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element may be motivated by interpreting it as the density of a positive extensive
property in space. In addition, a frame on spacetime is used in the formulation of
[8].

A formulation that uses a particular volume element is not general enough. If
the volume element is interpreted physically as the density in space of the property
under consideration, it need not be positive as in the case of electric charge. Fur-
thermore, in order that we consider time dependent properties, a volume element
is needed on spacetime. However, even if the volume element on spacetimeθ is
generated by a volume elementρ in space and the formdt induced by the “time
axis” in the formθ = dt ∧ ρ, this construction makes sense only in a particular
frame that specifies that “time axis”.

Here, we reformulate the theory without the use of a volume element or a par-
ticular frame. Section 2 presents the basic variables associated with an extensive
property on a manifold and Section 3 presents Cauchy’s theorem and the resulting
flux form. Section 4 introduces the main tool of the formulation—the flux bundle
and Section 5 motivates the form of the balance in spacetime. After the formula-
tion of the balance of the property in spacetime in Section 6, Sections 7 introduces
worldlines and Section 8 introduces body points, bodies and material frames.

Although the differential geometry used here is standard, some of the construc-
tions of the standard proofs are adapted here to the current context with the purpose
of making the paper more readable.

2. SCALAR VALUED EXTENSIVE PROPERTIES

We consider properties measured in an ambient physical space. The present
setting is more general than classical counterparts as we assume that the physi-
cal space is anm-dimensional differentiable manifoldU devoid of any additional
structure. While one may interpretU as the “space manifold” of locations, or
“geometrical” space, laterU will be reinterpreted as spacetime—the collection of
physical events.

A control region(control volume)R in U is anm-dimensional compact sub-
manifold with boundary ofU .

It is assumed that to every control region,R, there corresponds aflux density,
τR, interpreted classically as the rate at which the extensive property under con-
sideration leavesR through its boundary∂R. Mathematically, since∂R is an
(m− 1)-dimensional manifold, we assume thatτR is an(m− 1)-differential form
(multi-linear and alternating) so its integration∫

∂R

τR

on ∂R can be carried out if an orientation is specified. Roughly, if the collec-
tion {v1, . . . ,vm−1} of vectors tangent to∂R is positively oriented, then, the value
τR(v1, . . . ,vm−1) is interpreteted classically as the rate at which the property flows
out of the region through the infinitesimal element generated by these tangent vec-
tors. We will useTU to denote the tangent bundle ofU andTxU to denote the
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tangent space toU at the pointx. The bundle ofk-forms overU will be denoted by∧k(T ∗U) and analogous notation will be used for the other manifolds considered.
In the case whereU is orientable, one may choose one of its two orientations

arbitrarily. This positive orientation, perceived as a sign rule, induces an orienta-
tion on the boundary of any control regionR as follows. Consider a collection
{v1, . . . ,vm−1} of vectors inTx∂R, the tangent space to the boundary atx ∈ ∂R.
This collection is set to be positively oriented if the collection{v, v1, . . . ,vm−1} is
positively oriented inU for any vectorv ∈ TxU transversal to the boundary and
pointing outwards fromR. It is noted that the particular choice of such a vectorv
is immaterial. In caseU is non-orientable, the theory of odd forms (see [3]) should
be used. This will not affect the results presented here.

In the classical formulation of balance laws,U is interpreted as the “space man-
ifold” and it is assumed that the extensive property has a densityρ, whose time rate
is β. As both should be integrated overm-dimensional control regions,ρ andβ
arem-forms. To complete the balance of the property, the production densityς is
introduced—again, anm-form onU such that∫

R

β +
∫
∂R

τR =
∫
R

ς.

We will refer to such a balance law (under the interpretation ofU as the space
manifold) as theclassical balance law.

Remark2.1. Unlike the rest of this Section and much of the following material,
the interpretation ofβ as the time derivative of the density of the property under
consideration that we described in the last paragraph, involves differentiation of
fields with respect to a time variable. Thus, this interpretation is meaningful only
when the spacetime manifold,E , is given a particular global frame

F : E → R× U .
The time axis is of course represented byR. Without such a frame (or a class of
frames) that interpretation is meaningless. In the rest of the paper we will indicate
the parts of the analysis that use a frame.

