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WORLDLINES AND BODY POINTS ASSOCIATED WITH AN
EXTENSIVE PROPERTY

REUVEN SEGEV & GUY RODNAY

ABSTRACT. Material structure of bodies that is usually assumed a-priory in con-
tinuum mechanics is constructed on the basis of a balance of a given extensive
property on spacetime. Body points are identified with worldlines—the integral
lines of the flux of the property. The geometric setting assumes that spacetime
has only the structure of a differentiable manifold and no particular frame is as-
sumed to be given.

Keywords. Contimmim mechanics, balance laws, flux, Cauchy’s theorem, dif-
ferential forms, material structure, worldlines.

Dedicated to the memory of
AURELIA GRUNFELD (MARKOWITCH)
Brashov, 1930 — Beer-Sheva, 2000.

1. INTRODUCTION

This paper is concerned with the construction of material structure for bodies
in continuum mechanics. Traditional continuum mechanics presupposes the ex-
istence of a material structure consisting of material points and subbodics of the
material universe (see e.g., [10]).

Nevertheless, it would be desirable to extend continuum mechanics to include
situations, like growing bodies, where the material points are not conserved. In pre-
vious works (e.g., [4], [6]) we used the notion of an organism in order to describe
a body that has distinguishable body points although material is not conserved be-
cause of growth or destruction of cells.

In order to motivate the definition of an organism, we presented in [7] and [8] the
way a body structure may be constructed on the basis of a balance of an extensive
property. There is no requirement that the extensive property be conserved but its
balance should satisfy Cauchy’s postulates. The basic idea is to define body points
ag integral curves of a flux vector ficld whose existence is guaranteed by Cauchy’s
theorem.

While in [7] the construction was carried out for the Euclidean geometry, [8]
presented an analogous construction in a setting where space is modeled by a dif-
ferentiable manifold equipped with a volume ¢lement. The existence of a volume
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element may be motivated by interpreting it as the density of a positive extensive
property in space. In addition, a frame on spacetime is used in the formulation of
[8].

A formulation that uses a particular volume element is not general enough. If
the volume element is interpreted physically as the density in space of the property
under consideration, it need not be positive as in the case of electric charge. Fur-
thermore, in order that we consider time dependent properties, a volume element
is needed on spacetime. However, even if the volume element on spaéesme
generated by a volume elementn space and the fornit induced by the “time
axis” in the form@# = dt A p, this construction makes sense only in a particular
frame that specifies that “time axis”.

Here, we reformulate the theory without the use of a volume element or a par-
ticular frame. Section 2 presents the basic variables associated with an extensive
property on a manifold and Section 3 presents Cauchy’s theorem and the resulting
flux form. Section 4 introduces the main tool of the formulation—the flux bundle
and Section 5 motivates the form of the balance in spacetime. After the formula-
tion of the balance of the property in spacetime in Section 6, Sections 7 introduces
worldlines and Section 8 introduces body points, bodies and material frames.

Although the differential geometry used here is standard, some of the construc-
tions of the standard proofs are adapted here to the current context with the purpose
of making the paper more readable.

2. SCALAR VALUED EXTENSIVE PROPERTIES

We consider properties measured in an ambient physical space. The present
setting is more general than classical counterparts as we assume that the physi-
cal space is am-dimensional differentiable manifold devoid of any additional
structure. While one may interprét as the “space manifold” of locations, or
“geometrical” space, laté# will be reinterpreted as spacetime—the collection of
physical events.

A control region(control volume)R in U is anm-dimensional compact sub-
manifold with boundary of/.

