Velocities, Stresses and Vector Bundle Valued Chains

Reuven Segev - Lior Falach

Abstract A mathematical framework for the fundamental objects of continuum mechan-
ics is presented. In the geometric setting of general differentiable manifolds, velocity fields
over bodies, modeled as sections of a vector bundle W, are generalized using notions of ho-
mological integration theory such as flat chains and cochains. The class of bodies includes
fractal sets whose irregular boundaries may have infinite measures. Stresses, initially mod-
eled as smooth differential forms valued in the dual of the jet bundle of W, are generalized to
cochains represented by L“*-sections whose weak divergences are also L°°. The divergence
of a stress field, defined in an earlier work, is generalized to apply to stress cochains. The
co-divergence of a velocity field is a weak form of the jet extension mapping and it is the
counterpart of the boundary operator for real valued flat chains.
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1 Introduction

This article is concerned with the mathematical setting of force and stress theory of contin-
vurn mechanics. On the one hand, the objective from the analytic point of view is to present
a mathematical setting in which the smoothness or regularity properties required from bod-
ies, velocity fields and stress fields may be relaxed and irregular bodies such as fractals may
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be considered. As examples of recent works on continuum mechanics fundamentals for ir-
regular bodies see [5, 24, 25]. On the other hand, from the geometric point of view, it is our
objective to formulate the theory in the setting of general differentiable manifolds.

As early as 1957, Noll [16] defined a body in continuum mechanics as a differentiable
manifold. Even in the case where the physical space is considered as a Euclidean space, if
no natural reference state is given, a body does not have a natural Riemannian metric. Fur-
thermore, it is quite a common practice to represent the internal state of a material point by
additional parameters representing the microstructure or substructure (see, for example, [2,
15]). In cases where the internal variables do not represent geometric objects, for example,
when they represent concentrations of various constituents, neither a natural Riemannian
metric, nor a connection are available on the manifold of microstructure. (See, for example,
[3, 12—-14].) Formulations of continuum mechanics on general differentiable manifolds were
presented in [20-23].

A convenient framework for the formulation of flux theory in continuum mechanics is
H. Whitney’s geometric integration theory [26]. Of particular importance is the theory of
flat chains and cochains. A presentation of flux theory from the point of view of geometric
integration theory was given in [18, 19]. From the point of view of geometric integration
theory, both a body and a potential field on it are represented using a single mathematical
object, a chain. A flux is defined as a continuous linear functional on the space of chains
and as such, duality theory implies that one obtains optimal spaces for fluxes and bodies
such that the pairing between them is continuous. For example, various fractal sets whose
boundaries are very irregular and of infinite measure (e.g., the von Koch snowflake or other
examples in [1]) are admissible bodies if their measures (rather than the measures of the
corresponding boundaries) are finite. Flat chain theory also defines continuous boundary
operators so that a generalized version of Stokes’ theorem is available.

Whitney’s geometric integration theory is formulated for real-valued fluxes in a Euclid-
ean space. In order to create a setting for continuum mechanics on manifolds, flat chain
and cochain theory should be extended to vector bundle-valued fields on a manifold. Rather
than extending Whitney’s theory, we found it easier to adopt the approach by Federer and
Fleming to the theory of flat chains and cochains. (See [6—8].) While Federer’s approach is
formulated in R”, it is based on de Rham’s current theory [4] and as such, its generalization
to manifolds is more natural. The drawback of this approach is the lack of geometric flavor
afforded by Whitney’s theory.

Thus, we use an extension of flat chain and cochain theory to sections of vector bundles
on manifolds and achieve the same level of geometric generality as in [21-23]. A basic
difference between the real-valued case and the vector-valued case that one has to overcome,
is the unavailability of exterior derivatives. The divergence of stress fields, defined first in
[22], serves as a partial replacement for the exterior derivative.

In Sect. 2 we review the main geometric objects in the case of smooth fields. These are
the objects whose regularity properties we relax in the following sections. In particular, we
review the notions of traction stresses, variational stresses and the divergence for a vector
bundle over an n-dimensional manifold. Section 3 outlines the theory of real-valued flat
chains and cochains in R”. In particular, we describe the Federer-Fleming approach to be
used later. Section 4 introduces vector bundle-valued flat chains on manifolds and Sect. 5
represents velocity fields on irregular bodies and hypersurfaces as vector-valued flat chains.
When velocity fields are regarded as sections of a general vector bundle, one cannot sep-
arate the derivative of the velocity field from the field itself and the exterior derivative is
not defined. As a result, the derivative of a generalized velocity field is not a chain of a ho-
mogeneous degree, but rather, a combination of a chain of degree n and a chain of degree



(n — 1)—anon-homogeneous chain. Non-homogeneous flat chains and their “boundaries”—
co-divergences—are considered in Sect. 6. Cochains, that model force and stress fields of
relaxed smoothness, are considered in Section 7. Stresses may be as irregular as L°°-sections
whose weak divergences are L*°, too.

The coboundary dX of a cochain X is defined by dX (A) = X (0 A) for every flat chain A.
It is shown in geometric integration theory that dX is represented by an L°°-form which is
the weak exterior derivative of the L*°-form representing X. In the setting of this work,
this equation is generalized to div Xs(w) = Xs(dw), where dw is the co-divergence of the
velocity field w, X is the vector-valued cochain represented by the variational stress S, and
div X g is the cochain represented by weak divergence of S.

