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Stresses on manifolds may be introduced from two different points of view. For an m-dimensional material universe, the variational approach regards stresses as fields that associate m-forms, the power densities, with the first jets of generalized velocity fields. In the second approach, the Cauchy approach, stresses are covector valued (m -1)-forms whose odd restrictions to the the boundary of bodies give the surface forces on them. The relation between the two approaches is studied for general manifolds that are not equipped with a connection.

Introduction

This paper considers some aspects of force and stress theory on general differentiable manifolds. In the course of generalizing force and stress theory to differentiable manifolds, one encounters difficulties originating from the lack of metric structure used in the traditional formulation of Cauchy's theorem for the existence of stresses. In addition, since vector fields on manifolds cannot be integrated, one has to integrate the power density and define forces as functionals producing the power from generalized velocities.

For bodies that are m-dimensional manifolds, stresses may be introduced using two different approaches. The first approach, to which we will refer as the variational approach, introduces stresses as measures on bodies that produce the power from the derivatives, or more precisely jets, of the generalized velocity fields. This approach was developed in [START_REF] Epstein | Differentiable manifolds and the principle of virtual work in continuum mechanics[END_REF] and [START_REF] Segev | Forces and the existence of stresses in invariant continuum mechanics[END_REF]. The second approach, to which we refer as the Cauchy approach, developed recently in [START_REF] Segev | On the geometry of Cauchy's theory for balance of scalar valued properties[END_REF] and Segev and Rodnay (1999), presents stresses as (m -1) vector valued differential forms on the material manifold whose oriented restriction to the boundaries of bodies, (m -1)-dimensional submanifolds, provide the surface forces on them. Some of the relations between the variational approach and the Cauchy approach is discussed in [START_REF] Epstein | Differentiable manifolds and the principle of virtual work in continuum mechanics[END_REF] and [START_REF] Segev | Forces and the existence of stresses in invariant continuum mechanics[END_REF] for the particular case where a connection is given on the space manifold. In this work we will study these relations further and will generalize them to the case where a connection is not specified.

The general setting is as follows. The material manifold or universal body is a manifold U of dimension m, and bodies are compact m-dimensional submanifolds with boundary of U. For a given configuration of the universal body, a generalized velocity field is a vector field or a section w : U → W of a vector bundle π : W → U. This vector bundle may be thought of as the pullback of the tangent bundle of the physical space manifold using the current configuration of the material manifold in the physical space. (For motivation and details see [START_REF] Segev | Forces and the existence of stresses in invariant continuum mechanics[END_REF].) Throughout this paper it is assumed that the manifold U is oriented by a specific orientation. This restriction, that we make in order to simplify the notation, may be removed using odd forms (see Segev and Rodnay, 1999).

Generalized Cauchy Stresses

This Section reviews the generalization of the Cauchy approach for the introduction of stresses to manifolds. The Cauchy approach views stresses as means for specifying the surface forces on the various subbodies by a single field-the stress field.

Body Forces and Surface Forces

As mentioned above, forces for manifolds are defined in terms of the power they produce for a generalized velocity field. In general, force densities will be pointwise linear mappings that take generalized velocities and give the corresponding power densities-forms of order n ≤ m that can be integrated over ndimensional submanifolds of U.

Thus, a body force over a body B is a section β B of L W, m (T * B) and a surface force on B is a section τ B of L W, m-1 (T * ∂B) . Using body forces and surface forces, the force (power functional) F B is represented in the form

F B (w) = B β B (w) + ∂B τ B (w)
We note that body forces and surface forces may be regarded as covector valued forms. For example, a surface force τ B may be identified with a section τB of m-1 T (∂B), W * . The two are related by

τB (v 1 , . . . ,v m-1 )(w) = τ B (w)(v 1 , . . . ,v m-1 )

Cauchy Stresses and Their Inclined Restrictions

We use the term (generalized) Cauchy stress for a section of the bundle L W, m-1 (T * U) . Again, a