It is assumed that to every control regidR, there correspondsflux density
TR, interpreted classically as the rate at which the extensive property under con-
sideration leave& through its boundaryR. Mathematically, sincéR is an
(m — 1)-dimensional manifold, we assume thatis an(m — 1)-differential form
(multi-linear and alternating) so its integration

[

OR

on R can be carried out if an orientation is specified. Roughly, if the collec-
tion {v1,...,v,—1} Of vectors tangent tOR is positively oriented, then, the value
mr(v1,...,um—1) is interpreteted classically as the rate at which the property flows
out of the region through the infinitesimal element generated by these tangent vec-
tors. We will useTU/ to denote the tangent bundle @fand 7,i/ to denote the



tangent space @ at the pointz. The bundle ok-forms over/ will be denoted by
N (T*U) and analogous notation will be used for the other manifolds considered.
In the case wher#f is orientable, one may choose one of its two orientations
arbitrarily. This positive orientation, perceived as a sign rule, induces an orienta-
tion on the boundary of any control regidd as follows. Consider a collection
{v1,...,um—1} Of vectors inT,0R, the tangent space to the boundary & OR.
This collection is set to be positively oriented if the collectionuvy, . .. ,v,—1} IS
positively oriented iri/ for any vectorv € T,U transversal to the boundary and
pointing outwards fronR. It is noted that the particular choice of such a veetor
is immaterial. In cas# is hon-orientable, the theory of odd forms (see [3]) should
be used. This will not affect the results presented here.
In the classical formulation of balance lawsjs interpreted as the “space man-
ifold” and it is assumed that the extensive property has a demsithose time rate
is . As both should be integrated over-dimensional control regiong, and 3
arem-forms. To complete the balance of the property, the production denisty
introduced—again, am-form on/ such that

[]=[

We will refer to such a balance law (under the interpretatiod/ cds the space
manifold) as thelassical balance law

Remark2.1 Unlike the rest of this Section and much of the following material,
the interpretation ofs as the time derivative of the density of the property under
consideration that we described in the last paragraph, involves differentiation of
fields with respect to a time variable. Thus, this interpretation is meaningful only
when the spacetime manifolé, is given a particular global frame

F:&—-RxU.

The time axis is of course representedby Without such a frame (or a class of
frames) that interpretation is meaningless. In the rest of the paper we will indicate
the parts of the analysis that use a frame.

3. CAUCHY’S THEORY AND KINETIC FLUX FORMS

Cauchy’s theory is concerned with the properties of the flux deasitgnd its
dependence o®. The generalization of Cauchy’s postulates to the geometrical
setting considered here is given in [5] and may be summarized roughly as follows
(see [5] for details).

GC1 There is amn-form 0 oni{ such that

[ = gZe.

R
GC2 The value ofy at any pointc € R depends on the regidR only through
its tangent space at including its (inwards versus outwards) orientation.
That is, if T,Ry = T,R- for the two regionsk,, R, whose boundaries




containx that are situated on the same side of the common tangent space,
then,
TRy (l’) = TRa (l‘)
GC3 The value of the flux density; at the pointr € OR depends smoothly on
bothz and the tangent spa@goR.

Proposition 3.1(Cauchy’s Theorem)Ilf Cauchy’s postulates hold then there is a
unique(m — 1)-form J on{ such that

TR(V1y e Um—1) = J(V1, ... ,Um—1).
See [5] for the proof and further details. The forfrwill be referred to as the
kinetic flux formof the property under consideration.

Remark3.2 The relation betweeng and.J, Cauchy’s formulamay be written in
the formrg = +*(J). This follows from

7'73<’l)1, .o ,Um_l) = J(L(Ul), ooy L(Um_l)),
where.: T(OR) — TU is the natural inclusion of vectors (the tangent to the
inclusiondR — U).

Remark3.3. Consider two control region® andR’ whose boundaries have the
same tangent spadeatz. In addition, assume th& andR’ are situated on two
opposite sides of’. In this case, the rate at which the property flows ouRof
through the infinitesimal element generated by the vedtors. . . ,v,,—1} IS

TR(Ul, . ﬂ)m—l) = J(Ul, . ,Um_l),

provided that the order of these vectors is positive with respect to the orientation of
JOR. Ifthisis the case, the vectofs, . .. ,u,,—1 } are negatively oriented relative to

the orientation o®R’ which is opposite to that d#R. Hence,rr/(v1, ... ,0m-1)

is minus the rate at which the property lea¥®s Thus, although as forms; =

TR, the rates at which the property leaves the corresponding control regions are
opposite as expected.

