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Abstract—Identifying speakers in TV broadcast in an unsuper-
vised way (i.e. without biometric models) is a solution for avoiding
costly annotations. Existing methods usually use pronounced
names, as a source of names, for identifying speech clusters
provided by a diarization step but this source is too imprecise
for having sufficient confidence. To overcome this issue, another
source of names can be used: the names written in a title block
in the image track.

We first compared these two sources of names on their abilities
to provide the name of the speakers in TV broadcast. This study
shows that it is more interesting to use written names for their
high precision for identifying the current speaker.

We also propose two approaches for finding speaker identity
based only on names written in the image track. With the
“late naming” approach, we propose different propagations of
written names onto clusters. Our second proposition, “Early
naming”, modifies the speaker diarization module (agglomerative
clustering) by adding constraints preventing two clusters with
different associated written names to be merged together.

These methods were tested on the REPERE corpus phase 1,
containing 3 hours of annotated videos. Our best “late naming”
system reaches an F-measure of 73.1%. “early naming” improves
over this result both in terms of identification error rate and
of stability of the clustering stopping criterion. By comparison,
a mono-modal, supervised speaker identification system with
535 speaker models trained on matching development data and
additional TV and radio data only provided a 57.2% F-measure.

Index Terms—Speaker identification, speaker diarization, writ-
ten names, multimodal fusion, TV broadcast.

I. INTRODUCTION

Knowing “who said what” in broadcast TV programs is
very useful to provide efficient information access to large
video collections. Therefore, the identification of speakers is
important for the search and browsing in this type of data.
Conventional approaches are supervised with the use of voice
biometric models build on manually annotated data. However,
these approaches face two main problems: 1) manual annota-
tions is very costly because of the great number of recogniz-
able persons in video collections; 2) lack of prior knowledge
on persons appearing in videos (except for journalists and
anchors): a very large amount of a priori trained speaker
models (several hundred or more) is needed for covering only
a decent percentage of speakers in a show.

A solution to these problems is to use other information
sources for naming speakers in a video. This is called unsu-
pervised naming of speakers and most approaches for that can
be decomposed into the three following steps:

1) Segmentation of speech into clusters, a cluster must
correspond to one person and vice-versa (diarization);

2) Extraction of hypothesis names from the video (or from
the collection of videos);

3) Mapping (or association) between hypothesis names and
clusters.

Speaker diarization [1] is the process of partitioning the
audio stream into homogeneous clusters without prior knowl-
edge on the speakers’ voice. Each cluster must correspond to
only one speaker and vice versa. Most systems use a bottom-
up agglomerative approach which tries to merge speech turns
into clusters that are as pure as possible using a distance metric
(with a distance-based criterion for stopping the clustering).

Two modalities, intrinsic to the video, (see figure 1) can
provide the name of speakers in broadcast TV: pronounced
names and names written on the screen to introduce the
corresponding person (i.e. written names).

The third step depends on the name source used. We will see
in the next section that most state-of-the-art approaches rely
on pronounced names because of the poor quality of written
names transcription observed in the past.

Objectives of this paper are to show that written names over
the image in TV broadcast can provide the name of speakers
for a cross-modal identification. The main idea is to directly
name some speech turns and then propagate these identities
through the diarization process.

The outline is as follows: section II presents the related
works and shows how previous studies have integrated pro-
nounced names and/or written names to identify speakers in
radio and TV broadcast. Then, in section III, we describe
the experimental setup: REPERE corpus, audio and video
processing modules, and a comparison between written names
and pronounced names to provide speaker identities. Section
IV is dedicated to our different unsupervised speaker naming
methods based on written names only. Section VI compares
our propositions with a state-of-the-art method and with two
methods based on biometric models in the framework of the
REPERE challenge. Finally, we conclude this paper and give
some perspectives.

II. STATE OF THE ART

A. Naming Speakers with Pronounced Names

Until very recently, the state-of-the-art works on unsu-
pervised speaker identification used the closest modality for
extracting the names of speakers: the pronounced names
from speech transcription. The first works were proposed
by Canseco et al. [2], [3]. They used linguistic patterns set
manually to determine which referred to a pronounced name:
the current, next or previous speaker (e.g. “thank you Candy
Crowley” inferred that the name corresponds to the previous
speaker). Charhad et al. [4] used the same method but with
automatic diarization and automatic speech recognition [5].

In 2006, Tranter [6] replaced manual rules by learning
sequence of n-grams with associated probabilities. She showed
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Fig. 1: Pronounced names and written names in a TV broadcast video

that less speakers are nameable with automatic systems (47.3
%) than with manual annotations (76.8 %) on the Hub-4
corpus. In [7], Ma et al. extended [6] by using a maximum
entropy model. The naming strategy was enriched with fea-
tures such as the name position in the sentence and genre
correspondence between names and speakers.

Mauclair et al. in [8] used semantic classification trees
(SCT) to calculate the probabilities (according to the terms
around a pronounced name) that a name correspond to the
previous, current, next speaker or another speaker. This method
has been tested on the ESTER corpus with manual transcripts
and manual diarization. 70% (approximately) of the total
broadcasting time was correctly identified (18% error and
12% unidentified). Estève et al. [9] show that SCT are less
sensitive to the use of automatic speech recognition than rules
based on n-grams. Jousse et al. [10] improved the use of
SCT with a local decision (affiliation of pronounced names to
adjacent speech turns) and a global decision (propagation of
pronounced names to speech clusters). They also observed an
increase of the identification error rate duration from 16.66%
(manual annotations) to 75.15% (full automatic systems) on
the ESTER corpus phase 2, (213 speakers).

In 2010, Petitrenaud et al. in [11], used the same context
as Jousse et al.. However, they replaced the decision by belief
functions. These functions have the characteristic to take into
account the consistency of the information between adjacent
speech turns. The authors observed that the identification
error rate was reduced from 16.6% to 13.7% with manually
annotated data. El-Khoury et al. [12] applied these belief
functions with the use of automatic systems. The error rate
increased from 10%, based on manual annotation, to 41.1%
with the use of automatic system. They also integrated scores
transformed into belief function from a speaker recognition
system based on biometric GMM-UBM models. This reduces
the error to respectively 4.6% and 32.7%. Given that the error
rate for biometric models alone was 63%. This work shows
that biometric models and unsupervised naming systems tend
to identify different speakers.

