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Résumé
Un système de vérité terrain est indispensable pour tester
un système de perception pour les véhicules intelligents.
Cet article utilise le formalisme des grilles d’occupation
évidentielles qui peut être appliqué à la gestion des in-
certitudes des capteurs. Un modèle de capteur évidentiel
qui interprète les données acquises par le Velodyne en une
grille d’occupation 2D est ainsi conçu et étudié. Les infor-
mations provenant du capteur sont traitées sur la base de
pincipe d’engagement minimal pour garantir l’intégrité de
l’information fournie. Les résultats expérimentaux mon-
trent que cette approche peut gérer efficacement les incer-
titudes du capteur et donc fournir une vérité terrain fiable
tout autour du véhicule.

Mots Clef
Grille d’occupation, theorie évidentielle, vérité terrain,
Velodyne

Abstract
This paper proposes an evidential occupancy grid map-
ping framework that can be applied to manage the sensor
uncertainties. An evidential sensor model that interprets
the data acquired by the Velodyne to a 2D occupancy grid
map is conceived. The information from the sensor is pro-
cessed based on the least commitment principle to guaran-
tee information integrity. Experimental results prove that
this approach can handle efficiently the uncertainties of the
sensor and thus a reliable ground truth map all around the
vehicle can be built.
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1 Introduction
A ground truth perception equipment is a key issue for
the development of driving assistance systems and au-
tonomous vehicles. Although the V elodyne lidar [1] pro-
vides rich and accurate information about the surrounding

environment, an adapted sensor model to tackle its un-
certainty and to fully profit its rich information is rarely
discussed in the literature. To cope with errors and un-
certainty for building occupancy grid maps in perception
systems, Bayesian methods are the common background.
Many extensions have been published in the literature, like
the Bayesian Occupancy Filter (BOF) [2] which estimates
both the occupancy and the speed of the cells. [3] proposed
an extended occupancy grid approach which can be used to
track non-rigid moving objects. [4] applied a Bayesian oc-
cupancy grid map to detect road boundaries. In this paper,
we propose an evidential framework to build an occupancy
grid map in the proximity of the host vehicle. We propose
a tailored sensor model which interprets V elodyne data
frames into a local 2D occupancy grid map in this work. A
fusion process based on Dempster Shafer data fusion en-
hances the ground truth map by fusing data acquired at dif-
ferent locations.
The paper is organized as follows: Section 2 details the ev-
idential sensor model developed to merge high definition
lidar sensor measurements into scan grid maps. Section 3
illustrates the fusion scheme based on the evidential frame-
work. Section 4 shows the implementation details and ex-
perimental results.

2 An evidential sensor model for the
Velodyne

In this section, an inverse sensor model for the V elodyne
is developed. In our approach, we build 2D evidential oc-
cupancy grid map (denoted as scan grid) with data from
the Velodyne by making a projection on the ground plane.

2.1 Evidential framework
The frame of discernment is defined as: Ω = {O, F}, the
two singletons are the proposition O and the proposition
F, indicating respectively that the specific cell isOccupied
and Free. One has to increase this set, by considering the
power set which is defined as 2Ω = {∅, F, O, Ω}. Ω indi-
cates ignorance about the state of the cell (Unknown cell),
and ∅ indicates that no proposition fits the cell.



The basic probability assignment (BPA) is a direct sup-
port for a proposition, which is denoted by function m.

2.2 Polar sensor model basic concepts
In order to be as close as possible to the sensor’s rotating
acquisition process, the scan gridmap is created in a polar
frame.

Figure 1: Space representation in Polar Coordinates, show-
ing how measurements from V elodyne can be interpreted
in the evidential framework. Green refers to free space, red
refers to occupied space and dark refers to unknown space.

As shown in Figure 1, the whole space around the car is di-
vided into angular sectors, while each sector in the space is
divided into different cells. For the BPA assignment pro-
cess, we consider the sectors independent from each other.
Indeed, if the sampling of the grid is high enough and since
the laser beam width is very small, this assumption is well
verified. The state assignment respects the least commit-
ment principle. Velodyne points provide information about
the state of the scanned cells. Therefore, the space where
there is no information is treated as Unknown.

2.3 Grid state assignment
Let define an elevation threshold denoted H which spec-
ifies the elevation of points considered as obstacles. The
value of the threshold has to be chosen carefully in order to
filter noise. When the elevation of an echo is above H , we
consider the cell Occupied.
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Figure 2: Sensor model for the scan grid construction
process. Top, bird view of the host vehicle, x represents
the motion direction. Middle, lateral visualization of the
threshold scene and of the backward free extrapolation
(short vertical lines, explained in section 2.4). Bottom,
state assignment.