2 Flux and Stress Objects—the Smooth Setting
2.1 Body Forces and Velocity Fields

We consider an n-dimensional oriented manifold 28 interpreted as the material manifold of
continuum mechanics. As such, no Riemannian structure is assumed for 8. A vector bundle
7w : W — 28 over 98 models the values of virtual velocities that the various material points
may experience. For example, if a configuration is given as a section e of a fiber bundle
w:E — A, so that e(X) € & is the configuration of the point x € 98, then W, may be
thought of as the tangent space 7,(,)&,. An n-dimensional compact submanifold B C %
which has a boundary may be thought of as a body. Sections of the form w: %8 — W
model global velocity fields of the material universe. The typical fiber of the vector bundle
will be denoted by W and we set dimW = m. We will use {(U,, ¢,, ®,)}, to denote a
vector bundle atlas so that for each a, U, C £ is open, ¢, : U, — R" is a chart on &8 and
&, Y (U,) = ¢, (U,) x R™ is a local trivialization. (It is assumed that the vector bundle
charts include base vectors for the typical fiber, hence, they take values in R” x R™.) If
B C 2 is a submanifold, we will write also w : B — W for a local section of the vector
bundle without indicating that the co-domain of w is actually W|z.

Natural integrands on n-dimensional manifolds are n-forms. Thus, a body force density 8
is a field that once applied to a velocity field gives the density of the mechanical power in the
body—an n-form. The value 8(x) at a point x € 98 belongs to the space of linear mappings
L(W,, /\" T;%). Here, /\" T2, is the space of n-multilinear alternating forms so that
Bx)(w(x))(vy, ..., v,) is intuitively interpreted as the power produced by the body force
B for the virtual velocity field w inside the infinitesimal simplex at x defined by the vectors
v, ..., U, (a tetrahedron in the 3-dimensional case). It follows that if L(W, A" T* %) de-
notes the vector bundle of linear mappings, so that its fiber at x € 2 is L(W,, /\" T %), a
body force is a section B : B — L(W, \" T*2). Using Riemann integration of forms, the
total power produced by the body force for a virtual velocity field w over a body B is

P:/ﬂ(w). ey
B

Here, 8 (w) is the n-form such that 8(w)(x) = B(x)(w(x)). The expression for the power is
a bi-linear functional in both w and 8. While physically, and as described above, it is conve-
nient to think of generalized forces as operators acting on velocities to produce mechanical
power, in most of this paper, specifically, Sects. 4—6, we emphasize the action of the local
velocity field on the corresponding force fields over Z8. Thus, we will regard the expression
above as the action of a functional T}, 5y on the body force field so that P = T, (8). This



functional, defined by the body B and the virtual velocity field w on it, is clearly linear in
the body force field.

It is noted that by transposition, a body force field may be regarded as a vector-valued
differential form. Given the section 8 : 28 — L(W, /\" T*9B), there is a uniquely induced
section BT : Z — N\"(T B, W*), where an element b € \" (T, 2, W}) is an alternating,
multilinear mapping (7, %)" — W. The n-form 87, valued in the dual bundle W*, is de-
fined by

BT @1, ) (@) = B @) (1, V). @)
2.2 Surface Forces and Velocity Fields on a Boundary of a Body

Surface forces produce power densities over the boundaries of bodies. Consider a body B
with a smooth boundary 0 B. For a velocity field u : 3B — W, a surface force t acts on u
to produce a power density—a real-valued (n — 1)-form—over the boundary. For y € 9B,
t(y)m(y))(vy,...,v,—1), represents intuitively the power produced by the surface force
t for the velocity field u inside the simplex defined by the vectors vy, ..., v,_;. Thus, t
is a section of L(W|;g, /\"_1 T*0B). It is noted that although this is not indicated in the
notation, t is defined only on d B for the particular B under consideration.

As in the case of body forces, the surface force t induces a vector-valued form 77, The
(n — 1)-form 77, a section of /\"_I(T(BB), (WlaB)*), is defined by

T, v ) @) = T (1, -, V). 3

Let D be an (n — 1)-dimensional submanifold of d B. The total power produced by the
surface force for the velocity field u over D is

P:/ T(u). 4)
D

Again, the expression of the power is a bi-linear functional in both « and 7. In analogy with
the case of body forces, we define the functional 7}, p, on the space of surface forces by

Tupy(t) = / T(u). 5)
D

2.3 Traction-stresses and Velocity Fields on Hypersurfaces

While a surface force field is defined only on the boundary of a particular body B, a traction-
stress field o gives the power density associated with a velocity field defined on an arbitrary
(n — 1)-dimensional hypersurface D in 8. The appropriate object is a section

n—1

a:%eL(W,/\T*%). 6)

Thus, given a velocity field w, an (n — 1)-real-valued form o (w) defined as o (w)(x) =
o (x)(w(x)) is induced in ZB. For any collection of n — 1 vectors vy, ..., v,_1, o (w)(x)(vy,
..., U,_1) is interpreted intuitively as the total power expanded in the hypersurface element
defined by the vectors. Thus, given an oriented hypersurface D C 28, we may write the
power expanded in D as

P:/GW) %
D



The traction-stress induces a unique W*-valued (n — 1)-form o7 : 28 — /\”’1 (TA, W),
by

T (i, ey Vum) @) =0 () W@) (1, - .., Vye1). ®)

Given a body B, a section o' of /\"7' (T B, W*) may be restricted to the submanifold
0B C % giving a section o' |55 of /\"7l (T Blys, W*|yg). Moreover, the section 07|, may
be restricted to the subbundle 7(d B) C T B|;p to yield a section

n—1
pon(@™) 0B — N\ (T®B), W*lap). ©)
In other words,

Psp(@ MW, V) =0T (W1, va) € WS (10)
forally € 9B, vy, ..., v,—1 € Ty (0B). The W*-valued (n — 1)-form a5 (cT) on 3B induces
by transposition a surface force field 7, i.e.,

T =pyp(o). 11

The last equation is a generalization of the Cauchy formula for the compatibility of a
traction-stress field o with a surface force field 7 on 9 B.
A traction-stress is represented locally in the form

Zaa1.4i..n€a®dxl /\~--/\(Tx\i /\,._/\dxn, (12)

i,o

where a superimposed “hat” indicates the omission of the corresponding term and e* denotes
an element of the local dual basis of the fibers W,.