A recent study on the capability of pronounced names to
identify persons present in a video was proposed by Béchet
et al. [13]. They asked two human judges to choose for all
pronounced names in the corpus REPERE, phase 0, whether
they were present, absent or whether it was not possible to
determine their presence using only the spoken transcription
of the turns (containing people name). Only 43.4% of name
occurrences corresponded to a speaker name. For 51.2% of
them the judges couldn’t determine their presence (24.1% were

absent, 7.3% spoke, 19.8% were only visible). This means
that only 37.1% of name occurrences provided a relevant
information. This work shows that the names pronounced,
in addition to being hard to extract, provide information for
which we cannot have a strong confidence.

B. Naming persons with written names

Written names were first used for a face identification task
in broadcast news ([14], [15]), but due to a high word error rate
(respectively 52 % and 65 %), these names were detected and
corrected with the help of a dictionary (limiting identification
to a closed list of persons). Despite these corrections, the
error rate was still very high (45 % after correction in [15])
and consequently greatly limited the use of this source of
information. Later, Yang et al. [16], [17] also tried to use this
source of names, but again, the video OCR system [18] used
to process the overlaid text produced highly erroneous results
(e.g. “Newt Gingrich” was recognized as “nev j ginuhicij”).

Improved video quality in recent years allows us to extract
written names on screen (used to introduce the corresponding
person) with very few errors. We were the first to propose
a speaker identification system based only on this source of
names (extracted using the tool LOOV [19]) in TV broad-
cast [20], [21], [22], [23]. Our methods are described and
extended in this paper.

We also collaborated with the LIMSI laboratory for integrat-
ing identities provided by written names in an Integer Linear
Programming (ILP) speech clustering [24]. The main idea was
to replace the classical agglomerative BIC clustering by an
ILP clustering and at the same time integrating written names
to identify speech clusters. First, multi-modal similarity graph
was build, were intra-modal links correspond to the similarity
of mono-modal elements (speech turns: BIC distance, written
names: identical or not) and multi-modal links to the temporal
co-occurrence between written names and speech turns. As
a written name has a high probability to match the current
speaker, identification of speech turns via the ILP solver
corresponded to find the less expensive way to connect names
and speech turns. The main limitation of this method is the
large computation time for solving the ILP clustering. A
comparison of identification results obtained with this method
and with the methods that we propose in this paper will be
given later in section VI.

In [26], [27], we also proposed a fair comparison between
written names and pronounced names to identify speakers. We
summarize the main results in the section III-C.
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C. Lessons learned

Two types of names that can be automatically extracted were
used in the literature: pronounced names and written names.
The automatic extraction of names from these two sources
generates several types of error and, in this context, the quality
of speech transcription and speaker names detection is an
important issue. For overlaid texts on the image, improvement
of the video quality these recent years reduces errors as we
will show in section III-B2. In addition, it should be noted
that the character models (which can be multilingual) for the
transcription of overlaid texts are more generic than language
models used for speech transcription.

There are also errors coming from the detection of the
names in these transcriptions. The detection of named entities
in speech is not an easy task when no a priori knowledge of
names to detect is available whereas the detection of written
names corresponds to the simple detection of the template used
in the show for writing text on the screen, this task is much
simpler.

Both sources provide temporal information of the possi-
ble intervention of a speaker. But it remains unclear for
pronounced names (a name can correspond to the previous,
current, next speaker or to another) while a written name
correspond to the current speaker in 95% of the cases in the
corpus used for our experiments (see next section).

Association methods between pronounced names and clus-
ters take into account the uncertainty of this source of names.
So far for written names, there are few association methods
proposed due to the difficulty of extracting them. But as the
quality of the videos increased significantly in recent years,
we can now extract them with very few errors. We therefore
propose, in section IV, different association methods using
written names to identify speakers in TV broadcast.

III. EXPERIMENTAL SETUP AND PRELIMINARY STUDY

The REPERE challenge [28] is an evaluation campaign on
multimodal person recognition (phase 1 took place in January
2013 and phase 2 in January 2014). The main objective is
to answer the two following questions at any instant of the
video: “who is speaking?” “who is seen?”. All modalities
available (audio, image, external data ...) can be used for
answering these questions. In this paper, we try to answer
the first question without using speaker biometric models.

A. REPERE corpus [29]

The dataset used in our experiments is composed of videos
recorded from seven different types of shows (including news
and talk shows) broadcasted from two French TV channels.
Data is split between 3 sets (training, development and test).
An overview of the data is presented in Table I.

Though raw videos were provided to the participants (in-
cluding the whole show, adverts and part of surrounding
shows), only excerpts of the target shows were manually
annotated for the evaluation. Our evaluations are performed
on the test set. It is important to note that, although the whole
test set is processed, the performance is measured only on the
annotated frames on it.

Train Dev. Test
Raw video 58h 13h 15h
Annotated part 24h 3h 3h
# speech turns in the annotated part 19208 2010 2220
# named spk in the annotated part 555 122 126
Number of annotated frames 8766 1108 1229

TABLE I: Train and test sets repartition of the REPERE
corpus phase 1

B. Audio and video processing modules

1) Speaker diarization:
Speaker diarization consists in segmenting the audio stream

into speech turns and tagging each turn with a label specific
of the speaker. Given that no a priori knowledge of the
speaker’s voice is available in the unsupervised condition, only
anonymous speaker labels can be provided at this stage.

After splitting the signal into acoustically homogeneous
segments, we calculate a similarity score matrix between each
pair of segments using the BIC criterion [30]. Segments are
modeled with one Gaussian with full covariance matrix

∑
trained on the D = 12-dimensional Mel Frequency Cepstral
Coefficients (MFCC) and energy. ∆BICij defines the similar-
ity between two segments i and j:

∆BICij = (ni + nj) log |Σ| − ni log |Σi| − nj log |Σj |

− 1

2
· λ ·

(
D +

1

2
D (D + 1)

)
log (ni + nj)

where nk is the number of samples in segment k and λ the
penalty weighting coefficient. A similarity matrix between all
segments is then given as input of a complete-link agglomera-
tive clustering. Depending on the similarity threshold used as
stopping criterion, several clustering results can be obtained.