Figure 2 illustrates the state assignment process. To dif-
ferentiate the ground information from the above-ground
information, we set up a scene where a human and a car

are near our host vehicle. Nine beams from Velodyne are
drawn for illustration. The four lowest green beams hit
the ground, where G1, G2, G3 and G4 are respectively
the intersections on the ground. The five red beams reach
the human and the car in the distance, and their intersec-
tions are H1, H2, H3, H4 and H5. The grid on the bot-
tom serves as an illustrating plot of the polar world model
shown in Figure 2, in which the horizontal axis shows the
range variation and the vertical axis represents the angle
variation. One object O1 is designed near the host vehi-
cle to illustrate the fact that there exists space that is not
detectable with Velodyne installed on the roof. Thus the
least commitment principle can guarantee the information
integrity in the model.
Based on the least commitment principle, the state allo-
cation process obeys the following rules: the cells which
contain the H3, H4 and H5 are marked O(Occupied),
as these points are above the threshold; the cells which
contain respectively G1, G2, G3 and G4 are marked as
F (Free), as these points are detected on the ground; al-
though H1 is beneath the threshold H , abut the same cell
also contains theH2, which is above the threshold, to elim-
inate the potential conflict, in our approach, we make an
additional assumption: a detected obstacle is modeled as
a vertical surface that is linked to the ground. This
cell is marked Occupied. All the other cells are marked
U(Unknown).

2.4 Backward free space propagation
One benefit of defining the threshold H is the extension of
the Free region by making a backward extrapolation to the
host vehicle. The effect is illustrated in Figure 2. Consid-
ering the beam which intersects the ground at G4, one can
deduce that there is no obstacle in the interval L which has
an elevation superior to threshold H . In this case, the zone
Free corresponding toG4 is extended towards the host ve-
hicle. The states of cell 8 is also set to Free because we
extrapolate at point G3. Cell 5 is not propagated to Free
because the extrapolation distance can not cover the whole
cell, no state propagation is made.

2.5 Grid mass assignment
We need now to assign a BPA to the grid cells to quantify
the belief. We propose a grid mass assignment model based
on information accumulation. In Figure 2, cell 6, cell 9
and cell 12 are all set to Free. However, we should have
unequal amount of beliefs about their Free state because
in cell 6, there exist two points on the ground to support
the state, whereas in cell 9 and cell 12, there exists only
one point. The same stands for the Occupied cells, cell 15
and cell 19 should have unequal amount of beliefs about
the occupied state. More points supporting one state
should contribute to more beliefs on the state. This
accumulation concept reinforces the belief assigned to each
proposition.
The BPA values are based on sensor uncertainties. Let
αFA and αMD correspond to the the probability of false



δs Beam divergence of Lidar projected on ground

δg Angle resolution of polar grid

Figure 3: Missed-detection illustration

alarm and missed-detection. A false alarm is when the sen-
sor issues an impact whereas there is nothing. It depends
essentially on the sensor noise and on multipath propaga-
tion. A missed detection is mainly related to the reflex-
ivity of the target and to the ratio between the cell size
and the beam width. Figure 3 shows how this ratio results
in missed-detection. δs represents the divergence of Lidar
(beamwidth), and δg represents the angular resolution of
the polar grid. In this circumstance, one beam of Lidar can
not cover the whole sector. This beam can miss potential
obstacles within its blind regions of the cell. The missed-
detection effect thus has to be considered.
The proposed model calculates the BPAs with proba-
bilistic approach. Based on the definition of false alarm,
its probability αFA = P (C = F | ξ1), Where ξ1 rep-
resents one obstacle impact in the cell, C stands for the
state of the cell. If we suppose that errors are indepen-
dent, the total false alarm probability in one cell given
nO obstacle points are detected in this cell should be
P (C = F | ξ1, ξ2, ... , ξN ) = αnO

FA. Thus the prob-
ability of Occupied can be represented as: P (C =
O | ξ1, ξ2, ..., ξN ) = 1−αnO

FA. Based on the same method-
ology, for Free cells, the missed-detection probability
αMD = P (C = O |∆), where ∆ represents no above
ground impact is returned to the sensor. If we assume nF
ground points are detected in this cell, the total missed-
detection probability should be αnF

MD. Thus the probability
of Free should be represented as 1− αnF

MD.
The BPA assignment thus follows the rules below:
For a Free cell:

m(O) = 0, m(F ) = 1−αnF

MD, m(Ω) = 1−m(F ), m(∅) = 0

For an Occupied cell:

m(O) = 1−αnO

FA, m(F ) = 0, m(Ω) = 1−m(O), m(∅) = 0

For an Unknown cell, the initial state is kept:

m(O) = 0, m(F ) = 0, m(Ω) = 1, m(∅) = 0

To keep the processing load reasonable, we suggest to ex-
trapolate the free level m(F ) uniformly in the backward
propagation with no decrease to the cells that have no
echoes.

