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ABSTRACT

This paper is the second in a two-part study devoted to developing tools for a systematic classification of the wide
variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with
the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves,
simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the
background wind. In those cases where the conditions for the method of the multiple scales in height are met,
these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of
waves have been found and their properties were characterized in terms of the corresponding dispersion relations
and wave structures. In this second part, we study the waves’ solutions when several atmospheric approximations
are applied: Lamb, surface, and centrifugal waves. Lamb and surface waves are found to be quite similar to those
in a geostrophic regime. By contrast, centrifugal waves turn out to be a special case of Rossby waves that arise
in atmospheres in cyclostrophic balance. Finally, we use our results to identify the nature of the waves behind
atmospheric periodicities found in polar and lower latitudes of Venus’s atmosphere.
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1. INTRODUCTION

Despite the variety of wave activity seen in Venus and Titan,
which are, to date, the only known examples of cyclostrophic
atmospheres (Belton et al. 1976; Seiff et al. 1992; Peralta et al.
2008; Tellmann et al. 2012; Picialli et al. 2014; Lorenz et al.
2014), a systematic classification of the observed waves based
on their properties and their corresponding dispersion relations
has never been done even though some of these waves have been
studied individually. For instance, gravity waves are probably
most exhaustively explored in the case of Venus because of their
interesting relation with convective activity like that occurring
in the cloud layer of Venus (Leroy & Ingersoll 1995; Baker
et al. 2000a, 2000b; Yamamoto 2003; McGouldrick & Toon
2008; Piccialli et al. 2014). The presence of global-scale waves
of a different nature has also been investigated with direct
observations in Venus (Del Genio & Rossow 1990; Rossow
et al. 1990; Kouyama et al. 2012, 2013) as well as the waves
predicted by different atmospheric models (Yamamoto 2001;
Imamura 2006; Lebonnois et al. 2010). These global-scale
waves have been usually interpreted as special cases of global-
scale terrestrial analogs such as Kelvin waves (Del Genio &
Rossow 1990; Smith et al. 1992; Kouyama et al. 2012), Rossby
waves (Imamura 2006; Hosouchi et al. 2012; Kouyama et al.
2013), or solar tides (Peralta et al. 2012). In the first part of
this work (Peralta et al. 2014), we deduced a generic dispersion
relation for the acoustic and the inertia-gravity waves for a
planet with a cyclostrophic atmosphere, following a procedure
similar to that of Schubert & Walterscheid (1984) for Venus but
additionally accounting for the centrifugal force combined with
the meridional shear of the background wind. Nevertheless, the

same dispersion relation can give birth to waves of different
natures when we apply different atmospheric approximations,
as will be demonstrated in this paper.

Both the cloud region of Venus and the low atmosphere of
Titan exhibit a variety of atmospheric conditions dominated
by atmospheric stability and strong winds, as determined by
several space probes during their descent (Gierasch et al.
1997; Fulchignoni et al. 2005). While the troposphere and
lower stratosphere of Titan are basically stable (Strobel et al.
2010), Venus’s atmospheric conditions are far more varied
with at least two stable layers (between 30 and 48 km, and
upward of 55 km) separated by layers of instability (Kliore
& Patel 1980; Gierasch 1987), while cloud tracking, together
with in situ measurements by probes, has detected different
wind profiles depending on the altitude and latitude range
(Gierasch et al. 1997; Hueso et al. 2012). As a result, several of
the classical atmospheric approximations—such as hydrostatic
balance, Boussinesq, or anelasticity—can be applied globally
or locally within the cloud region of Venus to study waves other
than acoustic or inertia-gravity waves. Moreover, the VEGA
balloons described horizontal trajectories at an altitude of about
53 km in the Venus atmosphere that lasted for about two days
and proved that—except for some episodes—the vertical wind
exhibits small oscillations (Sagdeev et al. 1986), validating the
assumption of waves with strictly horizontal oscillations. On the
other hand, stratification effectively divides the atmosphere into
two distinct but coupled atmospheric layers: the troposphere,
from the surface to thermal inversion at 60 km, and the middle
atmosphere or mesosphere, from 60 to about 100 km (Tellmann
et al. 2009). This clear separation between media of different
properties at about 60 km merits a study from the point of view of
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surface waves; indeed, the assumption of a shallow water system
on a sphere has also been used often to study the atmospheric
dynamics on Venus (Iga & Matsuda 2005).

The main objective of this work is to study the atmospheric
waves which arise as a solution of the perturbed primitive equa-
tions for a cyclostrophic atmosphere when different atmospheric
assumptions are applied. Once deduced, we will apply the equa-
tions to Venus, obtaining the dispersion graphs for different
atmospheric regions and classifying some global-scale peri-
odicities detected along the many spatial missions exploring
Venus and through ground-based observations. In Section 2, we
demonstrate that all acoustic and inertia-gravity waves can be
filtered out when the cyclostrophic atmosphere is in hydrostatic
balance, the Boussinesq approximation is applied, and if we
have a null local rate of change of the horizontal velocity diver-
gence. Sections 3–5 are devoted to the characterization of Lamb,
surface, and centrifugal waves, respectively. Finally, the classifi-
cation of Venus’s atmospheric periodicities and the conclusions
of this work are presented in Sections 6 and 7, respectively.