It is worth mentioning that the matrix is not updated after
each merging of clusters, as this is usually the case for regular
BIC clustering. We are aware that hierarchical clustering based
on BIC distance is less efficient than hierarchical clustering
with CLR distance [31] or I-vector+ILP [32] but our goal,
here, is to do a fair comparison of several speaker naming
methods, independently of the similarity measure used for
clustering.

2) Written names (WN):
In order to detect written names used for introducing a

person, a detection and transcription system is needed. For
this task we used LOOV [19] (LIG Overlaid OCR in Video).
This system has been previously evaluated on another broad-
cast news corpus with low-resolution videos (352×288). We
obtained a character error rate (CER) of 4.6% for any type of
text and of 2.6% for names written in a title block.

From the transcriptions, we use a simple technique in order
to detect the title blocks spatial positions. This technique
compares each transcript with a list of famous names (175k
names extracted from Wikipedia). Whenever a transcription
corresponds to a famous name, we add its spatial position to
a list. With the repeating positions in this list we find the
spatial positions of title blocks used for introducing a person.
However, these text boxes detected do not always contain a
name. A simple filtering based on some text questions (does
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the first word correspond to a first name? is the sentence
longer than a threshold? . . .) allows us to filter false positives
(4779 text boxes candidates, 1315 after filtering, 11 should
not have been filtered, 13 should have). Transcription errors
are corrected using the Wikipedia list when the edit distance
is small (207 corrections with 4 errors only).

3) Pronounced names (PN):
A state-of-the-art off-the-shelf Speech-To-Text system for

French [33] was used for transcribing the audio data without
specific model adaptation to our corpus. The recognizer uses
the same basic statistical modeling techniques and decoding
strategy as in the LIMSI English BN system [5]. Prior to
transcription, segmentation and clustering [34] are performed
based on acoustic features. Word decoding is carried out in a
1×RT single decoding pass. Each decoding pass produces a
word lattice with cross-word, word-position dependent acous-
tic models, followed by consensus decoding with a 4-gram
language model and pronunciation probabilities (35-phone set,
65k word vocabulary). This system obtained a word error rate
of 16.87% (on around 36k words) during the first evaluation
campaign of the REPERE challenge.

For named-entity detection, specific independent Condi-
tional Random Field (CRF) models were trained on other data
from Quaero project. These models used the same features
as those presented in [35]: (1) Standard features like word
prefixes and suffixes. (2) Morpho-syntactic features extracted
as in [36]. (3) Features extracted from a multilevel analyzer
used in the LIMSI question-answering systems [37].

C. Proportion of nameable speakers by written names (WN)
and pronounced names (PN)

To analyze the capability of our two sources of names to
provide the real speaker names, we first compare their intrinsic
qualities, and then confront their abilities for providing the
name of persons that speak in the REPERE corpus, phase 1.
For the experiments, we use the whole training part to extract
more significant statistics.

With LOOV piped with our written names detection tech-
nique, we obtain 97.7% of names (see Table II), with a
precision of 95.7%. The few remaining errors are due to
transcription or filtering errors. Extracting pronounced names
generates more errors. The main difficulty lies in the transcrip-
tion and detection of unknown names (we do not have any a
priori knowledge of names that could be pronounced).

Modalities Precision Recall F1-measure
WN 95,7% 97,7% 96,7%
PN 73,5% 50% 59,5%

TABLE II: Quality of written (WN) and pronounced names
(PN) extraction

Despite the lower precision and recall of the PN relative to
WN, the automatic system extracts more hypothesis names
from speech (see Table III). We can observe that there are
about twice more pronounced names compared to written
names, whether we analyze raw videos or annotated part
only. This is observed for the number of names occurrences
and the number of different unique names.

Modalities Segment #Occurrences #Persons w/o
of names duplicates

WN Ann. part (24h) 1407 458
Raw (58h) 2090 629

PN Ann. part (24h) 2905 736
Raw (58h) 4922 1156

TABLE III: Number of written (WN) and pronounced names
(PN)

To compare these two modalities, we also count the number
of nameable speakers for each video. We first count the
proportion of videos where a person p is nameable:

%Nameablep =
#videos where p ∈ Phr
#videos where p ∈ Pr

With:
p : a person

Pr : a set of persons p speaking
Phr : Pr with their names written/pronounced

The (%Nameablep) of a person p is the ratio of the number
of videos where the name of p is written/pronounced and
where p speaks by the number of videos where p speaks.
Overall, for all persons we calculate:

%Nameable =

∑
p∈Pr %Nameablep

#p ∈ Pr
The third column of the table IV shows the percentage of

nameable speakers depending on the modalities used as source
of names.

PN WN %Nameable

Manu - 62.2
- Manu 60.5

Manu Manu 80.4
Auto - 26.7

- Auto 73.5
Auto Auto 75.8

TABLE IV: Percentage of nameable speakers with PN
(pronounced names) and/or WN (written names) modalities.
Manu: manual annotations, Auto: automatic annotations,

We observe that the written names extracted automatically
can name 73.5% of the 555 speakers. The manual annotation
of WN is not complete (1 image / 10 sec only), which explains
the higher score of the automatic system (73.5%) compared
to manual annotations (60.5%). The combined use of the two
modalities (WN+PN) enhances the score (+19.9 % in the case
of manual annotations - Manu but lower improvement when
automated systems are used (+2.3 % for Auto)).

This study can be retrieved integrally in [27] (in english) or
[26] (in french). We can conclude that when the written names
are available, it is more interesting to try to name speakers with
the help of written names. Pronounced names show a potential
with manual annotation but speech transcription and named-
entities errors reduce this potential for naming speakers.

In the next section, we propose two naming strategies for
speakers identification in TV broadcast where the knowledge
of written names is integrated at different steps of the naming
process.
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IV. UNSUPERVISED NAMING OF SPEAKERS

Our different approaches are based on the strong assumption
that when a speech turn/cluster and one (or more) written
name(s) occur simultaneously, the probability that the latter
corresponds to the former is very high (>95%). The main
idea of our propositions is to:

1) Identify speech turns/clusters co-occurring with overlaid
names.

2) Propagate these identities to the remaining speech
turns/clusters.