Cauchy stress may be regarded as an element of m-1 T U, W * . A Cauchy stress σ associates with an arbitrary body B a surface force τ B as follows. Consider a body B and a point x ∈ ∂B. Let v ∈ T x U be a vector transversal to ∂B and pointing outwards from B. The inclined restriction ι * B (σ)

x of σ x = σ(x) to L W, m-1 (T * ∂B) is given by the requirement that for any element w ∈ W x ι * B (σ) x (w)(v 1 , . . . ,v m-1 ) = σ x (w)(v 1 , . . . ,v m-1 )
if {v, v 1 , . . . ,v m-1 } are positively oriented and

ι * B (σ) x (w)(v 1 , . . . ,v m-1 ) = -σ x (w)(v 1 , . . . ,v m-1 )
if {v, v 1 , . . . ,v m-1 } are negatively oriented. (In other words, the vector valued forms associated with σ is restricted to ∂B with odd dependence on the outer orientation.) Thus, the surface force induced by the Cauchy stress σ is given by the generalized Cauchy formula

τ B = ι * B (σ)
It is noted that in case B and B are two bodies with T x ∂B = T x ∂B that lie on opposite sides of the common tangent space, then,

ι * B (σ)(x) = -ι * B (σ)(x) as expected. 3 Generalized Variational Stresses 3.1 C 1 -Force Functionals
The rational behind the generalized variational formulation of stress theory is the framework for mechanical theories where a configuration manifold is constructed for the system under consideration, generalized velocities are defined as elements of the tangent bundle to the configuration manifold, and generalized forces are defined as elements of the cotangent bundle of the configuration space. If one considers a configuration of a body in continuum mechanics as an embedding of the body manifold B in a space manifold M, the natural topology for the collection of such embeddings is the C 1 topology for which the collection of embeddings is open in the collection of all C

1 mappings of the body into space. Using this topology, the tangent space to the configuration manifold at the configuration κ :

B → M is C 1 κ * (T M) ,
the Banachable space of C 1 sections of the pullback κ * (T M). Thus, forces in continuum mechanics are elements of C 1 κ * (T M) * -linear functionals on the space of differentiable vector fields equipped with the C 1 topology.

The basic representation theorem (see [START_REF] Segev | Forces and the existence of stresses in invariant continuum mechanics[END_REF] states that a force functional F ∈ C 1 κ * (T M) * may be represented by measures on U-the variational stress measures-valued in J 1 (κ * (T M)) * , the dual of the first jet bundle J 1 (κ * (T M)) → U.

Assuming that κ is defined on the whole of the material universe U, we use the notation W for κ * T M. This vector bundle can be restricted to the individual bodies, and with some abuse of notation, we use the same notation for both the bundle and its restriction to the individual bodies.

Variational Stress Densities

In the smooth case, the variational stress measures are given in terms of sections of the vector bundle of linear mapping L J 1 (W ), m (T * U) . We will refer such sections as variational stress densities. If S is a variational stress density, then the power of the force F it represents over the body B, while the the generalized velocity is w, is given by

F B (w) = B S(j 1 (w))
This expression makes sense as S(j 1 (w)), is an m-form whose value at a point x ∈ B is S(x) j 1 (w)(x) .

Assume that a vector bundle coordinate system (x i , w α ), i = 1, . . . , m, α = 1, . . . , dim(W ) is given in π -1 (U ), for an open set U ⊂ U. Thus, a section of W will be represented locally by the functions {w α (x i )} and the jet of a section is represented locally by the functions {w α (x i ), w β ,j (x k )}, where a subscript following a comma indicates partial differentiation. A variational stress density will be represented locally by the functions {S α1...m , S j β1...m } so that the single component of the m-form S j 1 (w) in this coordinate system is S j 1 (w) 1...m = S α1...m w α + S j β1...m w β ,j

Note that the notation distinguishes between the components of S that are dual to the values of the section and those dual to the derivatives by the number of indices only. (Here and in the sequel we abuse the notation by using the same notation for both a function and its values.) Since in the sequel we consider only the smooth case, we will use "variational stresses" to refer to the densities.