2.6 From polar to Cartesian
The approach merges the Velodyne scan data into occu-
pancy grid map. This map is built in a polar coordinate

system, but for the fusion purpose, we need to transform
it into a Cartesian coordinate system. All the information
collected has to be transformed into Cartesian coordinates,
with the least loss. In our approach, we have adopted the
bilinear interpolation algorithm introduced by [5].

3 Ego-Map Grid Fusion
The scan grid map is not complete, because there exist
uncertainties in the map due to unperceived space. With
Dempster’s conjunctive rule, the fusion of several succes-
sive scan grids allows to eliminate the uncertainties in the
map. To make this fusion, the ego-motion of the host vehi-
cle has to be compensated and then every new scan grid of
the Velodyne is merged into a grid denotedEgoMapGrid.
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Figure 4: Workflow of the scan grid construction and fu-
sion

Figure 4 illustrates the whole approach. The fusion
process is sequential. At time t, the new scan grid
ScanGrid(t) updates EgoMapGrid(t − 1) to provide a
new EgoMapGrid(t).
To accommodate to the dynamic environment, we adopt
the approach proposed by [6] and use a decay factor for
EgoMapGrid. The information inEgoMapGrid can be-
come aged and not consistent with reality. This effect can
be especially important when moving objects are in the
scene. The equations below show how mass functions are
discounted with a decay factor denoted β.

βmM (A) = β ∗mM (A), A ⊂ Ω

βmM (Ω) = 1− β + β ∗mM (Ω)

The fusion process adopts the Demster-Shafer conjunctive
rule, as shown in Equation 1. For denotation purpose, let
mM,t and mS,t represent respectively the mass functions
of EgoMapGrid and ScanGrid at time t.

mM,t =β mM,t−1 ⊕mS,t (1)



4 Experimental implementation and
results

4.1 Experimental implementation
The approach was tested with the vehicle shown in Fig-
ure 5a. Figure 5b displays the trajectory. We have imple-
mented the approach in C++.

(a) CARMEN vehicle. V elodyne is
installed on top

(b) Trajectory of the Experiment
(Red line)

Figure 5: Experimental platform of Heudiasyc and Trajec-
tory

The V elodyne data was acquired at 10Hz frequency. The
ego-motion between two scans is estimated using CAN
data. For the purpose of demonstration, the scan grids of
(72 ∗ 72) meters are built with uniform cells of size(0.1 ∗
0.1) meters. In the polar grid map, the angular resolu-
tion is 0.5 degrees and the radius resolution is 0.1 meters.
For the tuning parameters, we have adopted αMD = 0.66,
αFA = 0.15. αMD is based on the ratio of the beam di-
vergence of V elodyne (estimated to 0.17 degrees by [7])
and the resolution of the grid (0.5 degrees). We have tuned
αFA to 0.15 in order to consider the sensor noise and the
multipath phenomenon.

4.2 Results

Figure 6: Occupancy scan grid with backward extrapola-
tion, H = 0.2. Green represents Free space, Red represents
Occupied space, Dark represents Unknown space.

One typical scene is chosen where the host vehicle is in an
urban road. The resultant scan grid is shown in Figure 6.

Figure 7: Fusion result map of several scan grids.

H is set to 0.2 for illustration. Figure 7 shows the result
of fusion. One can remark that the green level in the cen-
tral part of the fusion result map is lower compared to the
other surrounding parts of the Free space. The reason for
this phenomenon is that the sensor receives no information
from this space in the present scan. The decay factor was
set to 0.98 to slowly discount aged information. This effect
is noticeable in the fusion result map: the right bottom part
of the map shows darker green which means less evidence
to be Free. This can also be explained by the ScanGrid:
the state of this space is Unknown in the ScanGrid. With
no evidence supporting the space state, the system tends to
gradually forget its past state. In this case, m(F ) decreases
until the system totally forgets the state, and it becomes
Unknown again.

5 Conclusion
In this paper, we have proposed an evidential sensor model
to interpret V elodyne data into scan grid maps. Based
on the least commitment principle, the proposed model
provides reliable grid state indications of the space. The
principle of information accumulation enables to manage
the sensor’s uncertainties based on probabilistic approach,
which greatly augments the accuracy of mass allocation.
The resulting scan grid map is conservative so provides
high reliability. The fusion process based on the evidential
theory yields a complete occupancy grid map. Based on the
real experiments, we have observed that the approach pro-
vides satisfactory results. In future work, this occupancy
grid map can be used as ground truth to evaluate the per-
formance of other perception schemes that use cheaper sen-
sors.
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