We propose two different approaches for unsupervised
speakers naming with written names. The first, “late naming”,
tries to identify clusters provided by a diarization process.
This approach proposes different “questioning” of the choice
made during the diarization. The second one, “early naming”,
integrates the knowledge provided by written names during
the diarization process itself.

A. Late naming
In the late naming approach, speaker diarization and written

names extraction are run independently from each other and
association is performed later as shown in Figure 2.

Fig. 2: Late naming approach

Speaker diarization is tuned for achieving the best diariza-
tion performance (i.e. minimize the diarization error rate,
DER). Written names are extracted as described in the section
III-B2. The objective of the “association names-clusters” step
is to find the optimal mapping function m defined as:

m : T → N

t 7→
{

n if name of speech turn t is n ∈ N
⊥ if it is unknown or not in N

Where T = {t1, . . . , tM} the set of speech turns. N =
{n1, . . . , nI} is the list of I names detected by the video OCR.

Figure 3 illustrates an example that will be referred in the
remainder of the section. S = {s1, . . . , sL} corresponds to the
set of L clusters found by the speaker diarization system.

t6
s1 s4 s6 s7 s5

n1 n2

s2

n3

s3 s6

n4

s3

n3

s6

t0 t1 t2 t3 t4 t5 t7 t8 t9

n1n5

n4

n1 n2 ? ? n4 n3 ? n5 ?

n1 n2 ? ? n4 n3 n5 n3 n1

n1 n2 n1 ? n4 n3 n5 n3 n1

LN1

LN2

LN3

n5

n5

n5

n1 n2 n1 ? n4 n3 n3 n1n5LN3⊖ n1

Overlaid names

Speaker Clusters

Speech truns

t

Fig. 3: Example of a timeline and the resulting name
propagation for our different late naming methods

Figure 4 may be another representation of the co-occurrence
links between written names, cluster and speech turns:

This two figures also illustrates the resulting name propa-
gation of our different late naming methods.
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Fig. 4: Graph with original links and the resulting name
propagation for our different late naming methods

1) One-to-one speaker tagging (LN1):
This first method (denoted LN1 thereafter) relies on the

strong assumption that speaker diarization provides perfect
clusters. Therefore, LN1 consists in finding the one-to-one
mapping f : S → N∪ ⊥ that maximizes the co-occurrence
duration between clusters and the names provided by the video
OCR component:

f = argmax
f

∑
s∈S

K (s, f(s))

where K(s, n) is the total duration of segments where speaker
s talks and name n appears simultaneously. f(s) =⊥ means
the name of speaker s remains unknown and K(s,⊥) = 0.
The so-called Hungarian algorithm (also known as Munkres
assignment algorithm) is used for solving this problem in
polynomial time [38].

In our running example (figure 3 and 4) n1 7→ s1, n2 7→ s4,
n4 7→ s5, n3 7→ s2, n5 7→ s3. Clusters s6 and s7 remain
unknown.

2) Direct speech turn tagging (LN2):
The second approach (denoted LN2) is based on the ob-

servation that, when one name n written alone on screen is
detected, any co-occurring speech turn is very likely (95%
precision on the train set) to be uttered by this person n.
Therefore, our second approach is performed in two steps:

• Speech turns with exactly one co-occurring name n are
tagged with the latter.

• The previous method LN1 is applied on the remaining
unnamed speech turns.

The first step of this method can question the choice made
during the diarization process: it can name speech turns from
different clusters with the same name or name a speech turn
with a name different than the name of its cluster. As a result,
in our example, speech turn t8 is renamed from n5 (with
method LN1) to n3. We also named speech turn t7 and t9.

3) One-to-many speaker tagging (LN3):
Our third proposed approach (denoted LN3) no longer

blindly trusts the speaker diarization system. In particular, it
assumes that it may produce over-segmented speaker clusters,
i.e. split speech turns from one speaker into two or more
clusters. This is likely to be the case for clusters s1 and s6 in
our example. Therefore, this approach allows the propagation
of a written name to two or more clusters.
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First, direct speech turn tagging is applied similarly to
method LN2. Then, each remaining unnamed speech turn is
tagged cluster-wise using the following criterion:

f(s) = argmax
n∈N

TF (s, n) · IDF (n)

where the Term-Frequency Inverse Document Frequency (TF-
IDF) coefficient – made popular by the information retrieval
research community – is adapted to our problem as follows:

TF (s, n) =
duration of name n in cluster s

total duration of all names in cluster s

IDF (n) =
# clusters

# clusters co-occurring with n

where clusters are analogous to textual documents, whose
words are detected written names. The IDF part has a very
little influence. It plays a role only if two names are associated
to the same cluster with the same TF score and if one of them
is associated to another cluster. The IDF part will influence the
global score to name the clusters with the least used name.

Figure 4 shows how clusters s1 and s6 can be correctly
merged using this approach.

4) Temporal re-alignment between modalities (LN3�):
In figure 5 we find the timeline of our running example.

We can see that there is a bad alignment between information
from the audio and the image, there is actually a good chance
that the name n5 refers to t6 only and not to t7.

Two reasons can explain this bad alignment, firstly, the
use of video decoders using different decoding strategies can
produce a time lag between these two sources of information.
Secondly, segmentation of written names does not always
match speech segmentation. For example, when a person
interrupts another, the name of the first person may not have
disappeared.

t6
s1 s4 s6 s7 s5

n1 n2

s2

n3

s3 s6

n4

s3

n3

s6

t0 t1 t2 t3 t4 t5 t7 t8 t9

n1n5

n4
Overlaid names

Speakers clusters

Speech turns

n1 n2 n3n4 n3 n1n5

n4
ON aligned

tt

Fig. 5: Temporal re-alignment of each written names to the
more co-occurring speech turn

To avoid name propagation on a bad cluster, we reduced
the temporal scope of written names to the more co-occurring
speech turn and apply the method LN3 with this new segmen-
tation, we denoted this method LN3�.

In our example, the segmentation of the three names n3, n4
and n5 co-occurring speech turns t4, t5, t6 have been reduced.
Now, n4 et n5 do not co-occur respectively with the speech
turn t5 and t7. We can see, in figure 3 that the speech turn t7
is not named directly by n5.