2. FILTERING ACOUSTIC AND GRAVITY WAVES

It can be demonstrated that, as a result of a proper scale
analysis and after applying the method of perturbations, a
cyclostrophic atmosphere can be described by the following
set of perturbed equations (Peralta et al. 2014):

∂u′

∂t
+ u0

∂u′

∂x
+

∂

∂x

(
P ′

ρ0

)
− Ψ · v′ +

∂u0

∂y
v′ = 0, (1a)

∂v′
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ρ0

)
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∂
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(
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+

∂u′

∂x
+

∂v′

∂y
+

∂w′

∂z
−n1 · w′

H0
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(1d)

∂Θ′

∂t
+ u0

∂Θ′

∂x
+ B · w′ = 0, (1e)

where (u′, v′, w′) are the wave perturbations for the three
components of the wind velocity; ρ0(z) and u0(y, z0) are the
atmospheric density and zonal wind in their basic states; P ′, ρ ′,
and Θ′ are the perturbations for pressure, density, and the
natural logarithm of the potential temperature (Θ ≡ ln θ ); H0
is the density scale height (defined as 1/H0 ≡ −∂ ln ρ0/∂z);
g is the acceleration of gravity; B is the atmospheric static
stability (B ≡ ∂ ln θ/∂z) with the Brunt–Väisälä frequency
being N = √

gB; and the term Ψ ≡ (u0/a) tan φ is the
centrifugal frequency which plays a role similar to the Coriolis
factor in atmospheres with a geostrophic balance like the Earth.
As in Paper I (Peralta et al. 2014), we apply the method of
multiple scales in altitude (Boyd 1978) to study the waves,
i.e., we obtain the wave solutions for a background with only
horizontal shear at a given altitude, and these solutions can
be used later to reconstruct the vertical structure of the wave
by considering the vertical shear of the background wind (see
Appendix B in Peralta et al. 2014). For this reason, in this work,
we will obtain the wave solutions for only horizontal shear and
leave the task of vertically reconstructing the wave to future
works. As a consequence, all the wave properties can be studied
except for the overall amplitude and phase factors (Boyd 1978).

Additionally, we introduced the so-called “tracer parame-
ters” (n1, n2, n3, n4) which multiply those terms in the wave
disturbance equations that are related to the most relevant as-
sumptions for filtering waves, following the method originally
suggested by J. S. A. Green (1970, unpublished lecture notes,
Imperial College) and repeatedly used in the bibliography
(Green 1999; Norbury & Roulstone 2002). The effect that each
of these approximations has in wave filtering was studied in
detail in Paper I and is summarized as follows: the hydrostatic
approximation (Dw/Dt = 0) is applied when setting n4 = 0
in the vertical momentum equation (Equation (1c)) while keep-
ing n1 = n2 = n3 = 1 in the other equations and can be
demonstrated to filter high-frequency waves; on the other hand,
an incompressible atmosphere (Dρ/Dt = 0) is applied when
n1 = n2 = n3 = 0 and n4 = 1, which enables filtering out of the
acoustic waves, while leaving a distorted form of inertia-gravity
waves. If we assume that the atmosphere behaves as intrinsically
anelastic (i.e., anelastic relative to the background zonal wind),
then we must set n2 = n3 = 0 and n1 = n4 = 1; this filters out
the acoustic waves while leaving the gravity waves practically
unaltered. Finally, the assumption of an incompressible atmo-
sphere in hydrostatic balance (n1 = n2 = n3 = n4 = 0) can
be demonstrated to be equivalent to applying the Boussinesq
approximation to a cyclostrophic regime in hydrostatic balance
(see Appendix A), and as a result, this effective filters all acous-
tic waves and part of the gravity waves (Peralta et al. 2014).

Now, we proceed to demonstrate that suppressing the local
rate of change of the horizontal velocity divergence allows
filtering the gravity waves in a cyclostrophic atmosphere,
identically to what happens in the case of a geostrophic
atmosphere (Holton 2004). The assumption of a null rate for the
horizontal velocity divergence is generally considered valid for
processes on synoptic scales whose timescales are usually longer
than for smaller ones (Thomas et al. 2012), and it is also applied
when the atmosphere can be regarded as incompressible (div
V H = 0). For simplicity, we will assume for this demonstration
that the waves produce perturbations only in the X–Z plane, so
we will have ∂/∂y = 0 for all the disturbances. Applying all of
the previous assumptions together (n1 = n2 = n3 = n4 = 0),
the wave disturbance equations (Equations (1a)–(1e)) become

∂u′
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∂x
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If we apply ∂/∂x to Equations (2a) and (2b) and name the
horizontal divergence as Div = ∂u′/∂x, we obtain

n5 ·
[
∂Div

∂t
+ u0

∂Div

∂x

]
+

∂2

∂x2

(
P ′

ρ0

)
+

(
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− Ψ

)
· ∂v′

∂x
= 0,
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∂2v′

∂t∂x
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∂2v′
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+ 2Ψ · Div = 0, (3b)
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∂

∂z

(
P ′

ρ0

)
− g · Θ′ = 0, (3c)

Div +
∂w′

∂z
= 0, (3d)