Consider the situation where a kinetic flux field forhis given on the oriented
U. For each control regioR, we have using the generalized version of Cauchy’s
formula and Stokes’ theorem

[m=[v=[a
OR OR R

whered denotes the exterior derivative of differential forms. It follows that the
classical balance equation may be written as

/B+/dJ = /g.
R R R
Since the balance holds for arbitrary control region, one obtains

dJ + 3 =g,
the differential version of the classical balance equation.



4. THE FLUX BUNDLE

In this Section we introduce the flux bundle on the basis of the mathematical no-
tion of an enveloping subspace associated with a differential form (see [9] p. 25).
Our aim it to show that although the kinetic flux is @n — 1)-form and not a vec-
tor field, it possesses, even in the general case, some properties one would expect
from the velocity field. It is noted that the interpretation of the flux as a velocity
field depends on the use of a frame. We first recall some facts about enveloping
subspaces.

4.1. Enveloping SubspacesConsider the valud (z) € A™ " (T;:U) of the flux

atz € U, where \™ ' (T;U) is the vector space afin — 1)-forms defined on

T,U. A subspacd&” C T:U, envelops/(z) if J(z) € A™ ' Y*. A basic property

of enveloping subspaces associated with arbitrary alternating forms is that a mini-
mal enveloping subspace always exists and its dimension is referred to as the rank
of the form under consideration. The minimal enveloping subspadééxgfwill be
denoted byE(J(x)). The minimal enveloping subspace is generated by the forms
21 J for (m — 2)-multi-vectorsz € A™ 2T, where,, denotes the contraction

of an form with a multi-vector.

Proposition 4.1. Let 8 be a non-vanishing element of the one-dimensional space
of m-forms A" (T,U). Then, there is a unique vectore T,U such that/(z) =
va10.

Proof. We use the local coordinate systént, ... 2™} sod is represented locally
in the form

r(z") dz' A .. Adz™,
Then, for a vectow represented by its coordinate’s the contractionL 6 is rep-
resented by

m —
Z(—l)”lrvi dz'A . AdZIA L Ad2™,
=1
where the hat indicates the omissiondaf .
Consider a local representation for the kinetic fluin the form

m ——~
Z Jidz*A . ADTEA . Nd™.
=1

The conditionJ(z) = v 6 is satisfied for the unique vectorrepresented by
(_1)i+1Ji
—

Uii

O

Remark4.2 Itis noted from the local representation that the relation between the
value of the flow and vectar is linear and nonsingular. We will use

m—1

ig: N\ (TyU) — Tl



to denote the resulting isomorphism.

Remark4.3. From the local expression for the components of the vegtar is
clear thatv depends on the choice of a volume element only through a multipli-
cation by a number. Hence, allowing the volume element to vAgetermines a
1-dimensional subspace Bfi/ that is isomorphic with the space of-forms.

Proposition 4.4. There is a local coordinate systemt, . .. 2™, such that/(x) is
represented byz!A ... Adz™ L. In other words,J is decomposable.

Proof. Choose some nonzera-form # and letv be the vector such that(z) =

va#. Clearly, one can choose a local coordinate sysiém..,z™ such that

v is tangent to ther! curve, i.e.,v = %. Then, 0 is represented locally by

r(z') dz'A. .. Adz™ andJ(z) = v 0 is represented locally by
%_: (rdziA ... Ady,) =rdz? A--- A dz™.
€T
[

Remark4.5. It follows from the proposition that if/(z) is represented locally
by dz'A ... Adz™ !, then the minimal enveloping subspace is spanned by the
1-formsdz?, ... ,dz™"". In addition, the rank of is m — 1.