5) Integrate naming (IN):
One limitation of the late naming method is that the thresh-

old used to stop agglomerative clustering is optimized in terms
of diarization error rate (DER), while the ultimate objective is
speaker identification, not diarization. Obviously, optimizing
DER does not necessarily lead to the lower identification

error rate (EGER). Therefore, “integrated naming” (denoted
IN) is a simple extension of late naming where the stopping
criterion threshold is tuned in order to minimize the EGER.
The main idea is to take advantage of the multiple writing of
a name: we can use each occurrence of a same name to name
different clusters. We choose LN3� since this method can
name different clusters with different occurrences of the same
name, which allows us to stop the agglomerative clustering
earlier (clusters are smaller but purer).

Fig. 6: Integrated naming

In practice, as shown in Figure 6, we keep multiple clus-
tering outputs depending on the stopping criterion threshold,
on which we apply the LN3� methods, since this is the
method that best suits an imperfect clustering. The threshold
optimizing the EGER on the training set is chosen to stop the
process on the test set.

B. Early naming
As already stated, when at least one name is written on the

screen, there is a very high probability that the name of the
current speaker corresponds to one of the name written on
screen. Therefore, in “early naming”, we use the information
provided by written names during the clustering process to
name clusters and also to constrain the clustering process (by
forbidding the fusion of two clusters with different associated
names).

Fig. 7: Early naming

The main idea is that before clustering, we associate each
written name n to the more co-occurring speech turns. At
this stage, a speech turn can have several names if several
names are written on the screen at the same time. Then, regular
agglomerative clustering (based on speech turn similarity) is
performed with the constraint that merging two clusters s
without at least one name n in common is forbidden.

We can divide this process into four steps:
• Initialization of the clustering: prior to the clustering

into clusters, we create links between the two modalities.
• Constraints on the clustering: during the hierarchical

clustering based on a similarity matrix of speech turns,
we prevent some cluster merging to avoid the propagation
of names on clusters already named.

• Update after each merge: merging two clusters can
change the link between written names and clusters. We
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should recalculate the similarity scores between the new
cluster (created by the merging) and all other clusters.

• Final association between written names and clusters:
the final step chooses the best names-clusters association.

Initialization of the clustering
We first define the set of names N and the set of name

occurrences O:
N = {a, b, . . . , n}
O = {oi}

(1)

These two sets are linked using the application h : O → N ,
defined by:

h(oi) ∈ N (2)
We also define the set of speech turns T :

T = {t1, t2, . . . , tM} (3)
Clustering will merge speech turns into clusters, we define the
set G of clusters. A cluster corresponding to a subset of T .
Before the clustering, there is only one speech turn per cluster.
Therefore, initially G is the set of singletons of T :

G = {{t}, t ∈ T } (4)
Then, we create links between the two modalities with the
function f : G → P (O) with P (O) corresponding to all
partitions of O, defined by

f(g) = {o ∈ O | o co-occur with g} (5)
With g a cluster of G. This function allows us to divide the
set G into two subsets:

K = {g ∈ G | f(gi) 6= {∅}}
U = G\K (6)

K correspond to the set of clusters associated at least to a
written name and U correspond to the set of unnamed clusters.
It is important to note that, for each element of O, a written
name is only related to the more co-occurring speech turn.
Therefore, every element of O corresponds to only one cluster
when a cluster may correspond to several elements of O.

From now, with links established between these two modal-
ities, we can perform hierarchical clustering of elements of the
set G with a similarity matrix between each speech turn. The
aim of this clustering is to find the equivalence classes that
minimize the identification error rate, but also have associated
to each cluster a unique name; this goal is formalised as:

card(h(f(g))) = 1 (7)
The cardinality (card) gives the number of different names
associated to a cluster.

Constraints on the clustering
We use the relationship between clusters and written names

to constrain this agglomeration. Thus, two clusters g1 and g2
of K (i.e. already named clusters) can be merged if and only
if:

h(f(g1)) ∩ h(f(g2)) 6= ∅ (8)
which means they cannot be merged if they do not have a
name in common among all of their associated names.

Update after each merge
After each agglomeration step, the merging of two clusters

g1 and g2 in a cluster g12 changes the function f . Three
scenario can occur for this function:

• The two clusters are in K, then:

f(g12) = {o1 ∈ f(g1), o2 ∈ f(g2) | h(o1) = h(o2)}
(9)

• Only g1 (respectively g2) is in K, then:

f(g12) = f(g1) (respectively f(g12) = f(g2)) (10)

• None is in K, then the function f is unchanged.

After each merging, we must recalculate the similarity score
between the new cluster g12 and all other clusters g of G. This
new score is the average similarity score (∆BIC) between
elements of each cluster:

score(g12, g) =

∑
t1∈g12,t2∈g

score(t1, t2)

card(g12) ∗ card(g)
(11)

Illustration with a toy example
Consider an example (see figure 8) with K =

{g1, g2, g3, g4} and U = {g5, g6}. 3 names are displayed N =
{a, b, c} with h(a1) = h(a2) = h(a3) = a, h(b1) = h(b2) = b
et h(c1) = c.

a1 a2 b2

b1
Noms écrits

g6g1 g2 g3 g4 g5Clusters

ta3

c1

Fig. 8: Example of a timeline

Another representation is given in figure 9 with the two
functions f and h:

g1

g2

g3

g4

g5

g6

a1

a2

a3

b1

b2

c1

a

b

c

1

2

3

4

Fig. 9: Another representation of the example

The co-occurrences allow us to define that:

f(g1) = {a1} f(g2) = {a2, b1}
f(g3) = {b2} f(g4) = {a3, c1}

Examples of fusion of the following classes give as result:

∪ classes f : G → P (O) Sets K and U
g5 ∪ g6 → g56

K = {g1, g2, g3, g4}
U = {g56}

g1 ∪ g6 → g16 f(g16) = {a1} K = {g16, g2, g3, g4}
U = {g5}

g2 ∪ g6 → g26 f(g26) = {a2, b1} K = {g1, g26, g3, g4}
U = {g5}

g1 ∪ g2 → g12 f(g12) = {a1, a2} K = {g12, g3, g4}
U = {g5, g6}

g1 ∪ g3 Forbidden
g3 ∪ g4

TABLE V: Example of fusion and the corresponding results
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Final association between written names and clusters
When the stopping criterion is reached, for each g of K

which have only one name associated (card({h(o) | o ∈
f(g)}) = 1), we identify g directly by the name. For other
clusters belonging to K, we select the name that has the best
TF.IDF score for the cluster (see section IV-A3).

