T , is the element of Dm−1(U) defined by

∂T(φ) = T(dφ), for all φ ∈ Dm−1(U). (1)

The exterior derivative d is a continuous linear map d : Dm(U) → Dm+1(U). Thus, the boundary operation
∂ : Dm+1(U) → Dm(U), viewed as the adjoint operator to d, is a continuous linear operator on currents.
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As an example of a 0-current in U , let Ln, denote the n-dimensional Lebesgue measure in R
n. Then, the

restricted measure Ln � U is the 0-current defined as

Ln � U(φ) =
ˆ

U
φdLn, for all φ ∈ D0(U). (2)

Given η, a Lebesgue integrable m-vector field defined on U , then, Ln ∧ η denotes the m-current in U defined by

Ln ∧ η(φ) =
ˆ

U
φ(η)dLn, for all φ ∈ Dm(U). (3)

The inner product in R
n induces an inner product in

∧
m R

n, and |ξ | will denote the resulting norm of an
m-vector ξ . Given φ ∈ Dm(U), for every x ∈ U , φ(x) is an m-covector, and we set

‖φ(x)‖ = sup {φ(x)(ξ ) | |ξ | ≤ 1, ξ is a simple m-vector} . (4)

The comass of φ is defined by
M (φ) = sup

x∈U
‖φ(x)‖. (5)

For T ∈ Dm(U) the mass of T is dually defined by

M (T) = sup {T (φ) | φ ∈ Dm (U) , M (φ) ≤ 1} . (6)

An m-dimensional current T is said to be represented by integration if there exists a Radon measure μT and
an m-vector valued, μT -measurable function, 	T , with |	T(x)| = 1 for μT -almost all x ∈ U , such that

T (φ) =
ˆ

U
φ(	T)dμT , for all φ ∈ Dm(U). (7)

A sufficient condition for an m-dimensional current, T , to be represented by integration is that T is a current
of finite mass, i.e. M (T) < ∞. An m-current T is said to be locally normal if both T and ∂T are represented
by integration and is said to be a normal current if it is locally normal and of compact support. The notion of
normal currents leads to the definition

N (T) = M (T) + M (∂T) , (8)

and clearly, every T ∈ Dm(U) such that N (T) < ∞ is a normal current. The vector space of all m-dimensional
normal currents in U is denoted by Nm (U). For a compact set K of U , set

Nm,K (U) = Nm(U) ∩ {T | spt (T) ⊂ K} . (9)

For each compact subset K of U , define FK , the K-flat semi-norm on Dm (U), by

FK (φ) = sup
x∈K

{‖φ(x)‖, ‖dφ(x)‖} . (10)

Dually, the K-flat norm for currents T ∈ Dm (U) is given by

FK(T) = sup {T (φ) | FK (φ) ≤ 1} . (11)

Note that if T ∈ Dm (U) such that FK(T) < ∞, then, spt(T) ⊂ K. For a given compact subset K ⊂ U , the set
Fm,K(U) is defined as the FK-closure of Nm,K(U) in Dm(U). In addition, set

Fm(U) =
⋃

K

Fm,K(U), (12)

where the union is taken over all compact subsets K of U . An element in Fm(U) is referred to as a flat m-chain
in U .
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For T ∈ Dm(U) with spt(T) ⊂ K it can be shown that FK(T) is given by

FK(T) = inf {M (T − ∂S) + M (S) | S ∈ Dm+1(U), spt(S) ⊂ K} . (13)

By taking S = 0 we note that
FK(T) ≤ M (T) . (14)

In addition, any element T ∈ Fm,K (U) may be represented by T = R + ∂S where R ∈ Dm(U), S ∈ Dm+1(U),
such that spt(R) ⊂ K, spt(S) ⊂ K, and

FK(T) = M (R) + M (S) . (15)

Flat chains have some desirable properties. We note that the boundary of a flat m-chain is a flat (m − 1)-chain.
Moreover, as Section 4 will show, the flat topology is preserved under Lipschitz maps. From a geometric point
of view the notion of a flat chain may be used to describe objects of irregular geometric nature such as the Sier-
pinski triangle. The following representation theorem reveals the measure theoretic regularity characterization
of flat m-chains.

Theorem 2.1 (32, Section 4.1.18). Let T be a flat m-chain in U with spt(T) ⊂ K. Then, for any δ > 0 and
E = {x | dist (K, x) ≤ δ} ⊂ U, the current T may be represented by

T = Ln ∧ η + ∂ (Ln ∧ ξ ) , (16)

such that η is an Ln � U-summable, m-vector field, ξ is a Ln � U-summable (m + 1)-vector field and spt (η) ∪
spt (ξ ) ⊂ E.

A linear functional X , defined on Fm(U) such that there exists 0 < c < ∞ with X (T) ≤ cFK(T) for any
compact K ⊂ U and T ∈ Fm,K(U), is referred to as a flat m-cochain. The flat norm of a cochain is given by

F(X ) = sup {X (A) | A ∈ Fm(U), FK(A) ≤ 1, K ⊂ U} . (17)

By Theorem 2.1, a dual representation for flat cochains is available by flat forms which we shall now introduce.
Given a differentiable mapping u defined on an open set of R

n, its derivative will be denoted by Du and its
partial derivative with respect to the jth coordinate will be denoted by Dju. For a smooth m-vector field η in U ,
the divergence divη of η is an (m − 1)-vector field in U defined by

divη =
n∑

j=1

Djη � dxj, (18)

where dxi, i = 1, . . . , n denote the dual base vectors relative to the standard basis ej, j = 1, . . . , n in R
n [32].

For an integrable m-form φ in U , the weak exterior derivative of φ is defined as an (m + 1)-form in U denoted
by d̃φ and such that the equality ˆ

U
d̃φ(η)dLn = −

ˆ
U

φ (divη) dLn, (19)

holds for all compactly supported, smooth (m + 1)-vector fields η on U . The weak exterior derivative is simply
the exterior derivative taken in the distributional sense. Note that d̃φ is uniquely defined up to a set of Ln � U-
measure zero, thus, for φ ∈ Dm(U), the relation d̃φ = dφ holds Ln � U-almost everywhere.

Differential forms whose components are Lipschitz continuous are referred to as sharp m-forms (adopt-
ing Whitney’s terminology [26]). By Rademacher’s theorem, the exterior derivative for sharp m-forms exists
Ln � U-almost everywhere and the existence of the weak exterior derivative follows. Sharp forms are clearly a
generalization of the notion of a smooth differential form and a further generalization is given by flat forms
where the Lipschitz continuity is relaxed.

Definition 2.2. An m-form φ in U is said to be flat if

F(φ) = sup
η,ξ

{ˆ
U

(
φ(η) + d̃φ(ξ )

)
dLn

}
< ∞, (20)
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where η and ξ are respectively m and (m + 1) compactly supported, Ln � U-summable vector fields such thatˆ
U

(‖ξ‖ + ‖η‖) dLn = 1. (21)

It is further observed that for φ, a flat m-form in U ,

F(φ) = ess sup
x∈U

{‖φ(x)‖, ‖̃dφ(x)‖} . (22)

Alternative definitions for flat forms may be found in Whitney [26, Section IX.7] and Heinonen [33].

Remark 1. For φ, a flat m-form in U, and ω, a flat r-form in U, φ ∧ ω is a flat (m + r)-form in U. One may use
the definition of the weak exterior derivative to show that

d̃(φ ∧ ω) = d̃φ ∧ ω + (−1)m φ ∧ d̃ω. (23)

The representation theorem of flat cochains is traditionally referred to as Wolfe’s representation theorem [26,
32]. It states that any flat m-cochain X in U is represented by a flat m-form denoted by DX such that

X (Ln ∧ η + ∂ (Ln ∧ ξ )) =
ˆ

U

[
DX (η) + d̃DX (ξ )

]
dLn, (24)

for any η and ξ , compactly supported, Ln � U-summable m and (m + 1)-vector fields, respectively. It is further
noted that the flat norm F(X ) for the cochain X is given by

F(X ) = ess sup
x∈U

{‖DX (x)‖, ‖̃dDX (x)‖} ≡ F(DX ). (25)

The coboundary of a flat m-cochain X is defined as the flat (m + 1)-cochain dX such that

dX (A) = X (∂A), for all A ∈ Fm(U), (26)

where it is noted that the same notation is used for the coboundary operator and the exterior derivative. The
coboundary is the adjoint of the boundary operator and thus a continuous linear operator taking flat m-chains
to flat (m + 1)-chains. It follows from the representation theorem of flat chains that the flat (m + 1)-cochain dX
is represented by the flat (m + 1)-form DdX = d̃DX . The last equality is used as the definition of the exterior
derivative of a flat form in Whitney [26].