4.2. The Flux Bundle. For a pointr € U, consider the annihilatdt(.J): ¢ T,.U
of the minimal enveloping subspace, i.e.,

E(J): ={veT; ¢(v)=0, forall ¢ € E(J),}.

We will refer to E(.J)+ as thethe flux spacef J atx. Clearly, the flux space is
1-dimensional.

Proposition 4.6. For a vectow € T,U, v € E(J) ifand only ifvsJ = 0.

Proof. Write the flux in the formJ(z) = ¢'A...A¢™ L, with ¢¢ € E(J),.
Since the formsp'A ... A¢™~! are linearly independent, we add a forf¥ to
generate a basis fdf;/ and we denote its dual basis Hy;,...,e,}. Then,
writing v = v¥ey, sovk = ¢¥(v), we have

vaJ = Ukek)J¢1A...A¢m_l
m_l
= ST (DRI L AGRA L AT LR (v).
k=1

Assume that € E(J)+. Then,w.J = 0 as¢®(v) = 0 for all elements of7(J),.
Conversely, ifvsJ = 0 € A" ? E(J)., then, since the elements

{o'A ... /\;@A AT

are linearly independent inN™ 2 E(.J),, ¢*(v) = 0forallk =1,...,m — 1 and
ve B(J)L. O



Remarkd.7. SinceJ = v16 for some volume elemertt and a corresponding
vectorv, the identityv (v26) = 0 implies that the flux space is the 1-dimensional
subspace of i/ containingy mentioned in Remark 4.3.

Assume that a non-vanishing kinetic flukis given. From the foregoing dis-
cussion it follows that the flux through the infinitesimal surface element bounded
by the vectors, ... ,v.,,—1 vanishes if one of the vectors is in the flux bundle.
Moreover, referring to am — 1)-dimensional subspace @f,i/ as a hyperplane,
the following is an immediate consequence.

Proposition 4.8. The flux through any hyperplane that contains the flux vector
space vanishes.

Proof. Letwvy,...,v,,—1 bem — 1 linearly independent vectors in a hyperplaie
that contains the flux bundle. Choose a veetan the flux bundle. Clearlyy can
be expressed as a linear combinatioa a’v; of the vectors, . .. ,v,,,—1. We can
assume thai; # 0, or else we can reorder the vectors, so we can write

m—1
11 ;
vV, =—0UV— — E a v;.
a a “
1=2

It follows that
1 1 m—1
Jp(V1y .o Um—1) = Jyg <5 v Z; a'vi, va, . .. ,vm_1>
1=

—1
1 1~
=J o U2y Umd —Jz EE A"V V2, vy U1
=2

=0
as the first term contains as an argument and the second term contains a linear
combination of the rest — 2 vectors. O

This is clearly a generalization of the analogous situation for the value of the
velocity field of a body at:. If a surface element contains the velocity vector, the
flux through that element vanishes.

The foregoing structure may be described using an alternative approach. Con-
sider the space of multi-vecto§™ ' T,,14. Each(m — 1)-multi-vector, repre-
sents an element in an oriented hyperplane. By the duality of the space of forms
and the space of multi-vectors, the fothiz) may be regarded as an element of
(/\’”_1 T,U)". For a multi-vector, the value/(z)(z) represents the flux through
the surface element associated withConsider the annihilatof;- of J, = J(z),
ie.,

m—1

Ty ={ze N\ Tul]| Ju(z) = 0}.

An element ofJ;- represents a hyperplane through which the flux vanishes. Since
A" T,U is m-dimensional /.- is (m — 1)-dimensional. Thus, there are — 1



decomposablén — 1)-vectors that are linearly independent and on whiglvan-
ishes. With the notation of the proof of Proposition 4.6 these multi-vectors are

{e1N. . NegA ... Nem s k # m.

These multi-vectors represemt — 1 linearly independent hyperplanes whose in-
tersection is the flux space.