Remark I In an earlier work, [22], in order to distinguish them from the variational stresses
to be described below, we referred to the traction-stresses as Cauchy stresses. That termi-
nology may be misleading because the traction-stresses generalize both the Cauchy stresses
and the Piola-Kirchhoff stresses. In view of their basic property reflected in (11), the term
“traction-stresses” seems to reflect their nature better.

2.4 The Variational Stress

While the traction stress was characterized by the traction force fields it induces on hyper-
surfaces, the variational stress, which is a different geometric object for the general setting
considered here, is characterized by its pairing with the derivative of a differentiable velocity
field. As the derivative of a vector field on a general vector bundle is not an invariant object,
one has to replace it by the jet of the velocity section whose local representatives contain the
components of the vector field itself along with the partial derivatives of these components.

For a vector bundle W, we use the notation J" (W) — W for the r-th jet bundle (see
[17]). We recall that for x € 98, J' (W), is isomorphic with W, x L(T %8, W,). The jet
extension mapping j' : C'(W) — CO(J'(W)) assigns a section j'(w) of the jet bundle
to a vector field w. If w is represented locally by the components (x’, w®), then, j'(w) is
represented locally by the components (x', we, wf’i), a,y=1,...,m,i,j=1,...,n,where
a subscripted comma indicates partial differentiation. Thus, in order to apply the setting of



forms on & valued in a vector bundle W to the current situation, one has to replace W
by J'(W) which has the structure of a vector bundle both over %8 and over W, where
the projection of the latter is given locally as (x/, u®, v]) > (x/,u®). To produce power
densities, a variational stress S is defined therefore as a section of L(J'(W), A" T*98). For
abody B and a section A of the jet bundle over B, we have a pairing

(A,S):/S(A). (13)
B

It is noted that a section A of the jet bundle need not be compatible in the sense that for a
point x € 98 and local representatives (x/, A%(x*), A? (x%)), one need not have necessarily
A} = A%. A variational stress is represented locally in the form (X7, Ry1_n (x5, Syl n (x*))
so that the n-form S(A) is represented as

(ZRM nA"+Z L ?>dx1/\~~Adx". (14)

Consider the case where the section A is compatible, i.e., A = j'(w) for some vector field w,
A% (x*) = w*(x*) and A} (x*) = w’;(x*). Then, the single component of the power density
S(j'(w)) assumes the form

ZRM a0 +Z W —Z(RM n = Sh W +Z< WD (19)

Ifx =x' ("), u =3, v, (x! yu® is a transformation of coordinates, the corresponding
transformations for the components of S are

/1/' = (ZRal n"p +Z al..n g’,i) det(xv];/)’

§ o i P
/1/ n = Otl n‘IJa,xyl« det(x,q/).

(16)

In analogy with (2), the object ST is a section of A\"(T A, J'(W)*).
2.5 The Traction-stress Induced by a Variational Stress

While the geometric object representing a variational stress is different than that representing
a traction-stress, there is an invariant surjective, linear vector bundle morphism

n—1
Po <J (W), /\T .@) > L <W /\T%’) (17)

that associates with every variational stress S a traction-stress ¢ = p, o S which we also
write as p,(S). Using the transposition isomorphisms A" (7 4, JHW)*) = L(JI(W),
A" T*28) and N (T B, W) = L(W, N7 T*928), one may also regard p, as a vector
bundle morphism

n n—1

N(TB. 7' W)) > \(T2.W*). (18)



Let S be given locally by (Ry1...» S;;]mn), then, o = p, o S is given locally by

Ouql..T..n = (_l)iils;

19)

l.n*

It can be shown (see [22]) that this local expression indeed represents an invariant mapping.
For a section S of L(J'(W), N' T*PB), p,(S) may be regarded as the symbol of the linear
differential operator on W given by § as in [17].

2.6 The Divergence of a Variational Stress

The divergence, defined in [22], is a linear differential operator

div: C' (/\ (T®.(J! (W))*)) - C° (/\ (T3, W*)) . (20)

Using the transposition isomorphism the divergence may be regarded also as a mapping

c' (L (J%W),/\T*%)) - C° (L (W/\T,%’)) (21)

div S(w) =d (po ()(w)) = S(j' (w)), (22)

for every differentiable vector field w, where the transposition isomorphism is used again.
To present the local expression for div S we first note that if o = p,(S), then d(o(w)) is
represented locally by

It is defined by

> d(Oar.zaw®) Adx! Ao AR A AdX"

a,l

=Y (Ourmaw®) sdx’ Adxt A Adx A A",

a,i

= Z(Uotlufmnwa),i(_l)i_ldxl A Adx”,

ol

:Z(S;L.nwa),idxl A Adx”, (23)
o,

The local expression for div S is therefore

Z(S;L.ﬂ,i - Ral...n)ea ® dxl A Adx". (24)

For a given variational stress, the definition of the divergence together with Stokes’ the-
orem imply that

—/divS(w)-ir/ pa(S)(w)Z/S(jl(w))- (25)
B aB B

Setting B = —div S,

/ﬂ(w)+/ pa(S)(w)Z/S(jl(w)), (26)
B B B



a generalization of the principle of virtual work in continuum mechanics.
It is noted that in the case where the variational stress has a compact support in the
interior of B, the boundary integral above vanishes and one has