3. CAUCHY ’ S THEORY AND K INETIC FLUX FORMS

Cauchy’s theory is concerned with the properties of the flux densityτR and its
dependence onR. The generalization of Cauchy’s postulates to the geometrical
setting considered here is given in [5] and may be summarized roughly as follows
(see [5] for details).

GC1 There is anm-form θ onU such that∣∣∣∣∣
∫
∂R

τR

∣∣∣∣∣ ≤
∫
R

θ.

GC2 The value ofτR at any pointx ∈ ∂R depends on the regionR only through
its tangent space atx including its (inwards versus outwards) orientation.
That is, if TxR1 = TxR2 for the two regionsR1, R2 whose boundaries
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containx that are situated on the same side of the common tangent space,
then,

τR1(x) = τR2(x).
GC3 The value of the flux densityτR at the pointx ∈ ∂R depends smoothly on

bothx and the tangent spaceTx∂R.

Proposition 3.1(Cauchy’s Theorem). If Cauchy’s postulates hold then there is a
unique(m− 1)-form J onU such that

τR(v1, . . . ,vm−1) = J(v1, . . . ,vm−1).

See [5] for the proof and further details. The formJ will be referred to as the
kinetic flux formof the property under consideration.

Remark3.2. The relation betweenτR andJ , Cauchy’s formula, may be written in
the formτR = ι∗(J). This follows from

τR(v1, . . . ,vm−1) = J
(
ι(v1), . . . , ι(vm−1)

)
,

where ι : T (∂R) → TU is the natural inclusion of vectors (the tangent to the
inclusion∂R→ U).

Remark3.3. Consider two control regionsR andR′ whose boundaries have the
same tangent spaceP atx. In addition, assume thatR andR′ are situated on two
opposite sides ofP . In this case, the rate at which the property flows out ofR
through the infinitesimal element generated by the vectors{v1, . . . ,vm−1} is

τR(v1, . . . ,vm−1) = J(v1, . . . ,vm−1),

provided that the order of these vectors is positive with respect to the orientation of
∂R. If this is the case, the vectors{v1, . . . ,vm−1} are negatively oriented relative to
the orientation of∂R′ which is opposite to that of∂R. Hence,τR′(v1, . . . ,vm−1)
is minus the rate at which the property leavesR′. Thus, although as formsτR =
τR′ , the rates at which the property leaves the corresponding control regions are
opposite as expected.

Consider the situation where a kinetic flux field formJ is given on the oriented
U . For each control regionR, we have using the generalized version of Cauchy’s
formula and Stokes’ theorem∫

∂R

τR =
∫
∂R

ι∗(J) =
∫
R

dJ,

whered denotes the exterior derivative of differential forms. It follows that the
classical balance equation may be written as∫

R

β +
∫
R

dJ =
∫
R

ς.

Since the balance holds for arbitrary control region, one obtains

dJ + β = ς,

the differential version of the classical balance equation.



WORLDLINES AND BODY POINTS 5

4. THE FLUX BUNDLE

In this Section we introduce the flux bundle on the basis of the mathematical no-
tion of an enveloping subspace associated with a differential form (see [9] p. 25).
Our aim it to show that although the kinetic flux is an(m− 1)-form and not a vec-
tor field, it possesses, even in the general case, some properties one would expect
from the velocity field. It is noted that the interpretation of the flux as a velocity
field depends on the use of a frame. We first recall some facts about enveloping
subspaces.

4.1. Enveloping Subspaces.Consider the valueJ(x) ∈
∧m−1(T ∗xU) of the flux

at x ∈ U , where
∧m−1(T ∗xU) is the vector space of(m− 1)-forms defined on

TxU . A subspaceY ⊂ T ∗xU , envelopsJ(x) if J(x) ∈
∧m−1 Y ∗. A basic property

of enveloping subspaces associated with arbitrary alternating forms is that a mini-
mal enveloping subspace always exists and its dimension is referred to as the rank
of the form under consideration. The minimal enveloping subspace ofJ(x) will be
denoted byE

(
J(x)

)
. The minimal enveloping subspace is generated by the forms

zy J for (m − 2)-multi-vectorsz ∈
∧m−2 TxU , where,y denotes the contraction

of an form with a multi-vector.