Connections and Variational Stress Tensor Densities

If a connection is given on the vector bundle W , the jet bundle is isomorphic with the Whitney sum W ⊕ U L T U, W by j 1 (w) → (w, ∇w), where ∇ denotes covariant derivative. Thus, in case a connection is given, a variational stress may be represented by sections (S 0 , S 1 ) of

L W, m (T * U) ⊕ U L L T U, W , m (T * U)
so the power is given by (see [START_REF] Segev | Forces and the existence of stresses in invariant continuum mechanics[END_REF])

F B (w) = B S 0 (w) + B S 1 (∇w)
We will refer to the section S 1 of L L T U, W , m (T * U) as the variational stress tensor.

In [START_REF] Segev | Forces and the existence of stresses in invariant continuum mechanics[END_REF] it was shown that with a given connection, and with appropriate definition of the divergence of the variational stress tensor S 1 the power may be written in terms of body forces and surface forces.

The Vertical Sub-bundle of the Jet Bundle

We recall that a k-jet A ∈ J k (W ) x is an equivalence class of sections of W that have the same values of their k-tangent at x, where for k = 0, J 0 (W ) is identified with W . Let π 1 0 : J 1 (W ) → W be the natural projection on the jet bundle that assign to any 1-jet at x ∈ U the value of the corresponding 0-jet, i.e., the value of the section at x.

We define VJ 1 (W ), the vertical sub-bundle of J 1 (W ), to be the vector bundle over U such that

VJ 1 (W ) = (π 1 0 ) -1 (0)
where 0 is the zero section of W . A jet A ∈ J 1 (W ) is represented locally by (x i , A α , A β j ), where A α represent the value of a section and A β j represent a value of the derivative of a section in the particular coordinate system chosen. Thus, elements of the the vertical sub-bundle will be represented in the form (x i , 0, A β j ).

Next, we show that VJ 1 (W ) is isomorphic to the bundle of linear mappings L T U, W . Consider a point x 0 ∈ U and let w be a section of W that represents an element A ∈ VJ 1 (W ) x0 , i.e., w(x 0 ) = 0. We will show that w induces an element of L T U, W linearly in A and injectively. Consider the mapping

T 0 w : T x0 U → T 0(x0) W
given by

T 0 w(v) = T w(v) -T 0(v) v ∈ T x0 U
Note that the subtraction done in T W makes sense as both vectors are tangent at the zero vector at W x0 . Clearly,

T π • T 0 w = T π • T w -T π • T 0 = 0
so the image of T 0 w is in the vertical sub-bundle of T W , specifically in T 0(x0) (W x0 ). As a tangent space to a vector space, there is a natural isomorphism

i : T 0(x0) (W x0 ) → W x0
If in local coordinates v and w are represented by (x i 0 , v j ) and (x i , w α ) respectively, with w α (x 0 ) = 0, then, j 1 (w) is represented locally by (x i , w α , w β ,k ) and T w(v) is represented by

(x i 0 , 0, v j , w β ,k v k ). In addition, as T 0(v) is represented by (x i 0 , 0, v j , 0), T 0 w(v) is represented by (x i 0 , 0, 0, w β ,k v k ) and i•T 0 w(v) is represented by (x i 0 , w β ,k v k ). Thus, i • T 0 w(x 0 ) ∈ L T x0 U, W x0
and from the local representation, (x i 0 , w β ,j ), it is clear that it depends on the jet of w linearly and injectively. We conclude that the mapping that takes the J 1 -equivalence class of w into i • T 0 w is an isomorphism that we denote by

I + : VJ 1 (W ) → L T U, W

The Vertical Component of a Variational Stress

Let I V : VJ 1 (W ) → J 1 (W ) be the inclusion mapping of the sub-bundle. Clearly I V is injective. Thus, we may consider the linear injection

I = I V • (I + ) -1 : L T U, W → J 1 (W ) If an element A ∈ L T U, W is represented locally by (x i , A α j ), then (I + ) -1 (A) is represented locally by (x i , 0, A α j )
and so is I(A).