Given a flat m-cochain X in U and a flat r-cochain Y in U , then, X ∧ Y is an (m + r)-cochain represented
by the flat (m + r)-form DX∧Y = DX ∧ DY , and for a flat (m + r)-chain T = Ln ∧ η + ∂ (Ln ∧ ξ ), the operation
X ∧ Y (T) is defined using equation (24). Moreover, equation (23) implies that

d(X ∧ Y ) = dX ∧ Y + (−1)mX ∧ dY . (27)

For a flat m-cochain X and a flat r-chain T , such that m ≤ r, the interior product X � T is defined as a flat
(r − m)-chain such that

X � T(ω) = (X ∧ ω) (T), for all ω ∈ Dr−m(U), (28)

where X ∧ ω is the flat r-cochain represented by the flat r-form DX ∧ ω.

3. Sets of finite perimeter, bodies and material surfaces
In this section we lay down the basic assumptions regarding the material universe. Sets of finite perimeter, or
Caccioppoli sets, will play a central role in the proposed framework. We first recall some of the properties of
sets of finite perimeter. Extended presentations of the subject may be found in works by De Giorgi [34], Federer
[32] and by Ziemer [6, 35].

Let U be a Borel set in an open subset of R
n and B(x, r) be the ball centered at x ∈ R

n with radius r. Define
the U-density of the point x by

d (x, U) = lim
r→0

Ln (U ∩ B (x, r))

Ln (B (x, r))
, (29)

where the limit exists. The measure theoretic boundary, � (U), of the set U is defined by

� (U) = {x | 0 < d (x, U) < 1} . (30)
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Definition 3.1. A Borel set U in R
n is said to be a set of finite perimeter if Ln (U) < ∞ and Hn−1 (� (U)) < ∞,

where Hn−1 (� (U)) is the (n − 1)-Hausdorff measure of � (U).

Definition 3.1 is adopted in Ziemer [6] as the definition for the class of admissible bodies. Several equivalent
definitions for a set of finite perimeter may be found in the literature. In [35] a set of finite perimeter is viewed as
a set whose characteristic function is a function of bounded variation. In [32] a set of finite perimeter is viewed
as a set which induces a locally integral current. In this work, Definition 3.1 is selected for its intuitive geometric
interpretation. For a set of finite perimeter, the exterior normal ν(x) to U exists Hn−1-almost everywhere in �(U)
thus making a generalized version of the Gauss–Green theorem applicable.

At this point we adopt the framework of Silhavy [9] for the class of admissible bodies and material surfaces.
Let B be an open set in R

n. A body in B is denoted by P and is postulated to be a set of finite perimeter in B.
Stricly speaking, a set of finite perimeter is determined up to a set of Ln measure zero, thus as a point set, it is
not uniquely defined. Formally, each set of finite perimeter determines an equivalence class of sets. A unique
representation of a body is given by the identification of the body P with TP , an n-current in B defined as
TP = (Ln �P) ∧ e1 ∧ · · · ∧ en. By equation (3),

TP (ω) =
ˆ
P

ω(x) (e1 ∧ · · · ∧ en) dLn
x , for all ω ∈ Dn(B). (31)

Using the terminology of currents represented by integration, μTP = Ln �P and 	TP = e1 ∧ · · · ∧ en are the
Radon measure and unit n-vector associated with the current TP .

Objects of dimension (n − 1) for which one can compute the flux will be referred to as material surfaces.
Formally, a material surface is defined as a pair S = (Ŝ, v) where Ŝ is a Borel subset of B such that for some
body P we have Ŝ ⊂ �(P) and v is the exterior normal of P such that v(x) = vP (x) is defined Hn−1-almost
everywhere on Ŝ. Let v∗(x) be a the covector defined by

v∗(x)(u) = v(x) · u, for all u ∈ R
n, (32)

and set 	TS as the (n − 1)-vector
	TS(x) = v∗(x) � e1 ∧ · · · ∧ en. (33)

It is easy to show that 	TS(x) is a unit, simple (n − 1)-vector Hn−1-almost everywhere on Ŝ. We use TS to denote
the (n − 1)-current in B induced by the material surface S, such that μTS = Hn−1 � Ŝ and 	TS(x) are the Radon
measure and (n − 1)-vector associated with TS , and

TS(ω) =
ˆ
Ŝ

ω(x)(	TS(x))dHn−1
x , for all ω ∈ Dn−1(B). (34)

The unit (n − 1)-vector 	TS(x) is viewed as the natural (n − 1)-vector tangent to the material surface S. By
equation (3) we may write

TS =
(

Hn−1 � Ŝ
)

∧ 	TS . (35)

Consider the material surface ∂P = (�(P), νP ) naturally induced by the body P . One has,

T∂P (ω) =
ˆ

�(P)
ω(x)(	T∂P (x))dHn−1

x ,

=
ˆ

�(P)
(ω(x) � e1 ∧ · · · ∧ en) · νP (x)dHn−1

x ,

=
ˆ
P

dω(x) (e1 ∧ · · · ∧ en) dLn
x ,

= TP (dω) ,

= ∂TP (ω).

(36)
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8 Mathematics and Mechanics of Solids XX(X)

where in the third line above the Gauss–Green theorem [32] was used. Thus, it is noted that T∂P = ∂TP as
expected, and the material surface S associated with the body P may be written as

TS = (∂TP ) � Ŝ. (37)

Since a Radon measure is a Borel regular measure, the current ∂TP � Ŝ is well defined for any Borel set Ŝ [32].
For each TP , we observe that M (TP ) = Ln (P) and M (∂TP ) = Hn−1 (�(P)) correspond to the “volume” of

the body and “area” of its boundary, respectively. By equation (8) one has N (TP ) = Ln (P)+Hn−1 (�(P)) < ∞,
so that the current TP is a normal n-current in B. The open set B is referred to as the universal body and we
define the class of admissible bodies, 
B, as the collection of all bodies in the universal body B, i.e.


B = {TP | P ⊂ B, TP = Ln �P ∈ Nn (B)} . (38)

The result obtained in Gurtin et al. [7] implies that in case B is assumed to be a set of finite perimeter, 
B would
have the structure of a Boolean algebra and would form a material universe in the sense of Noll [36]. In Section
8, a generalized class of admissible bodies will be defined for which a requirement that B is a bounded set will
be sufficient in order to construct a Boolean algebra structure.

The collection of all material surfaces in B will be denoted by ∂
B, so that

∂
B =
{

TS | TS = (∂TP ) � Ŝ, TP ∈ 
B
}

. (39)

By the definition of TS it follows that M (TS) = Hn−1
(
Ŝ
)

for each TS ∈ ∂
B. Thus TS is a flat (n − 1)-

chain of finite mass. The material surfaces TS and TS ′ are said to be compatible if there exists a body TP
such that TS = (∂TP ) � Ŝ and TS ′ = (∂TP ) � Ŝ ′. The material surfaces TS and TS ′ are said to be disjoint if
clo
(Ŝ) ∩ clo

(Ŝ ′) = ∅.

4. Lipschitz mappings and Lipschitz chains
Lipschitz mappings will model configurations of bodies in space. In this section we review briefly some of their
relevant properties.