Proposition 4.1. Let θ be a non-vanishing element of the one-dimensional space
of m-forms

∧m(TxU). Then, there is a unique vectorv ∈ TxU such thatJ(x) =
vy θ.

Proof. We use the local coordinate system{x1, . . . ,xm} soθ is represented locally
in the form

r(xi) dx1∧ . . .∧dxm.
Then, for a vectorv represented by its coordinatesvi, the contractionvy θ is rep-
resented by

m∑
i=1

(−1)i+1rvi dx1∧ . . .∧d̂xi∧ . . .∧dxm,

where the hat indicates the omission ofdxi.
Consider a local representation for the kinetic fluxJ in the form

m∑
i=1

Jidx
1∧ . . .∧d̂xi∧ . . .∧dxm.

The conditionJ(x) = vy θ is satisfied for the unique vectorv represented by

vi =
(−1)i+1Ji

r
.

Remark4.2. It is noted from the local representation that the relation between the
value of the flow and vectorv is linear and nonsingular. We will use

iθ :
m−1∧ (

T ∗xU
)
→ TxU
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to denote the resulting isomorphism.

Remark4.3. From the local expression for the components of the vectorv, it is
clear thatv depends on the choice of a volume element only through a multipli-
cation by a number. Hence, allowing the volume element to vary,J determines a
1-dimensional subspace ofTxU that is isomorphic with the space ofm-forms.

Proposition 4.4. There is a local coordinate system,x1, . . . ,xm, such thatJ(x) is
represented bydx1∧ . . .∧dxm−1. In other words,J is decomposable.

Proof. Choose some nonzerom-form θ and letv be the vector such thatJ(x) =
vy θ. Clearly, one can choose a local coordinate systemx1, . . . ,xm such that
v is tangent to thex1 curve, i.e.,v = ∂

∂x1 . Then, θ is represented locally by
r(xi) dx1∧ . . .∧dxm andJ(x) = vy θ is represented locally by

∂

∂x1
y (rdx1∧ . . .∧dxm) = r dx2 ∧ · · · ∧ dxm.

Remark4.5. It follows from the proposition that ifJ(x) is represented locally
by dx1∧ . . .∧dxm−1, then the minimal enveloping subspace is spanned by the
1-formsdx1, . . . ,dxm−1. In addition, the rank ofJ ism− 1.

4.2. The Flux Bundle. For a pointx ∈ U , consider the annihilatorE(J)⊥x ⊂ TxU
of the minimal enveloping subspace, i.e.,

E(J)⊥x = {v ∈ TxU ; φ(v) = 0, for all φ ∈ E(J)x}.

We will refer toE(J)⊥x as thethe flux spaceof J at x. Clearly, the flux space is
1-dimensional.

Proposition 4.6. For a vectorv ∈ TxU , v ∈ E(J)⊥x if and only if vy J = 0.

Proof. Write the flux in the formJ(x) = φ1∧ . . .∧φm−1, with φi ∈ E(J)x.
Since the formsφ1∧ . . .∧φm−1 are linearly independent, we add a formφm to
generate a basis forT ∗xU and we denote its dual basis by{e1, . . . ,em}. Then,
writing v = vkek, sovk = φk(v), we have

vy J = (vkek)yφ1∧ . . .∧φm−1

=
m−1∑
k=1

(−1)k+1φ1∧ . . .∧φ̂k∧ . . .∧φm−1φk(v).