/S(jl(w)):—fdivS(w). 27
B B

3 Real-valued Flat Chains and Co-chains in Euclidean Spaces

3.1 Flat Chains and Flat Co-chains from the Point of View of Whitney’s Geometric
Integration Theory

Whitney’s geometric integration theory, [26], provides a convenient setting for the formu-
lation of flux theory in Euclidean spaces (see [19]). Choosing geometric integration theory
as a setting for continuum theory of fluxes, one obtains an analytically optimal formulation
as fluxes are modeled as linear functionals—cochains—on the Banach space of chains. By
optimality, we mean that the combination of a collection of bodies and a collection of fluxes,
is in some sense the largest. Bodies may be as irregular as some fractal sets. Flux fields and
integration of fluxes over the boundaries are defined for such irregular bodies. The differ-
ential balance law is valid where the exterior derivative of the flux field is uniquely defined
almost everywhere.

Geometric integration theory has an appealing physical interpretation. Bodies are built
using oriented simplices as building blocks. A simplex s may be multiplied by a real num-
ber a. The number multiplying a simplex may be interpreted as a uniform potential (e.g., an
electrostatic potential) over that simplex. The formal sum ), a;s; of such products, where
the simplices may be made disjoint by further subdivision, is then regarded as a step func-
tion describing the piecewise constant potential field over the union of the simplices. The
collection of these piecewise uniform fields is then completed relative to the flat norm so
that the complete space, the space of flat chains, contains smooth fields on manifolds but
also, for example, L'-fields and bodies with fractal boundaries. If we consider n-simplices
in an n-dimensional Euclidean space E, an n-cochain may be interpreted as the operation of
calculating the rate of change of the total of the energy corresponding to the given potential.
Thus, for the example of an electric potential, a cochain will be an operator that assigns
the time derivative of the total electrostatic energy to a given chain representing a potential
field over some body. It is a consequence of Whitney’s theory, that the operator may be
represented as an integration operator of a density, the rate of change of the electric charge
density, over this chain.

The boundary d B of a flat chain B is well defined. It is a flat (n — 1)-chain and it includes
both the boundary value of the potential field as well as its gradient. Thus, an (n — 1)-cochain
T, represents physically both the energy flux through the boundary of the corresponding
body due to the flux of charge, and the rate of change of energy due to flow of current in
a non-uniform potential field. As expected, the representation theorem for cochains implies
that an (n — 1)-cochain may be represented by a flux field.

3.2 Federer’s Approach to Real-valued Flat Chains and Cochains in Euclidean Spaces

In geometric measure theory, as in [6, 7] or [8], an alternative equivalent approach to flat
chain theory is presented. In the overview below and the rest of this paper, our notation is



different than that of Federer in order to suit better the extension to general manifolds and
vector-valued forms.

A flat r-chain is defined as an -de Rham-current. It is recalled (see [4]) that an r-current
on a manifold .# is a continuous, linear functional T on the space C°(A\" T*.#) of
smooth r-forms of compact supports. By continuity, it is meant that if (6;) is a sequence
of forms supported in a compact set K contained in the domain U of a chart, and the lo-
cal representatives of 6; as well as all their partial derivatives tend to zero uniformly on U,
then T (6,) — 0. We also recall that the boundary d7 of a real-valued r-current T is the
(r — 1)-current defined by duality as 87 (w) = T (dw). Since for any form 6, d’4 = 0, one
has 82T =0.

Federer’s flat chain theory considers currents in an open set U C R”". For the sake of sim-
plicity, it is assumed here that we consider forms supported in a fixed compact set K C U.
For acurrent T, set | T'| = sup, |T (9)| where the supremum is taken over all smooth forms 6,
supported in K, such that sup, ., [8(x)| < 1. The magnitude |6 (x)| of the alternating tensor
0(x) is computed using the natural Euclidean structure of R”. The value |T|, which might
be infinite, is referred to as the mass of the current. A current 7 is said to be normal, if both
T and 0T are of finite mass.

The flat norm of a form 6 is defined as

[6]” = max {SUPIG(X)I ) supIdG(X)I} . (28)
xeU xeU
For a current 7', define the flat norm by
IT|”= sup T(®). (29)
o<t

Since d’0 =0, one has ||dT||” < ||T||°. Thus, the boundary operator is bounded in the flat
topology. In addition, as [|0]|” > sup, |0(x)|, | T||” < |T|, and it follows that if the mass of
a current is finite so is its flat norm. In particular, a normal current has a finite flat norm.
Flat chains are elements of the completion of the space of normal currents in the flat norm.
The Banach space of flat r-chains, acting on forms in U supported in K, will be denoted by
F, x (U). Thus, the boundary operator

3:F, x(U) = F,_y x(U) (30)

is continuous.
Let £ be an (n — r)-form whose components are integrable. The r-current ¢, induced
by £ is defined, using Lebesgue integration of n-forms, as

Tie)(0) :/ ENO. (€19}
U

This definition applies also in the case of a differentiable manifold where local represen-
tatives of the form & are required to be integrable (see [4, 10]). In the case where £ is
differentiable, for all smooth (r — 1)-forms w supported in U,

3T<§>(w)=/ %‘Adw=(—1)("”+”/ dé A, (32)
U U

where we used the identity d(& A w) = d& A w + (—1)%8°%E A dw, and the fact that
suppw C U. It follows that in the case where £ is differentiable,

Ty = (= D" "1 Tgey. (33)



In [6, pp. 375-376], a representation theorem for flat chains in terms of forms is proved.
Expressed using the notation adopted here, the theorem implies that for a flat r-chain T and
any é > 0, there is an integrable (n — r)-form £ and an integrable (n — r — 1)-form 7 both
of which are supported inside a set containing all points in U whose distance from K is
smaller than §, such that

T =Tg + 0Ty, orequivalently, forall 8, T(0)= / (ENO+nAdh). (34)
U

In addition,

/(|§|+|n|)—5§IITIIbE/(ISHInI)- (35)
U U

Conversely, for any pair of forms & and n as above, the current 7' defined by (34) is a flat
chain. It is noted that if T is represented by & and 7 as in (34) above, then,

0T =0Ty, orequivalently, forallw, 97T (w)= / & Nndw. (36)
U

For a flat n-chain T, the representation simplifies to T = T, so that flat chains are repre-
sented by L', n-forms.