A map F : U → V from an open set U ⊂ R
n to an open set V ⊂ R

m, is said to be a (globally) Lipschitz
map if there exists a number c < ∞ such that |F(x) −F(y)| ≤ c|x − y| for all x, y ∈ U . The Lipschitz constant
of F is defined by

LF = sup
x,y∈U

|F(y) − F(x)|
|y − x| . (40)

The map F : U → V is said to be locally Lipschitz if for every x ∈ U there is some neighborhood Ux ⊂ U of x
such that the restricted map F |Ux is a Lipschitz map.

Let F : U → R
m be a locally Lipschitz map defined on the open set U ⊂ R

n, then for every K, a compact
subset of U , the restricted map F |K is globally Lipschitz in the sense that LF ,K , the K-Lipschitz constant of
the map F |K , given by

LF ,K = sup
x,y∈K

|F(x) − F(y)|
|x − y| , (41)

is finite.

4.1. Differential topology of Lipschitz maps

The vector space of locally Lipschitz mappings from the open set U ⊂ R
n to the open set V ⊂ R

m is denoted
by L (U , V ). For a compact subset K ⊂ U , define the semi-norm

‖F‖L,K = max
{‖F |K‖∞ , LF ,K

}
, (42)

on L (U , V ), where,
‖F |K ‖∞ = sup

x∈K
|F(x)|. (43)
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The vector space L(U , V ) is endowed with the Lipschitz strong topology (see [37]). It is the analogue of
Whitney’s topology (strong topology) for the space of differentiable mappings between open sets (see [38,
p.35]) and is defined as follows. Given F ∈ L(U , V ), for some indexing set �, let U = {Uλ}λ∈� be an open,
locally finite cover of U ⊂ R

n, V = {Vλ}λ∈� an open cover of V ⊂ R
m and K = {Kλ}λ∈� a family of compact

subsets in U such that Kλ ⊂ Uλ and F(Uλ) ⊂ Vλ for all λ ∈ �. A neighborhood BL (F ,U ,V , δ,K) of F in the
strong topology is defined by U ,V ,K as above and a family of positive numbers, δ = {δλ}λ∈�, as the collection
of all g ∈ L (U , V ) such that g (Kλ) ⊂ Vλ and ‖F − g‖L,Kλ

< δλ, i.e.,

BL (F ,U ,V , δ,K) = {
g ∈ L(U , V ) | g (Kλ) ⊂ Vλ, ‖F − g‖L,Kλ

< δλ

}
. (44)

Definition 4.1. A map ϕ : U −→ V , with U ⊂ R
n, V ⊂ R

m, open sets such that m ≥ n, is said to be a
bi-Lipschitz map if there are numbers 0 < c ≤ d < ∞, such that [39]

c ≤ |ϕ(x) − ϕ(y)|
|x − y| ≤ d, for all x, y ∈ U , x �= y. (45)

Setting L = max
{

1
c , d

}
,

1

L
≤ |ϕ(x) − ϕ(y)|

|x − y| ≤ L, for all x, y ∈ U , x �= y, (46)

and in such a case ϕ is said to be L-bi-Lipschitz.
The map F : U → V , where U ⊂ R

n and V ⊂ R
m are open sets such that m ≥ n, is a Lipschitz immersion

if for every x ∈ U there is a neighborhood Ux ⊂ U of x such that F |Ux is a bi-Lipschitz map, i.e., there are
0 < cx ≤ dx < ∞, and

cx ≤ |ϕ(y) − ϕ(z)|
|y − z| ≤ dx, for all y, z ∈ Ux, y �= z. (47)

Definition 4.2. A Lipschitz map ϕ : U → V is said to be a Lipschitz embedding if it is a Lipschitz immersion
and a homeomorphism of U onto ϕ(U).

The following theorem pertaining to the set of Lipschitz embeddings is given in Fukui and Nakamura [37]
and its proof is analogous to the case of differentiable mappings as in Hirsch [38].

Theorem 4.3. The set LEm(U , V ) is open in L(U , V ) with respect to the Lipschitz strong topology

4.2. Maps of currents induced by Lipschitz maps

Since our objective is to represent bodies as currents, and in particular, as flat chains, and since we wish to
represent configurations as Lipschitz mappings, we exhibit in the following the basic properties of the images
of currents and chains under Lipschitz mappings.

Let T be a current on U and for open sets U ⊂ R
n and V ⊂ R

m, let F : U −→ V be a smooth map whose
restriction to spt(T) is a proper map. For any r-form ω on V , the map F induces a form F# (ω), the pullback of
ω by F , defined pointwise by(F# (ω) (x)

)
(v1 ∧ · · · ∧ vr) = (ω (F (x))) (DF(v1) ∧ · · · ∧ DF(vr)) , (48)

for all v1, . . . , vr ∈ R
n. It is observed that since F is proper only on spt(T), for a form ω with a compact support,

spt(F#(ω)) need not be compact. However, for a real valued function ζ defined on U which is compactly
supported and ζ (x) = 1 for all x in a neighborhood of spt (T) ∩ spt(F#(ω)), the smooth form ζF# (ω) is of
compact support. Thus, the pushforward F# (T) of T by F may be defined as the current on V given by

F# (T) (ω) = T
(
ζF# (ω)

)
, for all ω ∈ Dr (V ) , (49)

for any ζ with the properties given above [40]. The definition of F# (T) (ω) is independent of ζ and thus will be
omitted in the following. The pushforward operation satisfies

∂F# (T) = F# (∂T) , (50)

spt (F#T) ⊂ F {spt (T)} . (51)
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By a direct calculation one obtains that

M (F# (T)) ≤
(

sup
x∈K

|DF(x)|
)r

M (T) . (52)

Applying equation (8) it follows that

N (F# (T)) ≤ N(T) sup

{(
sup
x∈K

|DF(x)|
)r

,

(
sup
x∈K

|DF(x)|
)r−1

}
, (53)

and by (15),

FF{K} (F# (T)) ≤ FK(T) sup

{(
sup
x∈K

|DF(x)|
)r

,

(
sup
x∈K

|DF(x)|
)r+1

}
, (54)

where F {K} is the image of the set K under the map F .
In case F : U −→ V is a locally Lipschitz map, the map F# cannot be defined as in the case of smooth

maps. However, given any compact K ⊂ U , for T ∈ Fr,K (U), one may define the current F# (T) as a weak limit.
Let {Fτ }, τ ∈ R

+, be a family of smooth approximations of F obtained by mollifiers [32]. (It is observed that
flat chains have compact supports so that it is not necessary to require that F is proper.) Set

F#T(ω) = lim
τ→0

Fτ#T(ω), for all ω ∈ Dr(V ).

The sequence {Fτ# (T)} is a Cauchy sequence with respect to the flat norm so that the limit is well defined and
one may write

F# (T) = lim
τ→0

Fτ# (T) . (55)

As a result, the locally Lipschitz map F : U → V induces a map of flat chains

F# : Fr (U) → Fr (V ) .

Properties (50) and (51) hold for the map F# induced by a locally Lipschitz map F and

M (F# (T)) ≤ M (T)
(
LF ,spt(T)

)r
. (56)

It follows that for normal currents

F#(T) ∈ Nr,F{K}(V ), for all T ∈ Nr,K(U),

N (F# (T)) ≤ N(T) sup
{(

LF ,spt(T)

)r
,
(
LF ,spt(T)

)r−1
}

,
(57)

and for flat chains

F#(T) ∈ Fr,F{K}(V ), for all T ∈ Fr,K(U),

FF{K} (F# (T)) ≤ FK(T) sup
{(

LF ,spt(T)

)r
,
(
LF ,spt(T)

)r+1
}

.
(58)

See Federer [32, Section 4.1.14] and Giaquinta et al. [40, Section 2.3] for an extended treatment.
In Whitney’s theory, the Lipschitz image of a flat chain A is defined as follows [26]. First, for P = spt(A)

consider a full sequence of simplicial subdivision {Pi} such that Pi+1 is a simplicial refinement of Pi. Next, let
{Fi} be a sequence of piecewise affine approximations of the Lipschitz map F such that Fi(v) = F(v) for all
vertices v in the simplicial complex Pi. The chain F# (A) is defined as the limit in the flat norm of

F(A) = lim
i→∞

Fi(A). (59)

Although Whitney’s definition of F#(A) differs from that of Federer, the resulting chains are equivalent.
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For a locally Lipschitz map F : U −→ V , and a flat m-cochain X in V , let F# (X ) be the flat r-cochain in U
defined by the relation

F# (X ) (T) = X (F# (T)) , for all T ∈ Fr(U). (60)

The flat r-cochain F#(X ) is represented by the flat r-form F# (DX ), the pullback of the flat r-form DX represent-
ing X by the map F . Note that it follows from Rademacher’s theorem [32] that DF exists Ln-almost everywhere
in U . This does not limit the validity of equation (48), as a flat form is defined only Ln-almost everywhere.