Assume thatv ∈ E(J)⊥x . Then,vy J = 0 asφk(v) = 0 for all elements ofE(J)x.
Conversely, ifvy J = 0 ∈

∧m−2E(J)x, then, since the elements

{φ1∧ . . .∧φ̂k∧ . . .∧φm−1}

are linearly independent in
∧m−2E(J)x, φk(v) = 0 for all k = 1, . . . ,m− 1 and

v ∈ E(J)⊥x .
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Remark4.7. SinceJ = vy θ for some volume elementθ and a corresponding
vectorv, the identityvy (vy θ) = 0 implies that the flux space is the 1-dimensional
subspace ofTxU containingv mentioned in Remark 4.3.

Assume that a non-vanishing kinetic fluxJ is given. From the foregoing dis-
cussion it follows that the flux through the infinitesimal surface element bounded
by the vectorsv1, . . . ,vm−1 vanishes if one of the vectors is in the flux bundle.
Moreover, referring to an(m− 1)-dimensional subspace ofTxU as a hyperplane,
the following is an immediate consequence.

Proposition 4.8. The flux through any hyperplane that contains the flux vector
space vanishes.

Proof. Let v1, . . . ,vm−1 bem− 1 linearly independent vectors in a hyperplaneH
that contains the flux bundle. Choose a vectorv in the flux bundle. Clearly,v can
be expressed as a linear combinationv = aivi of the vectorsv1, . . . ,vm−1. We can
assume thata1 6= 0, or else we can reorder the vectors, so we can write

v1 =
1
a
v − 1

a

m−1∑
i=2

aivi.

It follows that

Jx(v1, . . . ,vm−1) = Jx

(
1
a
v − 1

a

m−1∑
i=2

aivi, v2, . . . , vm−1

)

= Jx

(
1
a
v, v2, . . . , vm−1

)
− Jx

(
1
a

m−1∑
i=2

aivi, v2, . . . , vm−1

)
= 0

as the first term containsv as an argument and the second term contains a linear
combination of the restm− 2 vectors.

This is clearly a generalization of the analogous situation for the value of the
velocity field of a body atx. If a surface element contains the velocity vector, the
flux through that element vanishes.

The foregoing structure may be described using an alternative approach. Con-
sider the space of multi-vectors

∧m−1 TxU . Each(m− 1)-multi-vector, repre-
sents an element in an oriented hyperplane. By the duality of the space of forms
and the space of multi-vectors, the formJ(x) may be regarded as an element of(∧m−1 TxU

)∗
. For a multi-vectorz, the valueJ(x)(z) represents the flux through

the surface element associated withz. Consider the annihilatorJ⊥x of Jx = J(x),
i.e.,

J⊥x = {z ∈
m−1∧

TxU |Jx(z) = 0}.

An element ofJ⊥x represents a hyperplane through which the flux vanishes. Since∧m−1 TxU ism-dimensional,J⊥x is (m− 1)-dimensional. Thus, there arem− 1
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decomposable(m− 1)-vectors that are linearly independent and on whichJx van-
ishes. With the notation of the proof of Proposition 4.6 these multi-vectors are

{e1∧ . . .∧êk∧ . . .∧em}, k 6= m.

These multi-vectors representm− 1 linearly independent hyperplanes whose in-
tersection is the flux space.

Given a non-vanishing kinetic fluxJ , at each pointx ∈ U we can construct the
flux space and hence we have theflux bundle

E(J)⊥ =
⋃
x∈U

E(J)⊥x

which is a 1-dimensional subbundle ofTU . In general,E(J)⊥ is defined only on
an open submanifold ofU .

We conclude with an immediate consequence of Proposition 4.1 and the sequel
remark. In the particular case where a volume element is given onU , there is a
unique vector fieldv, to which we will refer as thekinematic fluxsuch thatJ =
vy θ. As mentioned earlier,v ∈ E(J)⊥. Thus, it is the additional structure of a
volume element that enables one to construct the analog of the velocity vector field
(assuming we adopt the interpretation where a frame is given).

5. FROM CLASSICAL BALANCE TO SPACETIME SETTING

In classical mechanics, balance laws are usually formulated on the “geometrical
space” and a frame is utilized. In this Section we start with such a classical balance
law and construct a balance law on spacetime that has a particular simple form.
The form of the balance law formulated on spacetime is independent of the frame.
Hence, it is adopted in the next Section as a general form of a balance law on
spacetime.