Given a non-vanishing kinetic flux, at each point € &/ we can construct the
flux space and hence we have the bundle

E() = E(U):
xeU
which is a 1-dimensional subbundle B/. In general E(.J)* is defined only on
an open submanifold @f.

We conclude with an immediate consequence of Proposition 4.1 and the sequel
remark. In the particular case where a volume element is gived,dhere is a
unique vector field, to which we will refer as th&inematic fluxsuch that/ =
vaf. As mentioned earliey € FE(J)*. Thus, it is the additional structure of a
volume element that enables one to construct the analog of the velocity vector field
(assuming we adopt the interpretation where a frame is given).

5. FROM CLASSICAL BALANCE TO SPACETIME SETTING

In classical mechanics, balance laws are usually formulated on the “geometrical
space” and a frame is utilized. In this Section we start with such a classical balance
law and construct a balance law on spacetime that has a particular simple form.
The form of the balance law formulated on spacetime is independent of the frame.
Hence, it is adopted in the next Section as a general form of a balance law on
spacetime.

We assume that spacetirfiés given a frame': £ — 7 xU where we consider
the time manifold to be modeled & andi/ is them-dimensional "geometrical
space”. It follows that at any eventn £, T.€ = TF (R X TFM(G)L{). We usefF’;
and F;, for the two components of' and in the sequel we will often ugeandz
for the two components of. We start with a time-dependent balance lawrin
general, the various fields and the flux are time-dependent. This implies that the
differential balance equation is time-dependent.

Any time-dependent form ot induces through the pull-badk; a form on€.

In order to simplify the notation we will use the same notation for both. Thus, any
time-dependent-form ¢ oni{ induces thdr + 1)-form § = dt A ¢ onE, wheredt
is the natural 1-form oifR. We have

0 0
a_lf: &J(dt/\(ﬁ)

0 0
= <aJdt> A —dt A <aJ¢>.
AsTF,(0/0t) = 0, the second term vanishes, and we have

0
a_lf:(b.



For a classical balance law, we use the foregoing procedure to construct the form
b = dt A 8 from the density rate and the forsn= dt A ¢ from the production rate.
Similarly, we sety = —dt A J + p, where we recall thap is the density of the
property under consideration whose time derivativé-tsanm-form on¢ induced

by anm-form onl{ having the same notation. Thysis represented locally by

m
=Y Jidt Adz' AL AdEA LN+ prmdat AL A
=1

Proposition 5.1. Given a classical balance law that satisfies Cauchy’s postulates,
dJ = s, and for each control regidR in spacetime

IEE
o R

where,tg; = *(J).
Proof. We have,
d3 = d(—dt A J) + dp
= dt A dJ + dp.
Sincedp is represented by

Ip1..m
ot
dp = dt N\ = b and we have
dy =dt A (dJ + 3)
=dt Ng
=5

dt Adz*A .. Adz™,

by the differential balance equation. We used above the fact that exterior differ-
entiation commutes with the pull-back (natural with respect to mappings). It is
clear now from Stokes’ theorem that for any orientabte+ 1)-submanifold with
boundaryR in £, we have

oOR R

For each such spacetime control region wetset= .*(J) and in the sequel we
will sometimes omit théR-subscript. We obtained a simple balance principle in
spacetime for which then + 1)-volume-form vanishes and for each control region

/tm:/ﬁ.
OR R



Conversely, if we start with a balance equation in spacetime as above that satisfies
Cauchy’s postulates, the generalized Cauchy theorem implies that therenis an
form J such that for each spacetime control reg#®nt; = ¢*(J).

Assume that € 0, with F'(e) = (z,t), and thatl' F(T.0R) = {t} x T,U.
Then,

t(vb s 7Um) = S(Ula cee 7Um)
= p(v1,...,om) — (dt AN J)(v1,...,0m)
= ,0(’111, s 7Um)7

where the second term vanishes becayse . ,v,, are all tangent té{ and orthog-
onal todst.