∂Θ′

∂t
+ u0

∂Θ′

∂x
+ B · w′ = 0, (3e)

where we have marked the material derivative of the hori-
zontal velocity divergence (Div) with a new tracer parameter
n5. If we assume that the wave disturbances have the form
u′(x, z, t) = û(z) · exp [i · (kxx − ωt)], we can then replace the
wave disturbances by their expression in terms of amplitude and
their intrinsic frequency ω̄ ≡ ω − kxu0,

n5 · kxω̄ · û + ikx

(
du0

dy
− Ψ

)
· v̂ − k2

x · P̂

ρ0
= 0, (4a)

kxω̄ · v̂ + i · 2Ψkx · û = 0, (4b)

d

dz

(
P̂

ρ0

)
− g · Θ̂ = 0, (4c)

i · kx · û +
dŵ

dz
= 0, (4d)

− iω̄ · Θ̂ + B · ŵ = 0. (4e)

Using the thermodynamic equation (Equation (4e)) to replace
Θ̂ in the vertical momentum equation (Equation (4c)), then
dividing the horizontal momentum equations (Equations (4a)
and (4b)) by kx , we get

n5 · ω̄ · û + i ·
(

du0

dy
− Ψ

)
· v̂ − kx · P̂

ρ0
= 0, (5a)

ω̄ · v̂ + i · 2Ψ · û = 0, (5b)

d

dz

(
P̂

ρ0

)
+ i

gB

ω̄
· ŵ = 0, (5c)

i · kx · û +
dŵ

dz
= 0. (5d)

From Equations (5a) and (5b) and defining ξ 2 =
2Ψ (Ψ − du0/dy), we can solve for the wave amplitudes for
zonal and meridional wind velocities:

û = ω̄ · kx

n5ω̄2 − ξ 2
· P̂

ρ0
, (6a)

v̂ = −i
2Ψ · kx

n5ω̄2 − ξ 2
· P̂

ρ0
. (6b)

Replacing û in Equation (5d), Equations (5c) and (5d) become

d

dz

(
P̂

ρ0

)
+ i

gB

ω̄
· ŵ = 0, (7a)

i · ω̄ · k2
x

n5ω̄2 − ξ 2
· P̂

ρ0
+

dŵ

dz
= 0. (7b)

Calculating P̂ /ρ0 from Equation (7b), it is possible to use
Equation (7a) to obtain the following second-order equation
for the amplitude of the vertical velocity component:

d2ŵ

dz2
+

gB · k2
x

n5ω̄2 − ξ 2
· ŵ = 0, (8)

which admits as a solution a wave with the following dispersion
relation:

m2 = gB · k2
x

n5ω̄2 − ξ 2
→ n5ω̄

2 = ξ 2 +
gB · k2

x

m2
. (9)

If we compare Equation (9) with the dispersion relation for
inertia-gravity waves (Peralta et al. 2014),

ω̄2
g ≈ gB · k2

x + ξ 2 · [m2 + (2H̃0)−2]

k2
x + m2 + (2H̃0)−2

, (10)

it can be seen that in the case n5 = 1, the dispersion rela-
tion (Equation (9)) yields a distorted form of inertia-gravity
waves because of the hydrostatic and incompressibility approx-
imations. From this, it is also straightforward to conclude that
forcing n5 = 0 (i.e., suppressing the local rate of change of
divergence) removes the waves, thus filtering all the gravity
waves.

3. EXCLUSIVELY HORIZONTAL WAVES (LAMB WAVES)

We will now study the solution for waves whose oscillations
are exclusively horizontal, which, in the case of Earth, are
called Lamb waves. From Equations (1a) to (1e), we can obtain
a modified version of the vertical momentum and continuity
equations in terms of the wave amplitudes (Peralta et al. 2014):

iω̄
d

dz

(
P̂

ρ0

)
− iω̄ · n3B

P̂

ρ0
+ (n4ω̄

2 − gB) · ŵ = 0, (11a)

dŵ

dz
+

(
n2B − n1

H0

)
· ŵ − iω̄

(
n2

c2
S

− k2
x

ω̄2 − ξ 2

)
· P̂

ρ0
= 0.

(11b)
If we set ŵ = 0 and assume that ω̄ �= 0,

(
d

dz
− n3B

)
P̂

ρ0
= 0, (12a)

ω̄ ·
(

k2
x

ω̄2 − ξ 2
− n2

c2
S

)
· P̂

ρ0
= 0. (12b)

Using Equation (12a), and if no additional assumptions are
made for the atmosphere (n2 = n3 = 1), we can calculate the
real part of the wave amplitude in the pressure (P̂ /ρ0) and check
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Figure 1. Dispersion graph for atmospheric waves of Venus at a latitude of 45o and an altitude of 60 km. The acoustic, gravity, inertial, Lamb, surface, and centrifugal
waves are shown in red, blue, orange, pink, green, and blue, respectively, with several vertical wavelengths marked with different line styles for the acoustic, gravity,
and centrifugal waves. The Brunt–Väisälä frequency (BV), centrifugal frequency (Ψ), and centrifugal frequency modified by the meridional shear of the background
zonal wind (ξ ) are marked with gray lines. Note that the centrifugal waves must have frequencies lower than ξ . The solutions for acoustic, gravity, and inertial waves
were deduced by Peralta et al. (2014).