Consider a locally Lipschitz map F : U −→ V from an open set U ⊂ R
n to an open set V ⊂ R

m. For a flat
n-cochain X in V and a current TB induced by an Ln-summable set B in U , one has

F# (X ) (TB) =
ˆ

B
F#DX dLn,

=
ˆ

B
DX (F(x)) (DF(x)(e1) ∧ · · · ∧ DF(x)(en)) dLn

x ,

=
ˆ

B
DX (F(x)) (e1 ∧ · · · ∧ en) JF (x)dLn

x ,

=
ˆ
F{B}

∑
x∈F−1(y)

DX (y) dHn
y .

(61)

In the last equation the area formula for Lipschitz maps [40] was applied and JF (x) is the Jacobian determinant
of F at x. In case F : U → V is injective with U ⊂ R

n and V ⊂ R
n, we have

F# (X ) (TB) = X (F#TB) =
ˆ
F{B}

DX (y) dLn
y = X

(
TF{B}

)
, (62)

thus, F#TB = TF{B}. In particular, for a body P , we note that

F#TP = TF{P}. (63)

For the material surface T∂P, equation (50) gives

F#(T∂P ) = F#(∂TP ) = ∂F#(TP ) = ∂TF{P},

and for a material surface TS equation (37) implies that

F# (TS) = TF{S}. (64)

5. The multiplication of sharp functions and flat chains
A real valued field over a body P will be represented below by the product of the current TP and a sharp
function—a real valued locally Lipschitz mapping. (The terminology is due to Whitney [26].) The space of
sharp functions will be denoted by Ls (U).

A sharp function φ ∈ Ls (U) defines a flat 0-cochain αφ on U as follows. Let ξ be an Ln � U-measurable
function compactly supported in U . Then, Ln ∧ ξ is a 0-current of finite mass in U as defined in equation (2).
We set

αφ(Ln ∧ ξ ) =
ˆ

U
φ(x) (ξ (x)) dLn. (65)

For a compactly supported Ln � U measurable 1-vector field η, Ln ∧ η is a 1-current of finite mass in U defined
in equation (3). Using the existence of the weak exterior derivative d̃φ, Ln � U-almost everywhere, we set

αφ (∂ (Ln ∧ η)) =
ˆ

U
d̃φ (η(x)) dLn, (66)
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and obtain expressions analogous to Wolfe’s representation theorem (equation (24)). Let A ∈ F0(U) be a flat
0-chain in U . Applying Theorem 2.1, A may be expressed as A = Ln ∧ ξ + ∂ (Ln ∧ η) with ξ and η as defined
above. Set

αφ(A) = αφ (Ln ∧ ξ + ∂ (Ln ∧ η)) , (67)

so that αφ defines a continuous, linear function of flat 0-chains. Applying equation (25) we obtain

F
(
αφ

) = sup
x∈U

{|φ(x)|, |̃dφ(x)|} . (68)

For A ∈ Fr(U) and φ ∈ Ls (U), define the multiplication φA by φA = αφ �A using the interior product as
defined in equation (28). That is,

φA(ω) = (
αφ �A) (ω) = (αφ ∧ ω)(A), for all ω ∈ Dr(U), (69)

where αφ ∧ ω is the flat r-cochain represented by the flat r-form φ ∧ ω. Note that by equation (69)

spt (φA) ⊂ spt (φ) ∩ spt (A) . (70)

For the boundary of φA we first note that

∂ (φA) (ω) = φA (dω) = (
αφ ∧ dω

)A, for all ω ∈ Dr−1(U). (71)

By equation (27)
d
(
αφ ∧ ω

) = (
dαφ

) ∧ ω + αφ ∧ dω, (72)

so that

∂ (φA) (ω) = (
d
(
αφ ∧ ω

)− (
dαφ

) ∧ ω
)A,

= (
φ∂A − dαφ �A) (ω) .

(73)

Hence we can write
∂ (φA) = φ∂A − dαφ �A. (74)

Remark 2. The multiplication of sharp functions and chains was originally defined in Whitney [26, Section
VII.1] using the notion of continuous chains which are r-vector field approximations of r-chains.

Proposition 5.1. Given a sharp function φ, for A ∈ Nr,K(U)

Nr,K (φA) ≤
(

sup
x∈K

|φ(x)| + rLφ,K

)
Nr,K (A) , (75)

and for A ∈ Fr,K(U) (see Whitney [26, p.208]

Fr,K (φA) ≤
(

sup
x∈K

|φ(x)| + (r + 1) Lφ,K

)
Fr,K (A) . (76)

Proof. For A ∈ Nr,K(U) we have

M (φA) = sup
ω∈Dr(U)

|φA(ω)|
M (ω)

,

= sup
ω∈Dr(U)

| (αφ ∧ ω
)

(A) |
M (ω)

,

= sup
ω∈Dr(U)

| ´U (φ(x)ω(x))
(	TA(x)

)
dμA|

M (ω)
,

≤ sup
ω∈Dr(U)

supx∈K ‖ (φ(x)ω(x)) ‖M (A)

M (ω)
,

≤ sup
x∈K

|φ(x)|M (A) ,

(77)
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where in the third line we used the representation by integration of A and in the fourth line the term supx∈K |φ(x)|
was extracted since spt(A) ⊂ K.

In order to examine the term M (∂ (φA)), we first apply equation (74)

M (∂ (φA)) ≤ M (φ∂A) + M
(
dαφ �A) . (78)

For the first term on the right-hand side we have,

M (φ∂A) = sup
ω∈Dr−1(U)

|αφ ∧ ω(∂A)|
M (ω)

≤
(

sup
x∈K

|φ(x)|
)

M (A) . (79)

For the second term,

M
(
dαφ �A) = sup

ω∈Dr−1(U)

| ´U dαφ ∧ ω
(	TA

)
dμA|

M (ω)
,

≤ sup
ω∈Dr−1(U)

supx∈K ‖̃dφ(x) ∧ ω(x)‖M (A)

M (ω)
,

≤ sup
ω∈Dr−1(U)

(
r
1

)
supx∈K |̃dφ(x)|M (ω) M (A)

M (ω)
,

= r

(
sup
x∈K

|̃dφ(x)|
)

M (A) ,

(80)

where in the third line we used the fact that for an l-form ω and a k-form ω′

M
(
ω ∧ ω′) ≤

(
l + k

k

)
M (ω) M

(
ω′) , (81)

as is shown in Federer [41].
One concludes that

N (φA) = M (φA) + M (∂ (φA)) ,

≤ sup
x∈K

|φ(x)|M (A) + sup
x∈K

|φ(x)|M (∂A) + rLφ,KM (A) ,

≤
(

sup
x∈K

|φ(x)| + rLφ,K

)
N (A) .

(82)

For a flat r-chain A ∈ Fr,K(U) we use the representation given in equation (15) by A = R + ∂S so that
FK(A) = M (R) + M (S) .