Similarly, consider a point on the boundary@R such that the tangent space at
that point contains the vectoy/ot. Then,

t(v, .. o) = J(v1, .. 0m)
=p(v1,...,0m) — (dt AN J)(v1,...,0m)
=—(dt NJ)(v1,...,0m)
as{TFy(v1),...,TFy(vy)} cannot containn linearly independent vectors in

T, U if 9/0t was in the space spanned by, . .. ,v,. In the particular case where
v; = 0/0t, we have

0 0
t<at,v2,...,vm> = (dt/\J)((%,UQ,...,vm)

0
:_EJ(thJ)(vg,-.-,vm)

= —J(TFM('UQ), e ,TFM(”m))
= —7(TFu(v2), .., TFy(vm)).

Thus,t contains the information on boghand.J (or 7).
For a regionR in ¢ and for a time intervalto, t;) consider the regiofR =
(to,t1) x R in spacetime. Since

OR = {to} X RU {tl} x RU (to,tl) x OR,
the previous observations imply that

[oi[o [ o= [ an

{to}XR {t1}><7?, (to,tl)XaR (to,tl)XR
Finally, note that by the classical balance equation and the general Cauchy theorem
we have
/ dtN\(B+dJ) = / ay = / dt Ns.
(to,tl)XR (to,tl)XR (to,tl)XR

Conversely, the differential balance equation in space is obtained by contracting
dJ = s with 9/0t.



We conclude that the classical balance principles are particular cases of balance
principles in spacetime.

6. BALANCES ON SPACETIME

Following the conclusions of the previous section, we consider a balance princi-
ple in the form considered in Proposition 5.1. Specifically, we assume that on the
m-dimensional spacetim&we have a balance of the form

[
OR R

where,t satisfies Cauchy’s postulates. The corresponding flux on spacetijne is
soty = ¢*(J) and the differential balance equationi$ = s. With the fluxJ one
can associate the flux bundi&J)+ which is a 1-dimensional subbundle BE.

It is noted that for a balance on spacetime induced by a classical bafataes
not vanish unless bothl and p vanish. Hence, the flux bundle is defined on the
open submanifold of where either or p does not vanish. In particular, jf is
positive, i.e., it is a volume element, the flux bundle is defined oé.all

When a volume elemertis given, it induces the kinematic fluxby the con-
dition J = v 6. The kinematic flux is clearly the analog of the 4-velocity. In this
case, one may write the Lie derivative in the form

L,0 =d(vi0) +vadb,

so the differential balance equation assumes the #ogth= s. Hence, in the case
where the property is conservédd = 0.

The previous discussion allows us to construct a natural generalization of the
notion of a stream function of classical continuum mechanics, the stream form.
Alternatively, stream forms generalize the maxwell 2-forms of electromagnetism
(see [2] p. 98). Assume that the property is conserved saifhat 0. Then we
have locally some smooth form, thestream fornmsuch thaty = dm.

7. WORLDLINES

To show the way the flux bundle induces a generalized body structure, we recall
first some basic notions concerning integrability of subbundles (see [1] and [9]).
A subbundleV of the tangent bundI&€ is also referred to as a distribution én
One says that’ is integrable if for every € £ there is a local submanifold of
& such thatl .Y = V., the fiber ofl” overe. In such a cas& is referred to as the
integral manifold ofl” ate.