A flat r-cochain is a linear functional on the space of flat chains that is bounded by the
flat norm. As the boundary operator is continuous and linear on the spaces of chains, we
have the dual coboundary operator

d=0":F,x(U)* = F,y x(U)* 37

which extends the exterior derivative to cochains.

The representation theorem for flat chains in terms of L!-forms implies the following
representation of flat cochains. To every flat r-cochain X, there is an r-form Dy and an
(r + 1)-form DY, both of which are L>. When T is represented as T = Tz, + 37T}, so that

X(T) = X(Tey) + X0T,)), (38)
one has
X(T@):/;/%‘/\DX, and X(8T<n>)=/UnAD;(. (39)
In addition,
dX(T):X(BT):X(aT@)):/U’;’/\D;(. (40)

We may conclude that DY represents the coboundary dX and this motivates the notation
Dgyx = D). In addition, for all differentiable &,

dX(T) = X@T¢) = (="' X (Tiae))

:(—1)”_r+1/d$/\DX:/ £ A Dyy. 41)
U

The second row in the last equation implies that Dyy is the weak exterior derivative of Dy,
so that in the weak sense Dgx = dDy. In the case where 7 is differentiable, (38) assumes



the form
X(T) = X(Te) + (=" " X (Tiayy),

_ / (& + (=1)""1dp) A Dy. “2)
U

The forms Dy and Dyx that represent the cochain X are unique up to inequality on sets of
measure zero. See [9-11] for a different approach to the representation of cochains and for
properties of L*°-forms with L*-exterior derivatives on manifolds.

4 Vector-valued Flat Chains on Manifolds
4.1 Vector-valued Forms and Linear Functionals

In order that the theory of flat chains and cochains be suitable for force and stress theory in
continuum mechanics, the forms considered should be vector-valued as described in Sect. 2.
For an n-dimensional manifold &8 and a vector bundle 7 : W — 28 whose typical fiber is
m-dimensional, one may consider flat chains valued in W by extending the theory of Federer
and Fleming [6, 7] described above.

In a natural extension of the theory of de Rham currents, the test functions we con-
sider are smooth sections 6 of A" (T B, W*) = \" T*% ® W* that have compact supports.
Here, the choice of values in W* rather than in W is made for the sake of convenience. Let
{(Uy,, ¢a, P,)}, be a vector bundle atlas. A W*-valued r-form 6 is represented locally in the
form

Z 0ai1mirea ® dxil Ao A d’xir = Z‘gm‘]mirea b dxi] AN A dxir' (43)

AR a, (1)

Here, iy,...,i, =1,...,n, i; < i, < --- < i,. Using multi-index notation (e.g., I =
(i1, ..., 1)), parentheses around multi-indices indicate that the indices are increasing (e.g.,
iy <---<ip). Foreacha, 6, =" Ouiy. i, dx A --- Adx™ is a real-valued r-form in U,.
Using the notation @ =6 |u, » in the case where we wish to emphasize that 6, or 0, ;, are
the local representatives under the (U,, ¢,, ®,)-chart, we will write 90((") or 9;;])_“”,
tively.

Consider a partition of unity {(n,, K,)} subordinate to the vector bundle atlas {(U,, ¢,,
®,)}. For each a, K, is a compact subset of U,, 1, is a smooth real-valued function defined
on 28 supported in K, and ) n, = 1. For a vector-valued form 6, the form 1,0 is supported
in K, and evidently (7,0)® = 1,|y,0\*. For any vector-valued form 6 one clearly has
0=>,1n.0.

We consider linear functionals 7 on the space of smooth vector-valued forms supported
in a compact set K C 2. This simplification causes only little loss of generality. For the
given vector bundle atlas, letting T'|x, be the restriction of T to forms that are compactly
supported in K,, one has

TO) =T (Z nae) = ZT|KG a0)=T (Z nﬁ“”) ’

=Y Tod,! (®y0@,0“)) =Y T, (Puo0 (1.6)).

respec-



=Y TX(a0) = D T (b)) (44)

a,a a,a,(I)

where T, = T'|x, o ®,' and its components are 7.*—real-valued currents in R". Here and
elsewhere, for the sake of simplifying the notation, we did not indicate the zero extension
of 6@ from U, to 28 needed in order to multiply it by 7, and apply 7 to the product. One
concludes that it is sufficient to determine 7 by the action of its local representatives on
real-valued forms compactly supported in the various U,,.