We first observe that

M
(
dαφ � S

) = sup
ω∈Dr(U)

dαφ � S(ω)

M (ω)
,

≤ M (S) M
(
dαφ ∧ ω

)
M (ω)

,

≤ M (S)

M (ω)

(
r + 1

r

)
M (ω) sup

x∈K
|̃dφ(x)|,

(83)

and conclude that
M
(
dαφ � S

) ≤ (r + 1) Lφ,KM (S) . (84)

Estimating FK(φA), one has
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FK(φA) = FK (φR + φ∂S) ,

≤ FK (φR) + FK (φ∂S) ,

≤ FK (φR) + FK

(
dαφ � S + ∂(φS)

)
,

≤ FK (φR) + FK

(
dαφ � S

)+ FK∂(φS),

≤ FK (φR) + FK

(
dαφ � S

)+ FK(φS),

≤ M (φR) + M
(
dαφ � S

)+ M (φS) ,

≤ sup
x∈K

|φ(x)|M (R) + (r + 1)Lφ,KM (S) + sup
x∈K

|φ(x)|M (S) ,

≤
{

sup
x∈K

|φ(x)| + (r + 1)Lφ,K

}
(M (R) + M (S)) ,

=
{

sup
x∈K

|φ(x)| + (r + 1)Lφ,K

}
F (A) ,

(85)

where in the third line we used equation (74), in the sixth line we used equation (14), and in the seventh line we
used equation (84). �

The vector space of sharp functions defined on U and valued in R
m is identified as the space of m-tuples of real

valued sharp functions defined on U , i.e., Ls (U , Rm) = [Ls (U)]m. For φ ∈ Ls (U , Rm) and A ∈ Fr,K(U) the
flat r-chain φA is viewed as an element of the vector space of

(
Fr,K(U)

)m
, i.e., an m-tuple of flat r-chains in U

with (φA)i = φiA.

6. Configuration space and virtual velocities
Traditionally, a configuration of a body P is viewed as a mapping P → R

n which preserves the basic prop-
erties assigned to bodies and material surfaces. Guided by our initial definition of a body TP as a current
induced by P , a set of finite perimeter in the open set B, a configuration of the body P is defined as a mapping
κP ∈ LEm(P , Rn). To distinguish it from a configuration of the universal body to be considered below, such
an element, κP , will be referred to as a local configuration. The choice of Lipschitz type configurations is a
generalization of the traditional choice of C1-embeddings usually taken in continuum mechanics.

It is natural therefore to refer to QP = LEm(P , Rn) as the configuration space of the body P . Since a body
is a compact set, it follows from Theorem 4.3 that QP is an open subset of the Banach space L(P , Rn) ∼=
L (κP {P} , Rn).

For P ,P ′ ∈ 
B the local configurations κP , κP ′ are said to be compatible if

κP |P∩P ′= κP ′ |P∩P ′ . (86)

Note that the intersection of two sets of finite perimeter is a set of finite perimeter; thus, the restricted map may
be viewed as the configuration of the body P ∩ P ′.

A system of compatible configurations κ , is a collection of compatible local configurations κ =
{κP | P ∈ 
B}. Clearly, a system of compatible configuration is represented by a unique element of LEm (B, Rn).
An element κ ∈ LEm (B, Rn) will be referred to as a global configuration, and the global configuration space Q
is the collection of all global configurations, i.e.,

Q = LEm (B, Rn) . (87)

We will view the configuration space as a trivial infinite dimensional differentiable manifold, specifically, a
trivial manifold modeled on a locally convex topological vector space as in Michor [42, Chapter 9].

It is noted, in particular, that a Lipschitz embedding is injective and the image of a set of a finite perimeter
in B is a set of finite perimeter in R

n. In addition, as Section 4 indicates, Lipschitz mappings are the natural
morphism in the category of sets of finite perimeters and in the category of flat chains. Thus, an element κ ∈ Q
preserves the structure of bodies and material surfaces as required. That is, every κ ∈ Q induces a map κ# of
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flat chains. For any TP ∈ 
B, the current κ# (TP ) is an element of Nn (Rn), and for any TS ∈ ∂
B, the current
κ# (TS) is an (n − 1)-chain of finite mass in R

n. By equations (63) and (64) it follows that κ# (TP ) = Tκ{P} and
κ# (TS) = Tκ{S}. Applying equation (57), one obtains for every TS ∈ ∂
B that

M (κ# (TS)) ≤ M (TS)
(
L

κ ,Ŝ
)n−1

. (88)

By equation (56), for every TP ∈ 
B,

N (κ# (TP )) ≤ N (TP ) sup
{(

Lκ ,P
)n

,
(
Lκ ,P

)n−1
}

. (89)

For a global configuration κ , let κ (
B) denote the collection of images of bodies under the configuration κ ,
i.e.,

κ (
B) = {κ# (TP ) | TP ∈ 
B} . (90)

Similarly, the collection of surfaces at the configuration κ is

κ (∂
B) = {κ# (TS) | TS ∈ ∂
B} . (91)

A global virtual velocity at the configuration κ is identified with an element of the tangent space to Q at κ . By
Theorem 4.3, L(B, Rn) is naturally isomorphic to any tangent space to Q. Moreover, κ induces an isomorphism
L(B, Rn) ∼= L (κ {B} , Rn) and an Eulerian virtual velocity is viewed as an element of L (κ {B} , Rn). In what
follows, we refer to L (κ {B} , Rn) as the space of global virtual velocities at the configuration κ and use the
abbreviated notation Wκ for it. Naturally, an element of Wκ may be identified with an n-tuple of sharp functions
defined on κ {B}, i.e. using the Whitney topology on L(κ {B}), Wκ = [L(κ {B})]n.

Focusing our attention to a particular body P , one may make use of the approach of Segev [13] and define
a virtual velocity of a body P at a configuration κP ∈ QP as an element vP in the tangent space TκPQP . It
follows from Theorem 4.3 that one may make the identifications TκPQP ∼= L(P , Rn) ∼= L (κP {P} , Rn).

Theorem 6.1. For every body P , and every κP ∈ QP , and every κ ∈ Q such that κ |P= κP , the restriction
mapping,

ρP : TκQ −→ TκPQP , (92)

is surjective.

Proof. We recall that Kirszbraun’s theorem asserts that a Lipschitz mapping f : A → R
m defined on a set

A ⊂ R
n may be extended to to a Lipschitz function F : R

n → R
m having the same Lipschitz constant (see

Federer [32, Section 2.10.43] or Heinonen [39, Section 6.2]). It follows immediately that any vP ∈ L(P , Rn)
may be extended to an element v ∈ L(B, Rn). �

Anticipating the properties of systems of forces to be considered below, we wish to provide the collection of
restrictions of global virtual velocities to the various bodies with a finer structure than that provided by the
‖·‖L,K-semi-norms. In particular, when considering the restriction v |P of a global virtual velocity v to a body
P , we wish that the magnitude of the resulting object will reflect the mass of P . The local virtual velocity for
the body TP at the configuration κ induced by the global virtual velocity v ∈ Wκ is defined as the n-tuple of
normal n-currents given by the products vκ# (TP ) such that

[vκ# (TP )]i = viκ# (TP ) , for all i = 1, . . . , n. (93)

By equations (77) and (75), each component [vκ# (TP )]i is a normal n-current such that

M ([vκ# (TP )]i) ≤ sup
y∈κ{P}

|vi(y)|M (κ# (TP )) ,

≤ sup
y∈κ{P}

|vi(y)| (Lκ ,P
)n

M (TP ) ,
(94)
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and

N ([vκ# (TP )]i) ≤
((

sup
y∈κ{P}

|vi(y)|
)

+ nLvi,κ{P}

)
N (κ# (TP )) ,

≤
((

sup
y∈κ{P}

|vi(y)|
)

+ nLvi,κ{P}

)
× sup

{(
Lκ ,P

)n
,
(
Lκ ,P

)n−1
}

N(TP ).

(95)

In other words, the mapping Wκ × 
B → Dm (B) given by (v, TP ) �→ vκ# (TP ) is continuous with respect to
both the mass norm and the normal norm.

Similarly, the assignment of a virtual velocity v ∈ Wκ to a material surface TS induces an n-tuple of (n − 1)-
chains defined by the multiplication vκ# (TS). Each component [vκ# (TS)]i is a chain of finite mass and applying
equation (77), one obtains

M ([vκ# (TS)]i) ≤
⎛⎝ sup

y∈κ
{
Ŝ
} |vi(y)|

⎞⎠M (κ# (TS)) ,

≤
⎛⎝ sup

y∈κ
{
Ŝ
} |vi(y)|

⎞⎠(
L

κ ,Ŝ
)n−1

M (TS) .