The foregoing allow us to define a "dual" linear surjection

I * : L J 1 (W ), m (T * U) → L L T U, W , m (T * U)
given by I * (S) = S • I.

For a variational stress S, we will refer to

S + = I * (S) ∈ L L T U, W , m (T * U)
as the vertical component of S. Assume that the value of the variational stress is represented locally by (S α1...m , S j β1...m ) and S + = I * (S) is represented by (S + i α1...m ). Then, for an element A ∈ L T U, W x that is represented locally by (x i , A α j ), we have

S + i α1...m A α j = S α1...m 0 + S j α1...m A α j
Hence, the collection of components {S + i α1...m = S i α1...m } has an invariant meaning.

Clearly, one cannot define invariantly (without a connection) a "horizontal" component to the stress.

Variational Fluxes

Since the jet of a real valued function ϕ on U can be identified with a pair (ϕ, dϕ) in the trivial case where W = U × R, the jet bundle can be identified with the Whitney sum W ⊕ U T * U. Thus, VJ 1 (W ) can be identified with T * U and the vertical component of the variational stress is valued in L T * U, m (T * U) .

We will refer to sections of L T * U, m (T * U) as variational fluxes.

We first note that the mapping

i ∧ : m-1 (T * U) → L T * U, m (T * U)
given by i ∧ (ω)(φ) = φ ∧ ω is an isomorphism. (Clearly, the dimensions of the two spaces are equal and i ∧ (ω) = 0 implies that ω = 0.) Let ω ∈ m-1 (T * U) be given locally by ω 1...î...m dx 1 ∧ . . . ∧ dx i ∧ . . . ∧dx m , where the "hat" indicates an omission of the term, and let ω ∧ = i ∧ (ω) be given by ω ∧ i 1...m . Then, for a 1-form φ given locally by φ j dx j we have

ω ∧ i 1...m φ i dx 1 ∧ . . . ∧dx m = φ j dx j ∧ ω 1...î...m dx 1 ∧ . . . ∧ dx i ∧ . . . ∧dx m = i (-1) i-1 ω 1...î...m φ i dx 1 ∧ . . . ∧dx m so ω ∧ i 1.
..m = (-1) i-1 ω 1...î...m is the local expression for the isomorphism. (Note that here and in the sequel we write the summation symbol explicitly when Einstein's summation convention cannot be used clearly as in the case of the index i.) We conclude that any variational flux may be viewed as an (m -1)-form.

The Cauchy Stress Induced by a Piola-Kirchhoff Stress

Consider the contraction vector bundle morphism

c : L L T U, W , m (T * U) ⊕ U W → L T * U, m (T * U) given by c(B, w)(φ) = B(w ⊗ φ) for B ∈ L L T U, W , m (T * U) , w ∈ W , and φ ∈ T * U, where (w ⊗ φ)(v) = φ(v)w. Locally, if B is given by B i α1...m then, c(B, w) is is represented by B i α1...m w α .
Although this is an extension of the usual notation we will still use w B for c(B, w).

Consider a section S + of L L T U, W , m (T * U) and a vector field w. Then, w S + is a variational flux and i