4.2 The Flat Topology and Vector-valued Flat Chains on Manifolds

In analogy with the C”-topology on the space of differential forms, the flat topology is
defined using a vector bundle atlas and a partition of unity & = {(U,, ¢u, ®s, 14, Ka)} by

014 (x)

b
0], = max | sup
a,o,l,J xeUy

sup |[a (67 ], (x)\} : @)

It is recalled that for two manifolds .# and .#’ and an embedding F : .# — ', the
induced pullback mapping,

F*: /\T*%/IlmageF i /\T*%, (46)

satisfies the identity F*(df) = dF*(6). When applied to the local representatives of differ-
ential forms and to transformations of coordinates, this identity implies that the local repre-
sentative of df under a chart (U,, ¢,, ,) depends only on the representative of d6 under
an overlapping chart (U, ¢;, ®;) (and does not depend, for example, on partial derivatives
of the representatives of 6 that are not included in the exterior derivative). We also note that
for n-forms the exterior derivative vanishes so that |6 IIZZ{ = Max,q,7{SUP,cy, |90(5) Nq(x)|}.
While ||6]’,, depends on &, the topology induced by this norm is independent of the
choices of atlas and partition of unity. We will refer to it as the flat topology. In analogy with
the topology defined on the space of smooth forms for the definition of currents as above,
one could define a linear functional 7 to be continuous for the flat topology if for the case of
a sequence () whose elements are supported in a compact set K contained in the domain
U of a chart, such that the local representatives of 6; and df tend to zero uniformly in K,

T (6;) — 0. In addition, the norm
9(”)(x) , su ’[d 0 ] (x)‘]
ol xelz ( otl) 7

max 4 sup
a,o,l,J xeUy

is equivalent to ||9||22i, (cf: [17, pp. 10-14]).

When the space of smooth W*-valued r-forms is equipped with the flat topology, we will
denote it by 2°(W*).

A vector-valued flat r-chain on the manifold 98 is a linear functional T on 2°(W*)
whose local representatives T, as in (44) are (real-valued) flat chains in R”". It follows that
for a given o as above, a vector-valued flat chain 7 on & is continuous relative to the
II - ||Z2{-norm. We conclude that vector-valued flat chains are continuous relative to the flat
topology for vector-valued forms on 8. Naturally, we refer to T as a W-valued flat r-chain
if it is dual to the space of r-forms-valued in W*.



4.3 Fields Over Real-valued Flat Chains

We now consider a special case of vector-valued flat r-chains on manifolds. Let w be a
differentiable section of L(W*, N’ T*%B) = N\’ T*#B ® W, for p < r. Thus, w(x) may be
represented in the form

w(x) = Z o @ (47)
1

where o' € A\’ T, v, € W,. In addition, let § be a section of L(W, \" 7 T*B) =
N P T*%B @ W*, so that 6(x) may be represented in the form

o=y 'y’ (48)

where ¢ € NPT 9B, y* € W*. We now use the notation

O)AwE) =y (g Ad, (49)

l,s

so that # Aw is a real-valued r-form, ( Aw)(x) = 0(x) Aw(x).
Let w be represented locally as

D ow§  ea®@dx A Adi? (50)
a,(J)

and let 0 be represented locally as

D Ouiy e @dx A Adx, (51)

a,(I)

where [ + p = r. Then, 8 Aw is represented by

Z 6,? 1 .}c..rlpeailmil w‘}‘] mjpdxkl Ao A dxkr , (52)
a,(D),(J),(K)
where €, """/ denotes the alternating symbol.
Let C be a real-valued flat »-chain on 4, so that its local representatives are real-valued
flat chains on the images of the various charts. For a differentiable section w of W (regarded
as a vector-valued 0-form) we define the W-valued r-flat chain T,,cy = wC by

Twey(0) =wC () = C(OAw). (53)

Writing the norms for the local representatives of 6 Aw, one realizes that wC is indeed a flat
chain. In fact, the local representatives of wC are real-valued flat r-chains in an open subset
of R" of the form ¢C, where ¢ is a bounded function with bounded Lipschitz constant as
in [26, p. 208]. Accordingly, we will refer to T{,cy = wC as the product of the field w with
the real-valued r-flat chain C.

Remark 2 For a real-valued flat r-chain, or in general, for a real-valued de Rham r-current,
T, the boundary operator, defined by a7 (6) = T(d6), is linear and continuous. However,
for vector bundle valued forms on manifolds, the exterior derivative is not defined. Hence,
the boundaries of vector-valued flat chains on manifolds are not defined in the general case.



5 Velocity Fields as Vector-valued Chains
5.1 Generalized Velocity Fields on Bodies as Vector-valued Flat n-chains

Using the terminology of vector-valued flat chains on manifolds, we can now extend the
pairing of body forces and velocity fields so that we admit generalized velocity fields (“gen-
eralized” in the distributional sense) modeled as flat chains.

Let w be a vector field in 28 whose local representatives relative to the atlas and partition
of unity &7 = {(U,, ¢4, @, 4, K,)} are L'-functions. In such a case, w is referred to as an
integrable section. For any body force field 8, a smooth section of L(W, /\" T*9), set

T (B) 2/ B(w). (54)
B

Using the vector bundle atlas and partition of unity, one has

Ty (B) = /@Znaﬂ(w),

= Z (/ ﬂmlmn(na o Gﬂa_l)wa> . (55)
va(Ka)

a

Observing that the (1, o ¢, w* are integrable functions supported in ¢, (K,), it follows
from the representation theorem for flat chains that for any chart a and each ¢ =1, ..., m,
(a0 <pa‘1)w°‘ represents a flat n-chain in R”. Thus, T}, is a W-valued flat n-chain on 2.

In the particular case where B is a measurable set and w is an L*°-vector field in 43, the
vector field w y g, where xp is the characteristic function of B, is integrable. The W-valued
flat n-chain induced by w3 is denoted by T(,,5y = wB. It is the product of the vector field
w by the flat chain B induced by yj. Clearly,

T<w3>(ﬂ)=w3(ﬂ)=/ﬂ(w)- (56)
B

As a generalization, one could also replace the characteristic function xp by any other inte-
grable real-valued function on Z8.