We assume that spacetimeE is given a frameF : E → T ×U where we consider
the time manifold to be modeled byR andU is them-dimensional ”geometrical
space”. It follows that at any evente in E , TeE = TF

(
R × TFU (e)U

)
. We useFT

andFU for the two components ofF and in the sequel we will often uset andx
for the two components ofe. We start with a time-dependent balance law onU . In
general, the various fields and the flux are time-dependent. This implies that the
differential balance equation is time-dependent.

Any time-dependent form onU induces through the pull-backF ∗U a form onE .
In order to simplify the notation we will use the same notation for both. Thus, any
time-dependentr-form φ onU induces the(r+ 1)-form f = dt∧φ onE , wheredt
is the natural 1-form onR. We have

∂

∂t
y f =

∂

∂t
y (dt ∧ φ)

=
(
∂

∂t
y dt

)
∧ φ− dt ∧

(
∂

∂t
yφ

)
.

As TFU(∂/∂t) = 0, the second term vanishes, and we have

∂

∂t
y f = φ.
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For a classical balance law, we use the foregoing procedure to construct the form
b = dt∧ β from the density rate and the forms = dt∧ ς from the production rate.
Similarly, we setJ = −dt ∧ J + ρ, where we recall thatρ is the density of the
property under consideration whose time derivative isβ—anm-form onE induced
by anm-form onU having the same notation. Thus,J is represented locally by

−
m∑
i=1

Ji dt ∧ dx1∧ . . .∧d̂xi∧ . . .∧dxm + ρ1...mdx
1∧ . . .∧dxm.

Proposition 5.1. Given a classical balance law that satisfies Cauchy’s postulates,
dJ = s, and for each control regionR in spacetime∫

∂R

tR =
∫
R

s,

where,tR = ι∗(J).

Proof. We have,

dJ = d(−dt ∧ J) + dρ

= dt ∧ dJ + dρ.

Sincedρ is represented by

∂ρ1...m

∂t
dt ∧ dx1∧ . . .∧dxm,

dρ = dt ∧ β = b and we have

dJ = dt ∧ (dJ + β)
= dt ∧ ς
= s

by the differential balance equation. We used above the fact that exterior differ-
entiation commutes with the pull-back (natural with respect to mappings). It is
clear now from Stokes’ theorem that for any orientable(m+ 1)-submanifold with
boundaryR in E , we have ∫

∂R

ι∗(J) =
∫
R

s.

For each such spacetime control region we settR = ι∗(J) and in the sequel we
will sometimes omit theR-subscript. We obtained a simple balance principle in
spacetime for which the(m+1)-volume-form vanishes and for each control region∫

∂R

tR =
∫
R

s.
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Conversely, if we start with a balance equation in spacetime as above that satisfies
Cauchy’s postulates, the generalized Cauchy theorem implies that there is anm-
form J such that for each spacetime control regionR, tR = ι∗(J).

Assume thate ∈ ∂R, with F (e) = (x, t), and thatTF (Te∂R) = {t} × TxU .
Then,

t(v1, . . . ,vm) = J(v1, . . . ,vm)

= ρ(v1, . . . ,vm)− (dt ∧ J)(v1, . . . ,vm)

= ρ(v1, . . . ,vm),

where the second term vanishes becausev1, . . . ,vm are all tangent toU and orthog-
onal todt.

Similarly, consider a point on the boundary of∂R such that the tangent space at
that point contains the vector∂/∂t. Then,

t(v1, . . . ,vm) = J(v1, . . . ,vm)

= ρ(v1, . . . ,vm)− (dt ∧ J)(v1, . . . ,vm)

= −(dt ∧ J)(v1, . . . ,vm)

as {TFU (v1), . . . , TFU (vm)} cannot containm linearly independent vectors in
TxU if ∂/∂t was in the space spanned byv1, . . . ,vm. In the particular case where
v1 = ∂/∂t, we have

t

(
∂

∂t
, v2, . . . , vm

)
= −(dt ∧ J)

(
∂

∂t
, v2, . . . , vm

)
= − ∂

∂t
y
(
dt ∧ J

)
(v2, . . . , vm)

= −J
(
TFU(v2), . . . , TFU(vm)

)
= −τ

(
TFU(v2), . . . , TFU(vm)

)
.