(A color version of this figure is available in the online journal.)

that it exhibits an exponential variation with height proportional
to the static stability:

P̂ ∝ ρ0 · eB·z. (13)

Now, considering again n2 = n3 = 1, we obtain from
Equation (12b) the following dispersion relation:

ω̄2 = ξ 2 + c2
Sk

2
x, (14)

which is identical to the one for the geostrophic case, except that
here the frequency ξ replaces the Coriolis factor f. Also note that
Equations (12a) and (12b) have a solution only if n2 = n3 = 1,
so Lamb waves cannot exist in the cyclostrophic atmosphere
if it does not behave as elastic. This implies that, analogously
to what happens in a geostrophic atmosphere, in this case, the
Lamb waves are also a type of acoustic wave.

The dispersion graph based on Equation (14) for the Lamb
waves in the case of Venus is displayed in Figure 1. Two limiting
cases can be considered: for very small horizontal wavelengths
(i.e., very large kx) the Lamb waves have intrinsic phase and
group velocities that match the speed of sound relative to the
background wind, while in the opposite case of very large
horizontal wavelengths (i.e., very small kx) the intrinsic phase
velocity coincides with that of pure inertial waves (Peralta et al.
2014) and the intrinsic group velocity is null:

c̄k −−→kx
 ± cS, (15a)

c̄k −−→kx� ± ξ

kx

, (15b)

4. SURFACE WAVES

Surface waves are waves that appear at the boundary between
two media or regions of the same fluid with different densities

(such as, for example, an inversion layer in the atmosphere).
They cannot be exclusively categorized as inertia-gravity waves
as they are mechanical waves whose restoring forces can be (or
combine) the buoyancy force, surface tension, or inertial forces
such as Coriolis or the centrifugal force (or both). The type of
restoring forces involving a surface wave strongly depends on
the characteristics of the interface and/or the spatial scale of the
surface wave. In the case of Venus, the stratification allows one to
divide the atmosphere into two distinct regions: the troposphere,
from the surface to the thermal inversion at 60 km, and the
middle atmosphere or mesosphere, from 60 to about 100 km
(Tellmann et al. 2009); this division between media of different
properties at about 60 km is expected to enable the existence of
surface waves near the interface.

When dealing with surface waves, the boundary is usually
regarded as a “free surface” (i.e., the surface shape must respond
to the motion within the fluid) and cannot be determined a priori,
which implies that the fluid motion and the boundary shape
must be calculated simultaneously for a complete solution of a
free-boundary problem. The following second-order differential
equation can be obtained for the wave amplitude in the vertical
velocity when studying a cyclostrophic atmosphere (Peralta
et al. 2014):

d2ŵ

dz2
+

[
B(n2 − n3) − n1

H0

]
· dŵ

dz
+

[
n3B

(
n1

H0
− n2B

)

+ n2
dB

dz
+ (n4ω̄

2 − gB) · Γ
]

· ŵ = 0, (16a)

with Γ = n2

c2
S

− k2
x

ω̄2 − ξ 2
. (16b)

To simplify the procedure, we assume that the atmosphere is
intrinsically anelastic (i.e., n2 = n3 = 0, hence acoustic waves
are automatically filtered out), and that the fluid behaves as
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Figure 2. General scheme for surface waves. The boundaries are a rigid horizontal boundary at the bottom (z = 0) and a free surface at the top, at a mean altitude of
z = h0, separating two media with different properties (media 1 and 2). In the presence of these waves, the altitude of the boundary is given by a wave perturbation
z = h(x, t) with an amplitude ĥ.

unstratified (B = 0) in the boundary and the surroundings.
This latter assumption necessarily imposes a limitation (to be
discussed later) on the ratio between the size of the surface wave
and the equivalent depth. With the mentioned assumptions, the
differential equation (Equation (16a)) then becomes

d2ŵ

dz2
− n1

H0

dŵ

dz
− n4ω̄

2 ·
(

k2
x

ω̄2 − ξ 2

)
· ŵ = 0. (17)

In order to solve this differential equation, we define the
boundary conditions suitable for a problem of surface waves
(see Figure 2). The boundaries constraining our system will
be a rigid horizontal boundary at the ground (z = 0) and a
free surface above (at z = h(x, t)). Three boundary conditions
can then be defined. First, the vertical velocity must be zero
at the rigid boundary (i.e., w = 0 at z = 0). Second, the two
media do not separate from the common boundary and their
molecules cannot travel across the boundary (i.e., w = Dh/Dt
at z = h(x, t)). Third, the pressure for the two fluids must be
equal at the common boundary (P1 = P2 at z = h(x, t)) and the
pressure is constant above the free surface (DP1/Dt = DP2/Dt
at z = h(x, t)), both implying that DP/Dt = 0 at z = h(x, t).

Caution must be taken when applying the second boundary
condition: for example, in the case of Venus, a convection
layer exists in the 47–60 km range, and this may involve
deep convective plumes and mixing of air that may violate this
boundary condition (Baker et al. 2000a, 2000b). Nevertheless,
the only clear indications for convective activity at the cloud
tops seem to occur around the subsolar point, so the mentioned
boundary condition may still be valid far from it and at the
nightside of the planet. On the other hand, if a Hadley-cell
circulation exists in the planet (Peralta et al. 2007; Sánchez-
Lavega et al. 2008), this would additionally restrict the study of
surface waves to regions other than where ascending/subsiding
motions occur.