In fact, in the REPERE corpus, only the show “Pile et
face” regularly displayed two names simultaneously. But these
names are also written alone at different moments during the
show. So in most cases, the clustering will produce clusters
associated with a single name. The clustering is stopped
according to the optimal threshold (minimizing EGER) tuned
on the training set.

V. EXPERIMENTAL RESULTS

In this section we show the difference of behavior between
late naming (LN1, LN2, LN3, LN3�), integrate naming IN and
early naming EN, their ability to correctly identify speakers in
TV broadcast and their sensitivity to the diarization stopping
criterion threshold.

A. Evaluation metrics
To evaluate the clustering quality, we used the diarization

error rate (DER) defined by:

DER =
dfa + dmiss + dconf

dtotal

where dtotal is the total speech time and dfa, dmiss, dconf
are the duration errors of false alarm, miss and confusion.
As identities of speakers are not considered for diarization,
hypothesis and reference are aligned 1-to-1 to minimize dconf .

To evaluate the identification quality we used the REPERE
protocol where one sample every ten seconds is evaluated. The
official REPERE metric is defined as:

EGER =
#fa + #miss + #conf

#total
where we count the number of errors: confusions (#conf ),
miss (#miss) and false alarm (#fa) divided by the number
of person utterances to be detected (#total).

We also used the precision, recall and F-measure with the
same protocol (note as %P , %R, %F in the following tables).

B. Tuning the stopping criterion threshold
Two clusters are merging if the BIC score between them is

higher than a threshold (note as Thr. in the following tables).
A lower threshold means that the agglomeration stop later
and therefore more clusters will merge together. We used our
training set to tune the stopping criterion threshold. However,
in order to be less dependent on manual annotations, we did
not use the whole 24 hours training set and selected 100
subsets of 3 hours randomly from it. These subsets were
chosen to match the test set characteristics (duration, balance
between shows, and number of videos for each show).

As expected, table VI shows that the optimal threshold for
IN is higher than those for LN. It means that IN stops earlier
the agglomerative clustering, so it can split some clusters but
name them with different occurrences of the same name.

Naming strategy Thr.
median min max stand. dev.

LN: lower DER 1540 1440 1680 54
IN: lower EGER 1620 1520 1740 44
EN: lower EGER 1260 300 1640 277

TABLE VI: Threshold tuned on 100 subsets of the train set,
to minimize the DER or the EGER, LN: Late naming, IN:

Integrate naming, EN: Early naming

The constrained clustering of EN stops at a lower threshold.
The standard deviation for EN threshold is very high compared
to the two others methods. We conclude that EN is less
sensitive to the threshold value. For the rest of the paper, we
chose to use the median of the table VI as global threshold.

For all the following experiences, it is important to note
that stopping criterion thresholds are tuned on the training set
while the results are displayed for the test set.

C. Comparison between different naming methods
Table VII summarizes the performance of the late naming

methods with a diarization based on BIC.

Methods Thr. %P %R %F %EGER
LN1 1540 82.3 60.5 69.8 35.9
LN2 1540 82.7 62.7 71.3 34.1
LN3 1540 80.9 66.3 72.9 31.5
LN3� 1540 81.9 66.1 73.1 31.7
IN 1620 81.6 65.3 72.6 32.1
EN 1260 80.4 68.3 73.9 29.9

TABLE VII: Name propagation performance for the different
late naming methods.

The different proposals that we do in the late naming
method improves the results differently. First, we can see
that LN2 (adding direct speech turns tagging step) names
correctly more speech turns than LN1 (recall increased from
60.5% to 62.7%). This recall is improved by the one-to-many
speaker tagging of LN3 (from 62.7% to 66.3%). Temporal
re-alignment between audio and image (LN3�) improves the
precision of LN3 (+1% in absolute).

The maximization of the final metric (the EGER) on all the
corpus in IN with a high threshold do not improve the results.
However, we will see at the end of the section that this method
overpass LN3� for particular shows.

The clustering constraint (EN) helps keeping the same
precision (80.4%) though the threshold is lower. It allows
to correctly merge some additional clusters and therefore
increases the recall to 68.3%.

D. Contribution of written names
1) Speaker diarization:
To better understand the effect of the naming, we show the

evolution of DER as a function of the threshold (see figure 10).
This figure should be read from right to left as a smaller
threshold value means that the agglomerative clustering stops
later. The baseline “before naming” corresponds to an audio-
only diarization. As explained in the previous section the
diarization is different before and after the late naming.
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Fig. 10: Influence of the stopping criterion threshold (tuned
on training set) on diarization error rate on test set, before

and after naming.

2© and 3© in the figure 10 show the influence of the direct
speech turn tagging step. At the start of the clustering 2©, this
step merges speech turns with the same name. At the end of the
clustering 3©, this step names directly some speech turns with
a name different than the cluster name. 1© shows the effect of
the constraints preventing clusters with different names from
being merged.

As shown in figure 10 and table VIII, a© corresponds to the
threshold tuned to minimize the DER. We obtain an 18.11%
DER on the test set without written names (see Table VIII).
“Late naming” merged some clusters with identical associated
names, leading to a lower DER of 16.95%. The constrained
clustering shows only a small variation of DER (from 18.7%
to 20.2%, with a minimum of 16.37%) over the [0-1800]
threshold range: it appears to be much less sensitive to the
threshold choice (see figure 10).

Thr. DER
Before naming a© 1540 18.11
After late naming b© 1540 16.95
After early naming c© 1260 16.37

TABLE VIII: DER depending on the threshold

2) Speaker identification according to the threshold:
Figure 11 shows the evolution of EGER with respect to

the selected threshold. LN and IN curves overlap but differ
in the optimal stopping criterion threshold: threshold a© aims
at minimizing the DER (late naming) while b© focuses on
minimizing EGER (integrated naming). EN behaves very dif-
ferently. 1© shows the impact of the written name constraints
and c© the threshold tuned to minimize the EGER for the early
naming method.