(96)

7. Cauchy fluxes
Alluding to the approach of Segev [13] again, a force on a body P at the configuration κP ∈ QP is an element
in the dual to the tangent space, T∗

κPQP . In other words, forces on P are elements of the infinite dimensional
cotangent bundle T∗QP . For gP ∈ T∗

κPQP , and vP ∈ TκPQP , the action gP (vP ) is interpreted as the virtual
power performed by the force gP for the virtual velocity vP . It follows immediately that a force on a body P at
κP may be identified with a linear continuous functional on the space of Lipschitz mappings. Such functionals
are quite irregular and will not be considered here.

Instead, we use in this section the notion of a Cauchy flux at the configuration κ as a real valued function
operating on the Cartesian product κ (∂
B) × Wκ . These impose stricter conditions on the force system and
resulting stress fields. The conditions to be imposed still imply that, for a fixed body, a force is a continuous
linear functional of the virtual velocities of that body.

A Cauchy flux represents a system of surface forces operating on the material surfaces, or more precisely,
their images under κ . For a given surface and a given virtual velocity field, the value returned by the Cauchy
flux mapping is interpreted as the virtual power (or virtual work) performed by the force acting on the image of
the material surface under κ for the given virtual velocity.

Definition 7.1. A Cauchy flux at the configuration κ is a mapping of the form

�κ : κ (∂
B) × Wκ → R, (97)

such that the following hold.

Additivity �κ (·, v) is additive for disjoint compatible material surfaces, i.e. for every κ# (TS) , κ# (TS ′) ∈
κ (∂
B) compatible and disjoint,

�κ (κ# (TS∪S ′) , v) = �κ (κ# (TS) , v) + �κ (κ# (TS ′) , v) , (98)

holds for every v ∈ Wκ .

Linearity �κ (κ# (TS) , ·) is a linear function on Wκ , i.e. for all α, β ∈ R and v, v′ ∈ Wκ ,

�κ

(
κ# (TS) , αv + βv′) = α�κ (κ# (TS) , v) + β�κ

(
κ# (TS) , v′) (99)

holds for every κ# (TS) ∈ κ (∂
B).
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Let v ∈ Wκ and κ# (TS) ∈ κ (∂
B), then, by the linearity of the Cauchy flux,

�κ (κ# (TS) , v) = �κ

(
κ# (TS) ,

n∑
i=1

viei

)
=

n∑
i=1

�κ (κ# (TS) , viei) . (100)

Set �i
κ (κ# (TS) , u) = �κ (κ# (TS) , uei) for all u ∈ L(κ {B}), so that �i

κ is naturally viewed as the ith component
of the Cauchy flux at the configuration κ . One has,

�κ (κ# (TS) , v) =
n∑

i=1

�i
κ (κ# (TS) , vi) . (101)

Balance There is a number 0 < s < ∞ such that for all components of the Cauchy flux

�i
κ (κ# (TS) , v) ≤ s ‖v‖L,Ŝ M (κ (TS)) , (102)

for all κ# (TS) ∈ κ (∂
B) and v ∈ Wκ .

Weak balance There is a number 0 < b < ∞ such that for all components of the Cauchy flux

�i
κ (κ# (∂TP ) , v) ≤ b ‖v‖L,P M (κ# (TP )) , (103)

for all κ# (TP ) ∈ κ (
B) and v ∈ Wκ .

It is observed that from the balance property assumed above, for each material surface TS , �κ (κ# (TS) , ·) is
continuous.

Theorem 7.2. Each component of the Cauchy flux �κ induces a unique flat (n − 1)-cochain in κ {B}.

Proof. Let σ n−1 be an oriented (n − 1)-simplex in κ {B}. Since κ {B} is open, there exists some n-simplex σ n in
κ {B} such that σ n−1 ⊂ ∂σ n. Since κ−1 {σ n} is a set of finite perimeter in B it follows that σ n−1 ∈ κ (∂
B). In
other words, every oriented (n − 1)-simplex in κ {B} may be viewed as an element of κ (∂
B).

In what follows, we use extensions of Lipschitz mappings as implied by Kirszbraun’s theorem. First, define
a real valued function α of (n − 1)-simplices. Let u : κ {B} → R be a locally Lipschitz function in κ {B} such
that u(x) = 1 for x ∈ σ n−1, and we set

α
(
σ n−1

) = �i
κ

(
σ n−1, u

)
. (104)

The fact that the definition is independent of the choice of u follows from condition (102) and will be
demonstrated below where α is extended to polyhedral (n − 1)-chains.

Consider a polyhedral (n − 1)-chain A = ∑J
j=1 ajσ

n−1
j in κ {B} such that

{
σ n−1

j

}J

j=1
are pairwise disjoint.

Define the function u : ∪J
j=1σ

n−1
j → R by

u(x) = aj if x ∈ σ n−1
j . (105)

We now apply Kirszbraun’s theorem and obtain ũ : κ {B} → R, a Lipschitz extension to u defined on κ {B}.
By the properties postulated for Cauchy fluxes

�i
κ

(
∪J

j=1σ
n−1
j , ũ

)
=

J∑
j=1

�i
κ

(
σ n−1

j , ũ
)

=
J∑

j=1

ajα
(
σ n−1

j

)
. (106)

The function α is now extended to polyhedral (n − 1)-chains in κ {B} by linearity, i.e.,

α (A) = α

⎛⎝ J∑
j=1

ajσ
n−1
j

⎞⎠ =
J∑

j=1

ajα
(
σ n−1

j

)
. (107)
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Thus, α is a linear functional of polyhedral (n − 1)-chains. The value of α(A) is independent of any particular
extension of u, for given ũ′, ũ any two Lipschitz extensions of u,∣∣∣�i

κ

(
∪J

j=1σ
n−1
j , ũ

)
− �i

κ

(
∪J

j=1σ
n−1
j , ũ′

)∣∣∣
=
∣∣∣�i

κ

(
∪J

j=1σ
n−1
j , ũ − ũ′

)∣∣∣ ,

≤ s
∥∥ũ − ũ′∥∥

L,∪J
j=1σ

n−1
j

M
(

T∪J
j=1σ

n−1
j

)
, (108)

= 0.

From equation (102) it follows that

|α (σ n−1
) | ≤ sM

(
σ n−1

)
, for all σ n−1 ∈ κ {B} , (109)

and by equation (103),
|α (∂σ n) | ≤ bM (σ n) , for all σ n ∈ κ {B} . (110)

The flat norm of a the functional α is defined by

F(α) = sup {α(A) | A is a polyhedarl (n − 1)-chain,

FK(A) ≤ 1, K ⊂ κ {B}} ,
(111)

and we obtain

F(α) = max

{
sup

σ n−1∈κ{B}

α
(
σ n−1

)
M (σ n−1)

, sup
σ n∈κ{B}

α (∂σ n)

M (σ n−1)

}
≤ max {s, b} .