Because we want to linearize the boundary conditions, we
will take into account that

u = u0(y) + u′(x, z, t)

v = v′(x, z, t)

w = w′(x, z, t)

ρ = ρ0(z) + ρ ′(x, z, t)

P = P0(y, z) + P ′(x, z, t)

h = h0(z) + h′(x, z, t). (18)

Therefore, the linearized boundary conditions are

(a) w′ = 0, at z = 0,

(b) w′ = ∂h′
∂t

+ u0
∂h′
∂x

, at z = h0 + h′,

(c) ∂
∂t

(
P ′
ρ0

)
+ u0

∂
∂x

(
P ′
ρ0

)
= g · w′, at z = h0 + h′,

(19)

where for the third condition, we make use of the hydrostatic
balance for the basic state:

DP

Dt
= ∂P ′

∂t
+ u0

∂P ′

∂x
+ w′ ∂P0

∂z
= ∂P ′

∂t
+ u0

∂P ′

∂x
+ gρ0w

′ = 0.

(20)
If we now assume that all the disturbances have the wave

form u′(x, z, t) = û(z) · exp [i · (kxx − ωt)], then we obtain the
following boundary conditions written as functions of the wave
amplitudes,

(a) ŵ = 0, at z = 0,

(b) ŵ = −iω̄ · ĥ, at z = h0 + h′

(c) −iω̄ · P̂
ρ0

= g · ŵ, at z = h0 + h′.
, (21)

Now we write the boundary condition (c) in terms of only ŵ.
Going back to the modified version of the continuity equation

5
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(Equation (11b)):

dŵ

dz
+

(
n2B − n1

H0

)
·ŵ−iω̄

(
n2

c2
S

− k2
x

ω̄2 − ξ 2

)
· P̂

ρ0
= 0, (22)

we can calculate iω̄·(P̂ /ρ0) from Equation (22), and then replace
it in the boundary condition (c), thus obtaining

dŵ

dz
+

[
n2B − n1

H0
+ g

(
n2

c2
S

− k2
x

ω̄2 − ξ 2

)]
· ŵ = 0. (23)

Considering that B + g/c2
S = 1/H0 (Vallis 2006), Equation (23)

becomes

dŵ

dz
−

(
n1 − n2

H0
+ g · k2

x

ω̄2 − ξ 2

)
· ŵ = 0, (24)

where we note that (n1 − n2)/H0 is a spurious term that
automatically disappears when no approximations are made
(i.e., when n1 = n2 = n3 = n4 = 1; see Peralta et al. 2014).
Thus, we can remove it for the boundary condition (c) and
finally obtain the following differential equation and boundary
conditions for the surface waves:

d2ŵ

dz2
− n1

H0

dŵ

dz
− n4ω̄

2 ·
(

k2
x

ω̄2 − ξ 2

)
· ŵ = 0, (25a)

(a) ŵ = 0, at z = 0,

(b) ŵ = −iω̄ · ĥ, at z ∼= h0,

(c) dŵ
dz

− g ·
(

k2
x

ω̄2−ξ 2

)
· ŵ = 0 at z ∼= h0.

(25b)

4.1. Long Horizontal Wavelength Limit for Surface Waves

We first consider the limit cases of kx ·h0 � 1 and kx ·H0 � 1
(i.e., the horizontal scale is much higher than the vertical scale).
We can then apply the hydrostatic approximation by setting
n4 = 0 (Peralta et al. 2014), thus having

d2ŵ

dz2
− 1

H0

dŵ

dz
= 0, (26a)

(a) ŵ = 0, at z = 0,

(b) ŵ = −iω̄ · ĥ, at z ∼= h0,

(c) dŵ
dz

− g ·
(

k2
x

ω̄2−ξ 2

)
· ŵ = 0 at z ∼= h0,

(26b)

and Equation (26), along with these boundary conditions, has
the solution

ŵ(z) ∝ ω̄ · 1 − ez/H0

eh0/H0 − 1
. (27)

Replacing the solution (Equation (27)) in the boundary
condition (b) at z = h0, we find that the disturbances for
the vertical velocity and height of the free surface have a
phase difference of 90o for surface waves with long horizontal
wavelengths:

ŵ = iω̄ · ĥ
i=eiπ/2⇒ h′(x, z, t) ∝ w′(x, z, t) · ei π

2 . (28)

Moreover, inserting the solution (Equation (27)) for z = h0
in the boundary condition (c) from Equation (26b), we obtain
the following dispersion relation for surface waves with long
horizontal wavelengths:

ω̄2 = ξ 2 + gH0k
2
x(1 − e−h0/H0 ). (29)

The dispersion relation (Equation (29)) can also be simplified
for two limit cases. In the case of long surface waves propagating
in shallow water (h0 � H0), we can apply a first-order Taylor
expansion (e−x ≈ 1 − x) to the exponential and obtain the
following dispersion relation and intrinsic horizontal phase
velocity:

ω̄ ≈ ±
√

ξ 2 + gh0 · k2
x, (30a)

c̄k ≈ ±
√

ξ 2

k2
x

+ gh0. (30b)