Thus,t contains the information on bothρ andJ (or τ ).
For a regionR in U and for a time interval(t0, t1) consider the regionR =

(t0, t1)×R in spacetime. Since

∂R = {t0} ×R ∪ {t1} ×R ∪ (t0, t1)× ∂R,

the previous observations imply that∫
{t0}×R

ρ +
∫

{t1}×R

ρ −
∫

(t0,t1)×∂R

τ =
∫

(t0,t1)×R

dt ∧ ς.

Finally, note that by the classical balance equation and the general Cauchy theorem
we have ∫

(t0,t1)×R

dt ∧ (β + dJ) =
∫

(t0,t1)×R

dJ =
∫

(t0,t1)×R

dt ∧ ς.

Conversely, the differential balance equation in space is obtained by contracting
dJ = s with ∂/∂t.
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We conclude that the classical balance principles are particular cases of balance
principles in spacetime.

6. BALANCES ON SPACETIME

Following the conclusions of the previous section, we consider a balance princi-
ple in the form considered in Proposition 5.1. Specifically, we assume that on the
m-dimensional spacetimeE we have a balance of the form∫

∂R

tR =
∫
R

s

where,t satisfies Cauchy’s postulates. The corresponding flux on spacetime isJ
sotR = ι∗(J) and the differential balance equation isdJ = s. With the fluxJ one
can associate the flux bundleE(J)⊥ which is a 1-dimensional subbundle ofTE .

It is noted that for a balance on spacetime induced by a classical balance,J does
not vanish unless bothJ andρ vanish. Hence, the flux bundle is defined on the
open submanifold ofE where eitherJ or ρ does not vanish. In particular, ifρ is
positive, i.e., it is a volume element, the flux bundle is defined on allE .

When a volume elementθ is given, it induces the kinematic fluxv by the con-
dition J = vy θ. The kinematic flux is clearly the analog of the 4-velocity. In this
case, one may write the Lie derivative in the form

Lvθ = d(vy θ) + vy dθ,

so the differential balance equation assumes the formLvθ = s. Hence, in the case
where the property is conservedLvθ = 0.

The previous discussion allows us to construct a natural generalization of the
notion of a stream function of classical continuum mechanics, the stream form.
Alternatively, stream forms generalize the maxwell 2-forms of electromagnetism
(see [2] p. 98). Assume that the property is conserved so thatdJ = 0. Then we
have locally some smooth formm, thestream formsuch thatJ = dm.

7. WORLDLINES

To show the way the flux bundle induces a generalized body structure, we recall
first some basic notions concerning integrability of subbundles (see [1] and [9]).
A subbundleV of the tangent bundleTE is also referred to as a distribution onE .
One says thatV is integrable if for everye ∈ E there is a local submanifoldY of
E such thatTeY = Ve, the fiber ofV overe. In such a caseY is referred to as the
integral manifold ofV ate.

In our setting, the distribution under consideration is the 1-dimensional flux bun-
dle. For an evente ∈ E , let v be a section of the flux bundleE(J)⊥ that does not
vanish in an open neighborhood ofe. Let γ : R → E be the integral curve ofv
throughe, i.e.,γ(0) = e, and

dγ

dt
= v ◦ γ.
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Then, the image ofγ is a local integral manifoldY of the distributionE(J)⊥ at e.
While the integral curveγ, i.e., the solution of the ordinary differential equation,
depends on the choice of vector fieldv, its imageY is independent of this choice.
For let v′ be another such vector field in the flux bundle whose integral curve is
γ′, then, since the flux bundle is one dimensional, there is a real valued smooth
functionh that does not vanish in a neighborhood ofe such thatv′ = hv. Consider
the reparametrizationt 7→ t′ that satisfies the ordinary differential equation

dt′

dt
= h

(
γ(t′)

)
, t′(0) = 0.