5.2 Generalized Velocity Fields as Vector-valued Flat (n — 1)-chains on 9 B

Assume we are given a particular body manifold B C Z8. Considering surface forces on
0B, i.e., W*-valued (n — 1)-forms on the compact manifold d B, one observes that the only
difference from the case of body forces is the dimension of the manifold. Thus, an atlas and
a partition of unity should apply to the restriction W |35 — 0B of W.

Let u be an integrable section of W|,z. The linear operator 7,, operating on surface
forces and defined by

Ty (7) :/ T(u), (57)
9B

is represented locally by integration of integrable functions. It follows that T, is a W |yp-
valued, (n — 1)-chain on 0 B.



5.3 Generalized Velocity Fields on Hypersurfaces as Vector-valued Flat (n — 1)-chains
in 98

The pairing

P / ow). (58)
D

of a traction-stress field o and the restriction of a vector field w to an (n — 1)-dimensional
submanifold D may be generalized to an action of a W-valued flat (n — 1)-chain on traction-
stress fields. Such flat chains represent fields over generalized surfaces. For example, various
fractal surfaces such as the boundary of the von Koch snowflake may be represented as real-
valued flat chains. In addition, the class of flat chains also contains continuous chains which
are different from the intuitive image of a vector field over a hypersurface. For example, if
w is an L', W-valued 1-form, then, for any traction-stress o, o Aw is an n-form and Tiw)
defined by

Ty (o) = /@ oAW (59)

is a W-valued flat (n — 1)-chain. This chain is a generalization of the continuous real-valued
chains in [26]. For the real-valued case in R”, it is convenient to interpret o as the charge
flux vector field and w as the electric field. However, this interpretation does not carry over
to the vector bundle case.

A particular situation of interest is the case where the W-valued flat (n — 1)-chain T is
given by a Lipschitz vector field w on 4, regarded as a W-valued zero-form, and a real-
valued (n — 1)-chain C. As in Sect. 4.3, one may set T(,,cy, = wC, where,

wC(0) =C(oAw) = C(o(w)) (60)

since w is a zero-form. In the terminology of [26], this may be written as

wC(0) =Tiwc) (o) = / o(w). (61)
c
In the case where the real-valued (n — 1)-chain C represents a generalized hypersurface,
e.g., the fractal boundary of a body having a finite volume, the action wC (o) generalizes
the expression for the power of the induced surface force for the given velocity field w.

5.4 Jet Bundle-valued Flat n-chains

Jet bundle-valued flat n-chains act on variational stress fields to generalize the pairing
(A, S)= f 3 S(A), for a body B and a section A of the jet bundle over B. In particular, for
the case where A = j'(w) for a differentiable vector field w in W, (A, S) = [, S(j' (w)).

Let A be an L'-section of the jet bundle J'(W). Then, the components of its local repre-
sentatives are L'-functions in open subsets of R” that represent a collection of real-valued
flat chains according to Federer’s representation theorem. Thus, we have a representation of
jet bundle-valued flat n-chains in the form

Tia)(S) = /@ S(A) (62)

for integrable sections of the jet bundle.



A different topology on the space of smooth variational stresses, to be introduced below,
will give a more suitable framework for considerations of flat chains that act on variational
stresses.

6 Non-homogeneous Flat Chains
6.1 The Variational Stress as a Non-homogeneous (n — 1)-form

In Sect. 5.4 we treated variational stress fields as jet bundle-valued n-forms and the cor-
responding chains are continuous relative to the sup-norm of the components of the lo-
cal representatives. The topology considered here is a variation of the flat topology for
(n — 1)-forms and we will refer to it as the flat topology for variational stress fields. Let
& ={(Uy, ¢, Pa, 14, K,)} be a vector bundle atlas and a subordinate partition of unity.
For a smooth variational stress field S, set

1815, =max [ISI,, 1 div s, | (63)

where, for the norms on the right-hand side, S and div S are considered as vector-valued n-
forms. (Note that since S and div S are n-forms, no exterior derivative of the local represen-
tatives is included in their flat norms relative to an atlas and partition of unity.) Thus, in the
flat topology, S — O, if all local representatives, Ry, S[‘;(l‘_‘n, and ), S(’;llmn,i — Ry1..0, tend
to zero uniformly on all charts. For @ =1, ..., m, consider the components of the local rep-

so that 041 ;. , = (—1)""1S! . One has,

do, =Y d (aal_‘_;mndxl A AdXA - /\dx")

= Z%L.a.n,idxi Adx' A AdXE A AdY,

1

= Zoﬁal‘.f,.‘n,i(_l)iildxl Ao Adx”,

= 3k de A Al (64)

It follows that max{llSIIizi,, | ps (S) IIiX,}, where p, (S) is considered as a W*-valued (n — 1)-
form, generates a topology equivalent to ||S||2{.

Henceforth, we will use 2V(J'(W)*) to denote the topological vector space
CE (LI W), \'" T*B)) equipped with the topology induced by the ©-norm as above.
In accordance with Sect. 4.2, where we use the flat topology for n-forms on the same set of
sections (as in (45)), we will denote the resulting topological vector space by @ﬁ (JT(W)*).