In our setting, the distribution under consideration is the 1-dimensional flux bun-
dle. For an event € &, letv be a section of the flux bundlg(J)* that does not
vanish in an open neighborhood @f Lety: R — & be the integral curve of
throughe, i.e.,v(0) = ¢, and



Then, the image of is a local integral manifold” of the distributionE(J)* ate.
While the integral curvey, i.e., the solution of the ordinary differential equation,
depends on the choice of vector fieldits imageY is independent of this choice.
For letv’ be another such vector field in the flux bundle whose integral curve is
+', then, since the flux bundle is one dimensional, there is a real valued smooth
functionh that does not vanish in a neighborhoodauch that’ = hv. Consider
the reparametrization— t’ that satisfies the ordinary differential equation

dt’ , ,
This reparametrization is well defined in an open neighborhoad-6f0 where
h does not change sign due to the inverse function theorem. Specifically, the
reparametrization is the inverse of the monotone mapping

N v dp
7j(t)_/o h(v(p))

Define the reparametrized curvé(t) = ~(#'(¢)). By the chain ruley’ is the
integral curve of’. Hence, the integral manifolds ofandv’ coincide.

From a slightly different point of view, we can regarcnd’ as the kinematic
fluxes induced by the choice of two volume elemeh&ndd’, respectively. Thus,
while the choice of a volume elements affects the resulting kinematic flux, it does
not affect the integral manifolds for the flux bundle.

We may conclude therefore that the flux bundle is indeed integrable. We will
refer to an integral manifold of the flux bundle awarldline. Moreover, since the
notion of a worldline is linked intuitively with the body point that travels along this
worldline, we will associate a worldline with a body point in the next section.

8. THE FOLIATION BY WORLDLINES AND MATERIAL FRAMES

With the foregoing construction, the global Frobenius theorem (see e.g., [1],
p. 333) implies that the collection of worldlines form a foliation of spacetime.
Specifically, at each evente £ there is a chartU, ), ¢: U — U’ x V' C R x
R™~! whose two components will be denotedipyandq/,, that has the following
properties. Let” be a worldline that intersect$ and letX be any of the connected
components of/ VY. Then,yx(e) € R™ ! is constant for alk € X. In addition,
for every connected componekitof UNY for an arbitrary worldlingd”, ¢, (X) =
U’'—a fixed subset oR. Thus, such a foliated chart parametrizes the connected
components of the worldlines by thé?, ..., X™ coordinates and assigns a fixed
parametrization along all the the connected components of worldlines that intersect
U.

Consider the equivalence relatien such thate ~ ¢’ if e ande’ are on the
same worldline. Then, the collection of worldlines, material universeB can
be identified with the quotient spaég ~. The theory of foliations also gives the
following conditions for the equivalence relatiento be regular, i.e., conditions
such that3 is a(m — 1)-dimensional submanifold & and for the natural projec-
tion £ — B = £/~ to be a submersion. If at every eventhere exists a local



(m — 1)-dimensional submanifol@ of £ such thatP intersects every worldline
at one point at most anfl.€ = T.P x T.Y, whereY is the worldline througtz,
then, the foliation is regular. Thien — 1)-dimensional submanifol@® satisfying
the unique intersection property is usually referred toslice (Flows on the torus
that twist around it either a rational or an irrational number of times per revolution
may serve as examples for regular or irregular foliations, respectively.)

In case the foliation is indeed regular the material universe is a manifold and
we can define dody pointX as an element 0B = £/~. One may also refer
to an(m — 1)-dimensional compact submanifold with a boundary of the material
universe as &dody. For a foliated chartU, ¢), let B be a body of worldlines that
intersect/. Then, each eventin U may be parametrized by a worldline, or a
body point, and the numbefr, (¢). We will refer to such a local mapping

F:Uc&—-U xB, UcCcR,BCB

as alocal material frame Thus, the extensive property on spacetime induces a
class of local frames.

Remark8.1 Note that a volume elemefitinduces a frame in a neighborhood of
any evenkt and any particular slice containing this event. In a neighborhoaed of
every other event’ will be given the unique “time” coordinate required to arrive
at it from the slice along the kinematic flux vector field (the Straightening Out
Theorem).

Remark8.2 A local frame induces a non-vanishing localfrom 6 by 6 = dt A J.
If Jis given in terms of arim — 2)-form J on a slice, a§ = —dt A J + p, then,
0 =dtA\(—dtAJ+p)=dtApandZ .60 =p.
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