Returning to the case of Venus, we have that in the cloud
region H0 ≈ 6380m (Seiff et al. 1985), i.e., the limit case
of large surface waves in deep water (h0 
 H0). Then, since
1 − exp (−h0/H0) ≈ 1, the dispersion relation and horizontal
phase velocity (see Figure 1) adopt the form of Poincaré waves
on Earth (Cushman-Roisin 1994):

ω̄ ≈ ±
√

ξ 2 + gH0 · k2
x, (31a)

c̄k ≈ ±
√

ξ 2

k2
x

+ gH0. (31b)

4.2. Short Horizontal Wavelength Limit for Surface Waves

We now examine the other limit case of kx · h0 
 1
and kx · H0 
 1, where the horizontal scale is smaller
than the vertical scale. Under this condition, the hydrostatic
approximation can no longer be applied (Peralta et al. 2014),
thus the differential equation and boundary conditions to be
solved are

d2ŵ

dz2
− 1

H0

dŵ

dz
− ω̄2 ·

(
k2
x

ω̄2 − ξ 2

)
· ŵ = 0, (32a)

(a) ŵ = 0, at z = 0,

(b) ŵ = −iω̄ · ĥ, at z ∼= h0,

(c) dŵ
dz

− g ·
(

k2
x

ω̄2−ξ 2

)
· ŵ = 0 at z ∼= h0.

(32b)

This differential equation for short horizontal wavelengths has
a more complex solution than the previous equation for long
wavelengths:

ŵ(z) ∝ ω̄ · sinh[(ω̄/
√

ω̄2 − ξ 2) · kxz]

sin[(ω̄/
√

ω̄2 − ξ 2) · kxh0]
· exp

(
z − h0

2H0

)
, (33)

and in those cases where ω̄2 
 ξ 2 (high intrinsic phase speeds)
or ξ → 0 (waves at the equator or in regions with very small
zonal winds), the amplitude for the disturbances in the vertical
velocity resembles that of the geostrophic case:

ŵ(z) ∝ ω̄ · sinh (kx · z)

sin (kx · h0)
· exp

(
z − h0

2H0

)
. (34)

If we now substitute solution (33) in the boundary condition
(c) of Equation (32b), we can obtain the corresponding disper-
sion relation:

ω̄√
ω̄2 − ξ 2

=
(

gkx

ω̄2 − ξ 2
− 1

2H0kx

)
· tanh

(
ω̄√

ω̄2 − ξ 2
· kx · h0

)
,

(35)

6
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which can be simplified by applying H0kx 
 1, yielding the
following dispersion relation for small surface waves:

ω̄
√

ω̄2 − ξ 2 = gkx · tanh

(
ω̄√

ω̄2 − ξ 2
· h0kx

)
, (36a)

c̄k

√
c̄2
k − ξ 2

k2
x

= g

kx

· tanh

⎛
⎝ c̄k√

c̄2
k − ξ 2/k2

x

· h0kx

⎞
⎠ , (36b)

which must be solved iteratively. In the case of Venus, ξ 2 ≈
10−10s−2 (Peralta et al. 2014) and even for very small horizontal
wavelengths, c̄k 
 ξ/kx . Therefore, on Venus, the dispersion
relation for short surface waves (see Figure 1) coincides exactly
with the one for a geostrophic case (Salby 1996):

ω̄ ≈ ±
√

gkx · tanh (h0kx), (37a)

c̄k ≈ ±
√

g

kx

· tanh (h0kx), (37b)

and in the case of very large kx · h0 (on Venus, this would
correspond to waves with horizontal wavelengths lower than
about 50 km for h0 ≈ 60 km), we can take advantage of the fact
that tanh x ≈ 1 when x 
 1. In this case, we obtain waves that
are much slower than long waves and have the same dispersion
relation as the terrestrial deep water waves (Salby 1996):

ω̄ ≈ ±
√

gkx, (38a)

c̄k ≈ ±
√

g

kx

. (38b)

5. CENTRIFUGAL WAVES

As mentioned before, the Coriolis force plays a negligible
role in the atmospheric dynamics of a cyclostrophic regime due
to the slow rotation of the planet and, thus, the classical Rossby
waves found in geostrophic regimes are not expected. However,
we show that the cyclostrophic metric terms yield a restoring
force responsible for a special type of Rossby wave which we
designate as a centrifugal wave. These centrifugal waves can be
demonstrated to adopt the same formulation as the geostrophic
Rossby waves when observed from a frame fixed to the profile
of zonal winds (see Appendix B). Nevertheless, it will be seen
that geostrophic and cyclostrophic versions of the Rossby waves
are not fully equivalent since the profile of zonal winds is far
from a solid-body rotation in both Titan (Flasar et al. 2010) and
Venus (Peralta et al. 2007; Sánchez-Lavega et al. 2008), thus
implying an equivalent angular velocity (Ω ∼= u0/(a · cos φ))
without a constant value at all latitudes and, thus, a different
validity of the β-plane approximation.

In this section, we deduce the corresponding dispersion
relation for centrifugal waves but focusing particularly on
the case of Venus, hence implying caution when applying
the dispersion relation for other planets with a cyclostrophic
atmosphere. The specific assumptions suitable for the case of
Venus are (1) the static stability is approximately constant with
altitude (dB/dz ∼= 0) in the region of interest, and (2) the
meridional shear of the background zonal wind is negligible
in the region where the β-plane approximation is valid for the
centrifugal frequency Ψ.