We also recall [32] that polyhedral chains form a dense subspace of the space of flat chains, specifically, for
every A ∈ Fn−1,K (Rn), a compact subset C ⊂ κ(B) whose interior contain K and ε > 0, there is a polyhedral
(n − 1)-chain Aε supported in C such that

FC (A − Aε) ≤ ε. (112)

Thus, for every flat (n−1)-chain A we have a sequence Aj such that limF
i→∞ Aj = A. The cochain α is uniquely

extended a flat (n − 1)-cochain � such that for every A = limF
j→∞ Aj

�(A) = lim
j→∞

α(Aj). (113)

The foregoing part of the theorem is analogous to Whitney [26, p. 157].
In order to complete the proof we need to show that for κ# (TS) ∈ κ (∂
B) and v ∈ Ls (κ {B}) we obtain

� (vκ# (TS)) = �i
κ (κ# (TS) , v). By Federer [32] the class of flat chains of finite mass is the M-closure of normal

currents. The chain vκ# (TS) is a flat (n − 1)-chain of finite mass. Hence, the sequence of polyhedral (n − 1)-
chains

{Aj

}∞
j=1

, converging vκ# (TS) in the flat norm, has a convergent subsequence
{Aj′

}∞
j′=1

such that
{Aj′

}
converges to vκ# (TS) in the flat norm and

M (vκ# (TS)) = lim
j′

M
(Aj′

)
. (114)

By the definition of α and the balance principle, equation (102) the sequence
{
α
(Aj′

)}∞
j′=1

is a Cauchy sequence
in R since |α (Am) − α (Ak) | ≤ sM (Am − Ak). Hence

lim
j′→∞

α
(Aj′

) = �i
κ (κ# (TS) , v) . (115)
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Since � is an extension of α it follows that �(A′
j) = α(A′

j) and

|� (vκ# (TS)) − �i
κ (κ# (TS) , v) | = |� (vκ# (TS)) − lim

j′→∞
α(A′

j)|,
= |� (vκ# (TS)) − lim

j′→∞
�
(Aj′

) |,
= |� (vκ# (TS)) − �

(
lim

j′→∞
Aj′

)
|,

= |�
(

vκ# (TS) − lim
j′→∞

Aj′

)
|,

≤ max {s, b} lim
j′→∞

F
(

viκ# (TS) − A′
j

)
= 0,

(116)

which completes the proof. �

The extension of each flat (n − 1)-cochain from κ {B} ⊂ R
n to R

n is done trivially by setting its representing
flat (n − 1)-form to vanish outside κ {B}. We conclude that a Cauchy flux �κ induces a unique n-tuple of flat
(n − 1)-cochains in R

n such that

�κ (κ# (TS) , v) =
n∑

i=1

� i (viκ# (TS)) , (117)

for all v ∈ Wκ and κ# (TS) ∈ κ (∂
B). The inverse implication is provided by

Theorem 7.3. An n-tuple {� i} of flat (n − 1) cochains in R
n induces by equation (117) a unique Cauchy flux

�κ .

Proof. For each v ∈ Wκ and κ#TS , the Cauchy flux �κ (κ# (TS) , v) will be defined by equation (117), and by the
components

�i
κ (κ# (TS) , vi) = � i (viκ# (TS)) . (118)

The additivity (98) and linearity (99) properties clearly hold since � i is a linear function of flat (n − 1)-chains.
For the balance (102) and weak balance (103) properties, recall that since � i is a flat (n − 1)-cochain, there
exists C > 0 such that for every flat (n − 1)-chain A with support in K, we may write |� i(A)| ≤ CFK (A). For
the balance property

|�i
κ (κ# (TS) , vi) | = |� i (viκ# (TS)) |,

≤ CFκ(S) (viκ# (TS)) ,

≤ CM (viκ# (TS)) ,

≤ C ‖vi‖L,Ŝ M (κ# (TS)) .

(119)

For the weak balance

|�i
κ (κ# (∂TP ) , vi) | = |� i (viκ# (∂TP )) |,

≤ CFκ(P) (viκ# (∂TP )) ,

= CFκ(P) (∂ (viκ# (TP )) + dv � TP ) ,

≤ C
[
Fκ(P) (∂ (viκ# (TP ))) + Fκ(P) (dv � κ# (TP ))

]
,

≤ C
[
Fκ(P) (viκ# (TP )) + Fκ(P) (dv � κ# (TP ))

]
,

≤ C [M (viκ# (TP )) + M (dv � κ# (TP ))] ,

≤ C

[
sup

x∈κ(P)
|vi(x)|M (κ# (TP )) + nLv,κ(P)M (κ# (TP ))

]
,

≤ C(n + 1) ‖vi‖L,κ(P) M (κ# (TP )) . �

(120)
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Thus, Theorems 7.2 and 7.3 restate the point of view presented by Rodnay and Segev [25] that the balance
and weak-balance assumptions of stress theory may be replaced by the requirement that the system of forces is
given in terms of an n-tuple of flat (n − 1)-cochains.

8. Generalized bodies and generalized surfaces
The representation of a Cauchy flux by an n-tuple of flat (n − 1)-cochains enables the generalization of the class
of admissible bodies and the introduction of a larger class of material surfaces. By a generalized body we will
mean a subset P̊ of the open set B such that the induced current TP̊ is a flat n-chain in B. Note that the general
structure constructed thus far holds for generalized bodies. For any configuration κ ∈ LEm(B, Rn), the current
κ#

(
TP̊
)

is a flat n-chain in R
n, and the operations �

(
vκ#

(
∂TP̊

))
and d�

(
vκ#

(
TP̊
))

are well defined.

Definition 8.1. A generalized body is a set P̊ ⊂ B such that the induced current TP̊ = (Ln�P̊) ∧ e1 ∧ · · · ∧ en

given by

TP̊ (ω) =
ˆ
P̊

ω(x)(e1 ∧ · · · ∧ en)dLn
x (121)

is a flat n-chain in B.

By Federer [32] the current TP̊ is a rectifiable n-current or an integral flat n-chain in B. Moreover, we have

F
(
TP̊
) = M

(
TP̊
) = Ln

(
P̊
)

. (122)

The above definition of generalized bodies implies that a generalized body may be characterized as an n-
rectifiable set in B [32], or alternatively, as an Ln-summable set in B. The class of generalized admissible
bodies is


̊B =
{

TP̊ | P̊ ⊂ B, TP̊ ∈ Fn(B)
}

. (123)

As mentioned in Section 3, 
̊B will have the structure of a Boolean algebra if B was postulated to be a bounded
set. Since Nn(B) ⊂ Fn(B), it is clear that 
B ⊂ 
̊B. Given TP̊ , TP̊ ′ ∈ 
̊B clearly TP̊∪P̊ ′ is an element of 
̊B.
Contrary to the previous definition of bodies, a generalized body needs not be a set of finite perimeter. Although
P̊ is a bounded set, its measure theoretic boundary, �(P̊), may be unbounded in the sense that Hn−1(�(P̊)) = ∞.
Generally speaking, the boundary of a rectifiable set may not be a rectifiable set. A classical example of such a
generalized body in R

2 is the Koch snowflake. In Silhavy [31], such a body is referred to as a rough body.

Remark 3. It is noted that although every generalized body P̊ induces an integral flat n-chain, not every inte-
gral flat represents a generalized body. However, it seems plausible that a flat n-class, introduced by Ziemer
[43], is in one to one correspondence with the class of generalized bodies. This issue will not be considered in
this work.

Considering a generalized surface, we first note that for a generalized body TP̊ , ∂TP̊ is a flat (n − 1)-chain
in B. In addition, the following argument [44, Lemma 2.1]indicates that the restrictions of flat chains to general
Borel subsets are not necessarily flat chains. Let Hλ,s denote the closed half space defined by the linear functional
λ : R

n → R such that
Hλ,s = {x ∈ R

n | λ(x) ≥ s} . (124)

Let TP̊ ∈ FK,n(B) be a generalized body in B supported in a compact subset K of B, so that ∂TP̊ is a flat
(n − 1)-chain, and consider the chain ∂TP̊ � Hλ,s. One has,

FK

(
∂TP̊ � Hλ,s

) = FK

(
∂TP̊ � Hλ,s + ∂

(
TP̊ � Hλ,s

)− ∂
(
TP̊ � Hλ,s

))
,

≤ FK

(
∂TP̊ � Hλ,s − ∂

(
TP̊ � Hλ,s

))+ FK

(
∂
(
TP̊ � Hλ,s

))
,

≤ FK

(
∂TP̊ � Hλ,s − ∂

(
TP̊ � Hλ,s

))+ FK

(
TP̊ � Hλ,s

)
,

≤ M
(
∂TP̊ � Hλ,s − ∂

(
TP̊ � Hλ,s

))+ M
(
TP̊ � Hλ,s

)
.