E. Sensitivity to the threshold tuning set

Threshold tuning is achieved by randomly selecting 100
subsets from the training set and choosing the best threshold
value for each of them.

The x-axis of Figure 12 summarizes the range of variation
of this optimal threshold over the 100 training subsets (e.g.

Fig. 11: Influence of the stopping criterion threshold ( a©, b©,
c© tuned on train set) on identification error rate on test set,

for the three naming strategies.

1440 to 1680 for late naming strategy), as already introduced
in Table VI. The y-axis reports the corresponding average
identification error rate (EGER) and its standard deviation on
the test set.

Fig. 12: Average and standard deviation of the EGER on test
set depending on the subsets used to tuned the threshold

This figure points out that late and integrated naming strate-
gies are more dependent on the training set and may therefore
suffer from over fitting. Their respective identification error
rates (EGER) have a standard deviation of 1.2% and 0.8%,
while standard deviation of early naming EGER is only 0.2%
(though the range of optimal thresholds over the 100 training
subsets is much bigger).

F. Portability: tuning the threshold from a different show

The REPERE corpus is composed of seven different types
of shows (A to G). Some shows in the corpus correspond to
the same type. A and E are news programs, C, D and F are
debate programs, B is a short show (2 minutes) of people news
and G corresponds to debates at to French Assembly.

While a global threshold can be tuned on the training set,
we also investigate the use of a show-dependent threshold
(only a part of the training set is used). The robustness of
a particular naming strategy can be inferred by the difference
between the optimal threshold Thr oracle (corresponds to the
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best possible performance in case an oracle is able to predict
the best threshold, with the DER or the EGER, for a particular
show) and the thresholds tuned on:
• The whole tuning set: Thr. Global.
• Same shows of the tuning set: Thr. tuned on A, test on A.
• Same type of shows of the tuning set: Thr. tuned on E

and test on A, for news programs for example.
• Different types of shows of the tuning set: Thr. tuned on
B and test on A.

In the following tables, we report the EGER scores of each
show (column, computed on the test set) as a function of
threshold selected (in parenthesis, tuned on the whole or a part
of the training set). The last line of each table corresponds to
the standard deviation of the EGER score for each show.

Show Thr. apply on
A B C D E F G

Oracle DER:
Threshold 1700 1600 1560 1800 1300 1540 1000

Corres. EGER 31.6 70.7 25.7 20.4 54.6 22.5 11.5
Thr. Global 31.6 73.2 24.8 22.4 54.6 22.5 13.6(1540)

Th
r.

tu
ne

d
on

A (1800) 32.7 69.5 28.7 20.4 43.2 31.7 14.5
B (1580) 31.9 73.2 26.7 25.2 54.6 21.7 13.6
C (1660) 31.9 70.7 27.7 21.8 54.6 23.3 13.6
D (1620) 31.9 70.7 26.7 25.2 54.6 22.5 13.6
E (1640) 31.9 70.7 27.7 21.8 54.6 23.3 13.6
F (1300) 35.2 75.6 51.5 49.7 54.6 40.0 13.2
G (1500) 35.2 75.6 24.8 21.8 54.6 25.8 13.6

Stand. dev. 1.6 2.5 9.3 10.4 4.3 6.7 0.4

TABLE IX: EGER for late naming LN3� depending on the
set used to tune the threshold

The table IX shows results for the “late naming” strategy
(LN3�). The sensitivity of this method is once again demon-
strated: tuned threshold on E (news program) leads to 54.6%
of EGER for this same show. Whereas tune threshold on a
same type of show (A), we obtained a lower EGER (43.2%).
This can be also observed for the debates program F (Thr.
tuned on F: EGER = 40%, Thr. tuned on C: EGER = 23.3%,
Thr. tuned on D: EGER = 22.5%). In F, only one anchor
and two guests are talking during the video, which allows to
have a low threshold (1300) for the minimization of the DER.
Contrary for the show C and D, one anchor, four or five guests
and some reportage with voice-over are found, which lead to
a higher threshold on the training set (1660, 1620). These
higher thresholds lead to a lower EGER if we used them for
the show F. These examples demonstrate the difficulty of using
a threshold initially tuned to reduce the DER.

The oracle which selects the threshold that minimizes EGER
(table X, first line) leads to better results than the oracle which
minimizes DER (table IX, first line). This can be explained by
the difference behavior of these two metrics:
• On one hand, DER minimization aims at associating one

specific cluster to each speaker, whether they can be
named or not.

• On the other hand, EGER minimization tries to associate
a name to every speaker. Anonymous speakers can remain
in the same cluster or split into several clusters as it has
no influence on the final value of the identification error
rate (EGER).

Show Thr. apply on
A B C D E F G

Oracle EGER:
Threshold 1720 2100 1540 1780 1720 1600 1000

Corres. EGER 31.6 68.3 24.8 19.7 42.6 21.7 11.5
Thr. Global 31.9 70.7 26.7 25.2 54.6 22.5 13.6(1620)

Th
r.

tu
ne

d
on

A (2000) 32.4 68.3 46.5 29.3 48.1 38.3 17.0
B (2580) 47.4 70.7 76.2 61.2 60.1 60.0 46.4
C (1620) 31.9 70.7 26.7 25.2 54.6 22.5 13.6
D (1640) 31.9 70.7 27.7 21.8 54.6 23.3 13.6
E (1640) 31.9 70.7 27.7 21.8 54.6 23.3 13.6
F (1560) 31.9 73.2 25.7 25.2 54.6 22.5 13.6
G (1520) 31.6 74.4 24.8 21.8 54.6 25.8 13.6

Stand. dev. 5.9 2 19.1 14.2 3.5 14.1 12.3

TABLE X: EGER for Integrate naming IN depending on the
set used to tune the threshold

As a matter of fact, since speaker names are written multiple
times, it is not worth trying to get exactly one cluster per
speaker. A cluster can be split into multiple smaller purest
clusters as long as those clusters are named correctly. For
example, during the show F, guest names are displayed 24
times on average over the duration of each show. For this
particular show, the optimal DER threshold is 1300 (leads to
40% of EGER, see table IX) while the EGER threshold tuned
is 1560 (leads to 22.5% of EGER) very close to the oracle
one (1600).