5.1. Dispersion Relation for Centrifugal Waves

In order to describe centrifugal waves, we first filter out the
acoustic and internal gravity waves. For a global scale, any
atmosphere can be considered to be in hydrostatic balance and
it is reasonable to apply the Boussinesq approximation (thus
allowing one to filter the acoustic waves, as this approximation
implies regarding the atmosphere as incompressible). Given the
number of atmospheric approximations made in this case, we
take advantage of the simpler form for the system of equations
and consider the more general case of waves propagating in
any direction (not just X–Z). The perturbed wave equations thus
become (see Appendix A for a demonstration)

∂u′

∂t
+ u0

∂u′

∂x
+

∂

∂x

(
P ′

ρ0

)
− Ψ · v′ +

∂u0

∂y
v′ = 0, (39a)

∂v′

∂t
+ u0

∂v′

∂x
+

∂

∂y

(
P ′

ρ0

)
+ 2Ψ · u′ = 0, (39b)

∂

∂z

(
P ′

ρ0

)
− g · Θ′ = 0, (39c)

∂u′

∂x
+

∂v′

∂y
+

∂w′

∂z
= 0, (39d)

∂Θ′

∂t
+ u0

∂Θ′

∂x
+ B · w′ = 0. (39e)

To simplify the notation of this section, we again use the material
derivative D/Dt ≡ ∂/∂t + u0∂/∂x. For simplicity, we assume
that the static stability is approximately constant with altitude
dB/dz ∼= 0. For instance, this is locally fulfilled in the Venus
atmosphere (Tellmann et al. 2009).

Similar to the Coriolis factor on a rapidly rotating planet,
we consider that the β-plane approximation is valid for the
centrifugal frequency (i.e., Ψ ≈ Ψ0 + β · y). In fact, making
use of our updated latitude–height profile for the zonal wind
at the cloud region (Peralta et al. 2014), it can be checked that
the β-plane approximation is fulfilled in the Venus atmosphere
equatorward of midlatitudes with β < 0 (see Figure 3).
Moreover, since between the equator and midlatitudes of Venus,
the zonal wind is nearly constant with increasing latitude
(Peralta et al. 2007; Sánchez-Lavega et al. 2008), we can further
assume that the meridional shear of the wind can be neglected
|∂u0/∂y| ∼= 0 in the region where the β-plane approximation is
applicable.

If we apply ∂/∂z to Equation (39e), we can combine
Equations (39d) and ∂/∂z (Equation (39e)) to reduce the set
to four equations:

Du′

Dt
+

∂

∂x

(
P ′

ρ0

)
− Ψ · v′ = 0, (40a)

Dv′

Dt
+

∂

∂y

(
P ′

ρ0

)
+ 2Ψ · u′ = 0, (40b)

∂

∂z

(
P ′

ρ0

)
− g · Θ′ = 0, (40c)

∂

∂z

(
DΘ′

Dt

)
− B ·

(
∂u′

∂x
+

∂v′

∂y

)
= 0. (40d)

7
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Figure 3. Meridional profile of the centrifugal frequency Ψ at two different
altitudes, as obtained with an updated latitude–height zonal wind profile for the
cloud region of Venus (Peralta et al. 2014). Observe that, equatorward of 45o,
the centrifugal frequency is properly described with the β-plane approximation.

Applying ∂/∂z and D/Dt to Equation (40c), we can also com-
bine Equations (40c) and (40d) to obtain only three equations:

Du′

Dt
+

∂

∂x

(
P ′

ρ0

)
− Ψ · v′ = 0, (41a)

Dv′

Dt
+

∂

∂y

(
P ′

ρ0

)
+ 2Ψ · u′ = 0, (41b)

D

Dt

∂2

∂z2

(
P ′

ρ0

)
− g · B ·

(
∂u′

∂x
+

∂v′

∂y

)
= 0. (41c)

Now we remove the gravity waves by suppressing the
local rate of change of the horizontal velocity divergence,
as demonstrated in Section 2. To carry out this, we need
to calculate ∂/∂x (41a) + ∂/∂y (Equation (41b)) and ∂/∂y
(Equation (41a))–∂/∂x (Equation (41b)), and considering that
D/Dt(∂u′/∂x + ∂v′/∂y) = 0, we obtain

(
∂2

∂x2
+

∂2

∂y2

)
P ′

ρ0
− Ψ

∂v′

∂x
+ 2Ψ · ∂u′

∂y
+ 2β · u′ = 0, (42a)

D

Dt

(
∂u′

∂y
− ∂v′

∂x

)
− Ψ

∂v′

∂y
− 2Ψ · ∂u′

∂x
− β · v′ = 0. (42b)

Applying D/Dt to Equation (42a) and multiplying
Equation (42b) by Ψ, we have

D

Dt

[
∂2

∂x2

(
P ′

ρ0

)
+

∂2

∂y2

(
P ′

ρ0

)]
+ Ψ · D

Dt

(
∂u′

∂y
− ∂v′

∂x

)

+ Ψ
D

Dt

(
∂u′

∂y

)
+ 2β · Du′

Dt
= 0, (43a)

Ψ
D

Dt

(
∂u′

∂y
− ∂v′

∂x

)
−Ψ2 ∂v′

∂y
−2Ψ2· ∂u′

∂x
−Ψβ ·v′ = 0. (43b)

In Equation (43a), we can replace Du′/Dt by its expression
given by Equation (40a):

D

Dt

[
∂2

∂x2

(
P ′

ρ0

)
+

∂2

∂y2

(
P ′

ρ0

)]
+ Ψ · D

Dt

(
∂u′

∂y
− ∂v′

∂x

)
+ . . .