-1 ∧ (w S + ) ∈ m-1 (T * U) is represented by i (-1) i-1 S + i α1...m w α dx 1 ∧ . . . ∧ dx i ∧ . . . ∧dx m
where the summation over α is implied. We note that i -1 ∧ (w S + ) depends on w linearly, so we have a section σ of L W, 

m- 1 1 ( 1 (

 111 (T * U) satisfying σ(w) = i -1 ∧ (w S + )Locally σ is represented byσ α1...î...m = (-1) i-1 S + i α1...m(no sum over i)We will usei σ : L L T U, W , m (T * U) → L W, m-T * U)to denote the obviously linear injective mapping such that σ = i σ • S + .We conclude that the mappingi σ • I * : L J 1 (W ), m (T * U) → L W, m-T * U)is a linear mapping (no longer injective) that gives a Cauchy stress to any given variational stress. Locally it is given by(x i , S α1...m , S j β1...m ) → (x i , σ β1...î...m )where,σ β1...î...m = (-1) i-1 S + i β1...m(no sum over i)5 The Divergence of a Variational Stress and the Principle of Virtual Power5.1 The Divergence of a Variational FluxLet s be a variational flux. We define the divergence div s of s to be the m-form defined bydiv s = d i -1 ∧ (s)Using the same scheme of notation for the local representatives as before, we have(div s) 1...m dx 1 ∧ . . . ∧dx m = d i (-1) i-1 s i 1...m dx 1 ∧ . . . ∧ dx i ∧ . . . ∧dx m = i (-1) i-1 s i 1...m,j dx j ∧ dx 1 ∧ . . . ∧ dx i ∧ . . . ∧dx m = s i 1...m,i dx 1 ∧ . . . ∧dx m as expected.
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The Divergence of a Variational Stress

For a given variational stress S and a generalized velocity w, consider the variational flux w I * (S) and its divergence div w I * (S) = d i -1 ∧ (w I * (S) given locally by (S i α1...m w α ) ,i dx 1 ∧ . . . ∧dx m = S i α1...m,i w α + S i α1...m w α ,i dx 1 ∧ . . . ∧dx m

Next, as S(j 1 (w)), is represented locally by

is represented locally by

From its local representation it is clear that div w I * (S) -S(j 1 (w)) is linear in w, hence, there is an element of L W, m (T * U) that gives this difference when it is evaluated on a section w. Thus, we define the generalized divergence of the variational stress S to be the section Div(S) of the vector bundle L W, m (T * U) satisfying Div(S)(w) = div w I * (S) -S(j 1 (w))

for every generalized velocity field w.

The Principle of Virtual Power

Consider the power expended by the variational stresses. Using the previous results we have

where, σ = i σ • I * (S) is the Cauchy stress induced by the variational stress S, we may write the power in the form

We may use Stokes' theorem on the first integral to obtain

where, i * B is the restriction of (m -1)-forms on U to ∂B so

We conclude that the force induced on B by the variational stress S is composed of a body force and a surface force, i.e., it is of the form

where τ B (w) = i * B σ(w) and Div S + β B = 0.

Newton's Law of Action and Reaction

Newton's law of action and reaction, stating that τ B (x) = -τ B (x) if the bodies B and B are tangent at x and lie on the other side of the common tangent space, follows in the classical case from the linear dependence of the traction on the unit normal to the boundary. In the generalized theory of Cauchy stresses reviewed above, Newton's law is implied by the definition of the inclined restriction.

In the dependence of the surface force τ B (w) = i * B σ(w) that we obtained from Stokes' theorem, this odd dependence is implicit because the value

for any collection of m -1 vectors {v 1 , . . . ,v m-1 }, does not depend on B.

We recall that the assumed orientation on U and the outwards pointing vectors defined on the boundary of a body B determine a unique orientation on ∂B-an orientation for which {v 1 , . . . ,v m-1 } are positively oriented if for any outwards pointing vector v, the vectors {v, v 1 , . . . ,v m-1 } are positively oriented in U. The form i * B σ(w) gives the power with respect to this orientation on ∂B. If we reverse the outwards pointing vectors, so we consider the body B that is in contact with B, the form i * B σ(w) indeed does not change. However, its integral gives the power using the inverse orientation than the one corresponding to i * B σ(w) . The definition of the integral of a differential form implies that the results of integration of the form i * B σ(w) over ∂B with its induced orientation will be of the opposite sign then the integral over ∂B with its induced orientation. Thus, the power density on ∂B is the inverse of that on ∂B.