This reparametrization is well defined in an open neighborhood oft = 0 where
h does not change sign due to the inverse function theorem. Specifically, the
reparametrization is the inverse of the monotone mapping

t(t′) =
∫ t′

0

dp

h
(
γ(p)

) .
Define the reparametrized curveγ′(t) = γ

(
t′(t)

)
. By the chain rule,γ′ is the

integral curve ofv′. Hence, the integral manifolds ofv andv′ coincide.
From a slightly different point of view, we can regardv andv′ as the kinematic

fluxes induced by the choice of two volume elementsθ andθ′, respectively. Thus,
while the choice of a volume elements affects the resulting kinematic flux, it does
not affect the integral manifolds for the flux bundle.

We may conclude therefore that the flux bundle is indeed integrable. We will
refer to an integral manifold of the flux bundle as aworldline. Moreover, since the
notion of a worldline is linked intuitively with the body point that travels along this
worldline, we will associate a worldline with a body point in the next section.

8. THE FOLIATION BY WORLDLINES AND MATERIAL FRAMES

With the foregoing construction, the global Frobenius theorem (see e.g., [1],
p. 333) implies that the collection of worldlines form a foliation of spacetime.
Specifically, at each evente ∈ E there is a chart(U,ψ), ψ : U → U ′ × V ′ ⊂ R ×
R
m−1, whose two components will be denoted byψ1 andψ2, that has the following

properties. LetY be a worldline that intersectsU and letX be any of the connected
components ofU ∩Y . Then,ψ2(e) ∈ Rm−1 is constant for allx ∈ X. In addition,
for every connected componentX of U ∩Y for an arbitrary worldlineY ,ψ1(X) =
U ′—a fixed subset ofR. Thus, such a foliated chart parametrizes the connected
components of the worldlines by theX2, . . . , Xm coordinates and assigns a fixed
parametrization along all the the connected components of worldlines that intersect
U .

Consider the equivalence relation∼ such thate ∼ e′ if e and e′ are on the
same worldline. Then, the collection of worldlines, ormaterial universe, B can
be identified with the quotient spaceE/∼. The theory of foliations also gives the
following conditions for the equivalence relation∼ to be regular, i.e., conditions
such thatB is a(m− 1)-dimensional submanifold ofE and for the natural projec-
tion E → B = E/∼ to be a submersion. If at every evente there exists a local
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(m− 1)-dimensional submanifoldP of E such thatP intersects every worldline
at one point at most andTeE = TeP × TeY , whereY is the worldline throughe,
then, the foliation is regular. The(m− 1)-dimensional submanifoldP satisfying
the unique intersection property is usually referred to as aslice. (Flows on the torus
that twist around it either a rational or an irrational number of times per revolution
may serve as examples for regular or irregular foliations, respectively.)

In case the foliation is indeed regular the material universe is a manifold and
we can define abody pointX as an element ofB = E/∼. One may also refer
to an(m− 1)-dimensional compact submanifold with a boundary of the material
universe as abody. For a foliated chart(U,ψ), letB be a body of worldlines that
intersectU . Then, each evente in U may be parametrized by a worldline, or a
body point, and the numberψ1(e). We will refer to such a local mapping

F : U ⊂ E → U ′ ×B, U ′ ⊂ R, B ⊂ B
as alocal material frame. Thus, the extensive property on spacetime induces a
class of local frames.

Remark8.1. Note that a volume elementθ induces a frame in a neighborhood of
any evente and any particular slice containing this event. In a neighborhood ofe,
every other evente′ will be given the unique “time” coordinate required to arrive
at it from the slice along the kinematic flux vector field (the Straightening Out
Theorem).

Remark8.2. A local frame induces a non-vanishing localm-from θ by θ = dt∧J.
If J is given in terms of an(m− 2)-form J on a slice, asJ = −dt ∧ J + ρ, then,
θ = dt ∧ (−dt ∧ J + ρ) = dt ∧ ρ and ∂

∂t
y θ = ρ.
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