Consider the mapping

(1, div) : 2° (TN (W)*) — 20T (W)*) x D2(W*), (65)

where 1 is the identity mapping and the topology on 2°(J'(W)*) x 2°(W*) is induced by
a norm of the form

1@. )Ly = max { ooy 121 } - (66)



We observe that (z, div) is linear, injective, and a homeomorphism onto its image.
6.2 Non-homogeneous Vector-valued Flat Chains and Velocity Fields

Let (T, T>) be a linear functional on 2°(J'(W)*) x 2°(W*) so that (T}, T»)(®,¢) =
Ti(w) + T»(¢), where T; and T, are flat n-chains valued in the corresponding vector bun-
dles. By their definition in Sect. 4.2, T} and T, are represented locally by real-valued flat
n-chains valued in R”. Since by Federer’s representation theorem, real-valued flat n-chains
in R” are given in terms of L', n-forms, there are L'-sections d; and d, of J'(W) and W,
respectively, such that

(TI,T2><w,¢>=/ w(d1)+/ £(dy). 67)
B B

Given T, and T» as above, a linear functional T defined on 2% (J!(W)*) of the form
T = (1,div) o (T}, T») will be referred to as a non-homogeneous vector-valued flat chain.
Clearly, a non-homogeneous vector-valued flat chain is a continuous operator and may be
represented in the form

T(S)Z/ S(d1)+/ div S(d>), (68)
% 2

for some integrable sections d; and d, as above.

The Banachable space of non-homogeneous flat chains, which is isomorphic to
L'(J'(W)) x L'(W), will be denoted by G(J(W)).

It is noted that in the case where d, is a differentiable section, it follows from the defini-
tion of the divergence and the fact that S is compactly supported that

/ div S(dy) = / d(po (S)(ds)) — / S (),
B B B

_ / Po(S)(d)) — / S (@)
9(suppS) Z
_ f SG (). (69)
B

As a result, for the case of a differentiable d,, the representation of the non-homogeneous
flat chain assumes the form

T(S)=/ S(di = j'(da)). (70)
B

It is noted that a section of the jet bundle need not be the jet of a section of W. Thus, in
analogy with classical continuum mechanics where one can apply the stress field to a tensor
field that is not necessarily compatible, i.e., not necessarily the gradient of a velocity field, in
the term S(d,), d; need not be the jet, or a weak form of a jet, of a vector field. This clearly
does not hold for the term S(j!(d,)).

6.3 The Co-divergence

The basic property of the ©O-topology on the collection of variational stresses is that the
divergence operator

div: 2°(J"(W)*) — 20 (W) (71)



is continuous. Recalling that a W-valued flat n-chain, a bounded linear functional on
D (W*), is of the form

Tu®) = [ pw).
R
for an integrable section w of W, set
9Ty = div*(Tiyy) = Tpwy o div. (72)

Then, 97 ,,, which we refer to as the co-divergence of T|,,—a generalization of the bound-
ary of a current—is a continuous linear functional on 2% (J'(W)*). Specifically,

3T (S) = /% div S(w). (73)

In fact, comparing the last equation with the representation in (68), we note that 97, is
represented by d; =0 and d, = w.
In the particular case where w is a differentiable velocity field,

3T<w>(S)=—/ SG' (w)). (74)
%

Thus, the co-divergence operator may be described as the weak jet extension of the velocity
field.

Consider the case where B is a subset of 8 such that the characteristic function xp is
integrable. If w is a differentiable vector field on 48, then,

3T<11)B>(S)=/diVS(w),
B
Z/d(po(S)(w))—/S(jl(w)),
B B

=/ Pa(S)(w)—/ SG'(w)). (75)
aB B

7 Loads and Stresses as Vector-valued Cochains

Once velocity fields are extended to W-valued flat n-chains, one may generalize smooth
body force fields to cochains. Let 8 be a W*-valued n-form such that the components of its
local representatives are L>°. Then, each component 8, ., is an L*-form in an open subset
V., of R". A vector-valued flat n-chain is represented by a vector field w whose components
w* are L'-functions (or zero-forms) in the various ¢, (U,). It follows that the L>°-form S
represents a cochain Xy in the form

Xp(Twy) = /@ B(w). (76)

This is a trivial implication of the representation theorem for flat cochains as for an n-chain,
the representing form », as in (39), vanishes. The pairing of body forces and velocities in
(1) has been generalized thus to velocities that are L' and body forces that are L*°.



Analogically, for a body B C £ having a smooth boundary, the paring of surface forces
and boundary velocity fields as in (4) is generalized to the action of an (n — 1)-cochain Y,
on 3B, represented by the L>, (n — 1)-form 7, on an L'-vector field u representing a flat
(n — 1)-chain in the form

Ye(Tiw) 2/ T(u). (77)
aB

Similarly, smooth traction stresses are generalized to W*-valued (n — 1)-forms o whose
local representatives o, are L*>° and such that the weak exterior derivatives do, are also L*.
In [9-11] it is shown for the real-valued case that such forms are locally flat in the sense of
[26]. We will simply use the term “flat forms” for the vector-valued case considered here.
It is noted that for such a vector-valued form o, whose corresponding cochain is X,,, the
coboundary is not defined as the exterior derivative of the traction stress cannot be defined
invariantly.

Generalizing variational stresses to non-homogeneous (n — 1)-cochains, we consider
variational stresses S whose components are L and for which the components of the cor-
responding div S are also L*. It is noted that by the definition of the divergence, for such a
variational stress field S, the corresponding traction stress o = p, (S) is a flat vector-valued
(n — 1)-form. Thus, we will refer to S as a non-homogeneous flat form. Observing Equation
(68), it is clear that in case S is a flat form, the pairing

(T,S):/ S(d1)+/ div S(d») (78)
B B

is well defined and continuous in the O-topology. Hence, S represents an element Xg €
G(J'(W))*.

From the definition of § as a flat form, it is clear that S — div § is a continuous mapping
into the space of W*-valued n-cochains. Thus, the divergence is extended to a continuous
co-co-divergence operator, for which we retain the same notation and the generalization of
(25) is written as

div Xs(w) = Xg(dw) (79)

for each non-homogeneous flat chain w.
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