Show Thr. apply on
A B C D E F G

Oracle EGER:
Threshold 920 2020 1100 1380 1780 860 580

Corres. EGER 32.1 69.5 24.8 15.0 42.6 22.5 11.1
Thr. Global 32.1 75.6 25.7 15.0 44.8 23.3 13.2(1260)

Th
r.

tu
ne

d
on

A (940) 32.4 79.3 26.7 15.6 44.8 23.3 13.2
B (1500) 32.1 76.8 25.7 15.0 45.4 22.5 13.6
C (1500) 32.1 76.8 25.7 15.0 45.4 22.5 13.6
D (1160) 32.1 76.8 24.8 15.6 44.8 23.3 13.2
E (1220) 32.1 76.8 24.8 15.0 44.8 23.3 13.2
F (1420) 32.1 76.8 25.7 15.0 45.4 22.5 13.6
G (660) 32.4 80.5 26.7 15.6 45.4 23.3 11.1

Stand. dev. 0.2 1.6 0.8 0.3 0.3 0.4 0.9

TABLE XI: EGER for early naming EN depending on the
show set to tune the threshold

Globally, results are better for IN when threshold is tuned
and tested on the same show (diagonal of the matrix). How-
ever, the standard deviation of each column is more important.
The use of the IN seems to be limited for tuning threshold on
the same data type (same show, same type of shows).

Standard deviation values for the “early naming” are very
low (see table XI). This demonstrates that, whatever the
show used to tune thresholds, results will be very close, and
furthermore, very close to the oracle one.

Finally, we highlight that oracle results show almost identi-
cal performance for the three strategies. However, since EN is
less sensitive to the chosen threshold, it leads to significantly
better identification performance.
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G. Computation time

The response time of the constraint clustering of the early
naming process with a single core at 2.00 Ghz is 81 seconds
for 15 hours of the test set (MPEG2, 720x576, 25 frames/sec).
This duration is 40 to 90 seconds depending on the criterion
threshold.

The efficiency however depends upon the number of speaker
turns to proceed for a video (every videos are treated sepa-
rately).

This calculation time is negligible compared to the compu-
tation time of the pre-process (speech segmentation, distance
matrix calculation between speech turns, overlaid names ex-
traction).

VI. COMPARISON WITH STATE-OF-THE-ART METHODS

A. Supervised mono-modal system

In order to highlight the efficiency of our proposed unsuper-
vised algorithms, two supervised mono-modal speaker identi-
fication baseline (GMM-UBM and GSV-SVM [40], [39]) were
also evaluated. The first one follows the standard Gaussian
Mixture Model-Universal Background Model (GMM-UBM)
paradigm, and the second one, the GSV-SVM system, uses the
super-vector made of the concatenation of the UBM-adapted
GMM means to train one Support Vector Machine classifier
per speaker. For both systems, each cluster is scored against all
gender-matching speaker models, and the best scoring model is
chosen if its score is higher than the decision threshold. Three
data sources were used for training models for 648 speakers in
our experiments: the REPERE training set, the ETAPE training
and development data1 and additional French politicians data
extracted from French radios.

System %P %R %F %EGER
Oracle model 100.0 70.0 82.3 26.9
GMM-UBM 52.9 49.8 51.3 49.6
GSV-SVM 60.5 54.2 57.2 44.2

Our best system: EN 80.4 68.3 73.9 29.9

TABLE XII: Comparison of out best system with two
supervised mono-modal systems

On the test set, 111 different persons spoke on the annotated
images, but only 65 of them have a biometric model. We
also add a line “Oracle model” in the table XII. This oracle
allows us to know what is the result obtained by a perfect
system but limited to models trained from the three sources
mentioned above. The GSV-SVM system obtains better results
than the GMM-UBM system, but with only a recall of 49.8%
and 54.2% respectively, these methods obtained worse results
than our best unsupervised system using early naming (EN).

B. Comparison with ILP clustering

In a previous work ([24]) we have tried to name speaker
clusters with an ILP clustering. The main idea is to replace
the classical agglomerative BIC clustering by an ILP clus-
tering. This method finds the optimal clustering solution by

1http://www.afcp-parole.org/etape.html

maximizing the intra-class similarity and minimizing inter-
class similarity. Integration of written names in this process
constrains the clustering and simultaneously identifies clusters.

Results in table XIII are computed using only the annotated
part of videos, due to computation issue of the ILP clustering.
Therefore, some written names displayed outside the annotated
part cannot be used. This explains the different scores of our
method compared to those presented before (EGER increase
from 29.9% to 34.7%). The first line corresponds to the
maximum score than we can obtain with an oracle. This oracle
identifies speakers when their name has been extracted from
the written texts at least once in the video.

Approach %P %R %F %EGER
Oracle: perfect cluster 100.0% 62.1% 76.6% 32.8%and perfect propagation

ILP [24] 90.6% 58.2% 70.9% -
Our best system: EN 85.3% 61.5% 71.5% 34.7%

TABLE XIII: Identification of our methods compare to the
ILP method [24]

These methods obtain essentially identical results in terms
of F-measure. ILP method obtains a better accuracy while
“early naming” gets very close recall to the oracle one.
However, the main issue with ILP method is the computation
time that limits the video duration that can be processed, while
algorithms presented in this paper are is under one minute for
one hour of video.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we introduced and analyzed strategies for
unsupervised speaker identification in TV broadcast. These ap-
proaches use exclusively written names on screen as source of
names. Compared to pronounced names, usually used in state-
of-the-art approaches, written names identify co-occurring
speech turns with a very high precision.

In our propositions we integrate information provided by
written names at different levels within the clustering process.
With the “late naming” approach we propose different prop-
agation of written names onto clusters provided by a diariza-
tion module. In our second proposition, “Early naming”, we
modified the speaker diarization module by adding constraints
preventing two clusters with different written names from
being merged together.

Our best unsupervised system reaches a F-measure of
73.9%, showing the pertinence of our approach. “Early nam-
ing” compared to “late naming” is less sensitive to the choice
of the stopping criterion threshold of the clustering process.
These methods intrinsically multi-modal clearly overpasses a
(mono-modal) supervised system baseline.

Future works will focus on the integration of a diarization
module at the-state-of-the-art (I-vector+ILP) and how a semi-
supervised scenario, where manual annotations are added, can
take advantage of our naming strategies.
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