(125)
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Since TP̊ is a chain of finite mass, M
(
TP̊ � Hλ,s

)
< ∞. In addition

ˆ ∞

−∞
M
(
∂TP̊ � Hλ,s − ∂

(
TP̊ � Hλ,s

))
ds = M

(
TP̊
)

, (126)

and so we can show that M
(
∂TP̊ � Hλ,s − ∂

(
TP̊ � Hλ,s

))
< ∞ only for L1-almost every s ∈ R.

In order to define a generalized material surface we follow Silhavy [31] where the various properties of flux
over fractal boundaries are investigated.

Definition 8.2. For a generalized body TP̊ , the subset S̊ ⊂ �(P̊) is said to be a trace if there exists a set of
finite perimeter M such that S̊ = �(P̊) ∩ M and Hn−1(�(P̊) ∩ � (M)) = 0. Each trace S̊ is associated with a
unique flat (n − 1)-chain TS̊ given by

TS̊ = ∂TP̊∩M − ∂TM � P̊ . (127)

For each ω ∈ Dn−1(B) we have

TS̊(ω) =
ˆ
P̊∩M

dω(e1 ∧ · · · ∧ en)dLn −
ˆ

�(M)∩P̊
ω(	T∂M )dHn−1, (128)

where 	T∂M is defined as in equation (33). The set M , of finite perimeter, is referred to as the generator of the
trace S̊ and it is shown in Silhavy [31] that S̊ depends on M only through the intersection of ∂TP̊ with M .

The collection of generalized material surfaces is defined as

∂
̊B =
{

TS̊ | S̊ is a trace in B
}

. (129)

We note that by Proposition 5.1, for all TS̊ ∈ ∂
̊B and v ∈ Wκ , the multiplication vκ#

(
TS̊
)

is an n-tuple
of flat (n − 1)-chains. Thus, by Theorem 7.2 the Cauchy flux is naturally extended to the Cartesian product

Wκ × κ
(
∂
̊B

)
.

9. Virtual strains and the principle of virtual work

For TP̊ ∈ ∂
̊B and v ∈ Wκ , ∂
(
vκ#

(
TP̊
))

is an n-tuple of flat (n − 1)-chains in B. Thus, �
(
∂
(
vκ#

(
TP̊
)))

is a
well defined action of an n-tuple of flat (n − 1)-cochains on an n-tuple of flat (n − 1) chains. Applying equation
(74) for each component we obtain

n∑
i=1

�i

(
∂
(
viκ#

(
TP̊
))) =

n∑
i=1

�i

(
viκ#

(
∂TP̊

))−
n∑

i=1

�i

(
dαvi � κ#

(
TP̊
))

. (130)

Here αvi is the flat 0-chain defined in Section 5.
The terms on the right-hand side of the equation above may be interpreted as follows. The term∑n

i=1 �i

(
viκ#

(
∂TP̊

))
is interpreted as the virtual power performed by the surface forces for the virtual velocity v

on the boundary of the body TP̊ . Next, for −�
(
∂
(
vκ#

(
TP̊
))) = −d�

(
vκ#

(
TP̊
))

, the n-tuple of flat n-cochains
−d� is viewed as the body force. Thus the term −d�

(
vκ#

(
TP̊
))

is interpreted as the virtual power performed
by the body forces along the virtual velocity v on the body TP̊ . Finally,

∑n
i=1 �i

(
dαvi � κ#

(
TP̊
))

is interpreted
as the virtual power performed by the Cauchy flux along the derivative of the virtual velocity v on the body TP̊ .

An internal virtual velocity is viewed as an element upon which the Cauchy flux will act. Thus, a generalized
internal virtual velocity is defined as an n-tuple of flat (n − 1)-chains in κ {B}. A typical internal virtual velocity
will be denoted by χ and is viewed as a velocity gradient or a linear strain-like entity. Clearly, not every internal
virtual velocity is derived from an external virtual velocity. Motivated by the above physical interpretation and
the classical formulation of the principle of virtual work, we introduce the kinematic interpolation map

ε : κ(
̊B) × Wκ → [Fn−1 (κ (B))]n (131)
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such that each component is given by

(
ε
(
κ#

(
TP̊
)

, v
))

i
= vi∂κ#

(
TP̊
)− ∂

(
viκ#

(
TP̊
))

. (132)

Note that the map ε is disjointly additive in the first argument and linear in the second. An internal virtual
velocity χ is said to be compatible if there are P̊ ∈ 
̊B and v ∈ Wκ such that

χ = ε
(
κ#

(
TP̊
)

, v
)

. (133)

Given a compatible virtual internal velocity χ = ε
(
κ#

(
TP̊
)

, v
)

we may write,

�
(
ε
(
κ#

(
TP̊
)

, v
)) =

n∑
i=1

�i

(
vi∂κ#

(
TP̊
)− ∂

(
viκ#

(
TP̊
)))

,

=
n∑

i=1

�i

(
viκ#

(
∂TP̊

))−
n∑

i=1

d�i

(
viκ#

(
TP̊
))

,

=
n∑

i=1

dαvi ∧ �i

(
κ#

(
TP̊
))

, (134)

and obtain

�
(
vκ#

(
∂TP̊

))− d�
(
vκ#

(
TP̊
)) = �

(
ε
(
κ#

(
TP̊
)

, v
))

, (135)

for all TP̊ ∈ 
̊B and v ∈ Wκ . We view the last equation as a generalization of the principle of virtual power.

10. Stress
Applying the representation theorem of flat cochains, a Cauchy flux is represented by an n-tuple of flat (n − 1)-
forms in κ {B}. Let �i denote the flat (n − 1)-cochain associated with the ith component of the Cauchy flux.
Then, D�i will be used to denote its representing flat (n − 1)-form. The n-tuple of flat (n − 1)-forms in κ {B}
representing the Cauchy flux will be denoted by D� and will be referred to as the Cauchy stress.

Using the representation theorem for flat forms we obtain an integral representation of the principle of virtual
power given in equation (135). The virtual power performed by surface forces is represented by

n∑
i=1

�i

(
viκ#

(
∂TP̊

))
=

n∑
i=1

(
κ#
(
d
(
αvi ∧ �i

))) (
TP̊
)

,

=
n∑

i=1

ˆ
P̊

d̃
(
viD�i (κ (x))

)
(Dκ(x)(e1) ∧ · · · ∧ Dκ(x)(en)) dLn

x , (136)

=
n∑

i=1

ˆ
P̊

d̃
(
viD�i (κ (x))

)
(e1 ∧ · · · ∧ en) Jκ (x)dLn

x .
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Equations (60) and (48) were used in the first and second lines. The virtual power performed by body forces is
represented by

−
n∑

i=1

d�i

(
viκ#

(
TP̊
))

= −
n∑

i=1

κ#
(
αvi ∧ d�i

) (
TP̊
)

,

= −
n∑

i=1

ˆ
P̊

(
vĩdD�i (κ (x))

)
(Dκ(x)(e1) ∧ · · · ∧ Dκ(x)(en)) dLn

x , (137)

= −
n∑

i=1

ˆ
P̊

(
vĩdD�i (κ (x))

)
(e1 ∧ · · · ∧ en) Jκ (x)dLn

x .

The virtual power performed by internal forces is represented by

n∑
i=1

dvi ∧ �i

(
κ#

(
TP̊
))

=
n∑

i=1

κ#
(
dαvi ∧ �i

) (
TP̊
)

,

=
n∑

i=1

ˆ
P̊

(̃
dvi ∧ D�i (κ (x))

)
(Dκ(x)(e1) ∧ · · · ∧ Dκ(x)(en)) dLn

x , (138)

=
n∑

i=1

ˆ
P̊

(̃
dvi ∧ D�i (κ (x))

)
(e1 ∧ · · · ∧ en) Jκ (x)dLn

x .

For κ : B → R
n, a Lipschitz map, κ#� is an n-tuple of flat (n − 1)-cochains in B. Each cochain κ#�i is

represented by a flat (n−1)-form Dκ#�i
= κ#D�i . The associated n-tuple of flat (n−1)-forms, κ#D� is identified

as the Piola–Kirchhoff stress (
κ#D�(x)

)
i
= Jκ (x)D�i (κ(x)) . (139)
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