. . . + Ψ
D

Dt

(
∂u′

∂y

)
− 2β · ∂

∂x

(
P ′

ρ0

)
+ 2Ψβ · v′ = 0, (44a)

Ψ
D

Dt

(
∂u′

∂y
− ∂v′

∂x

)
−Ψ2 ∂v′

∂y
−2Ψ2· ∂u′

∂x
−Ψβ ·v′ = 0. (44b)

Since D/Dt(∂u′/∂y) = ∂/∂y(Du′/Dt), we can again use
Equation (40a) in Equation (44a) to obtain

D

Dt

[
∂2

∂x2

(
P ′

ρ0

)
+

∂2

∂y2

(
P ′

ρ0

)]
+ Ψ · D

Dt

(
∂u′

∂y
− ∂v′

∂x

)
+ . . .

. . . − Ψ
∂2

∂y∂x

(
P ′

ρ0

)
+ Ψ2 ∂v′

∂y
+ Ψβ · v′ − 2β · ∂

∂x

(
P ′

ρ0

)
+ 2Ψβ · v′ = 0, (45a)

Ψ
D

Dt

(
∂u′

∂y
− ∂v′

∂x

)
−Ψ2 ∂v′

∂y
−2Ψ2 · ∂u′

∂x
−Ψβ ·v′ = 0, (45b)

and combining both equations to remove the term
Ψ · D/Dt(∂u′/∂y − ∂v′/∂x), we arrive at the following sin-
gle equation:

D

Dt

[
∂2

∂x2

(
P ′

ρ0

)
+

∂2

∂y2

(
P ′

ρ0

)]
+ 2Ψ2

(
∂u′

∂x
+

∂v′

∂y

)
+ . . .

. . . − 2β · ∂

∂x

(
P ′

ρ0

)
− Ψ

∂2

∂y∂x

(
P ′

ρ0

)
+ 4Ψβ · v′ = 0. (46)

Then, we replace the term 2Ψ2(∂u′/∂x + ∂v′/∂y) in Equa-
tion (46) using Equation (41c), thus obtaining an expression in
terms of only the pressure and meridional velocity disturbances:

D

Dt

[
∂2

∂x2

(
P ′

ρ0

)
+

∂2

∂y2

(
P ′

ρ0

)
+

2Ψ2

gB

∂2

∂z2

(
P ′

ρ0

)]
+ . . .

. . . + 2β ·
[

2Ψ · v′ − ∂

∂x

(
P ′

ρ0

)]
− Ψ

∂2

∂y∂x

(
P ′

ρ0

)
= 0. (47)

Using Equation (40a), we can also replace 2Ψ · v′ and obtain

D

Dt

[
∂2

∂x2

(
P ′

ρ0

)
+

∂2

∂y2

(
P ′

ρ0

)
+

2Ψ2

gB

∂2

∂z2

(
P ′

ρ0

)]
+ . . .

. . . + 2β ·
[

2
Du′

Dt
+

∂

∂x

(
P ′

ρ0

)]
− Ψ

∂2

∂y∂x

(
P ′

ρ0

)
= 0. (48)

8



The Astrophysical Journal Supplement Series, 213:18 (15pp), 2014 July Peralta et al.

Finally, as the atmosphere can be regarded as being in approx-
imately cyclostrophic balance, it is reasonable to assume that
|Du′/Dt | � |∂(P̂ /ρ0)/∂x| and |Du′/Dt | � |Ψ · v′|, so Equa-
tion (48) finally becomes in terms of a single variable

D

Dt

[
∂2

∂x2

(
P ′

ρ0

)
+

∂2

∂y2

(
P ′

ρ0

)
+

2Ψ2

gB

∂2

∂z2

(
P ′

ρ0

)]

+ 2β · ∂

∂x

(
P ′

ρ0

)
− Ψ

∂2

∂y∂x

(
P ′

ρ0

)
= 0. (49)

We can linearize the different terms of Equation (49), as-
suming for the perturbations, the form P ′/ρ0 ∝ P̂ /ρ0 ·
exp

[
i · (

kxx + kyy + mz − ωt
)]

,

∂

∂x

(
P ′

ρ0

)
= ikx

P̂

ρ0
· ei(kxx+kyy+mz−ωt),

∂2

∂x2

(
P ′

ρ0

)
= −k2

x

P̂

ρ0
· ei(kxx+kyy+mz−ωt),

∂2

∂y∂x

(
P ′

ρ0

)
= −kxky

P̂

ρ0
· ei(kxx+kyy+mz−ωt),

D

Dt

∂2

∂x2

(
P ′

ρ0

)
= iω̄ · k2

x

P̂

ρ0
· ei(kxx+kyy+mz−ωt), (50)

thus, obtaining the following equation in terms of the wave
amplitude:

iω̄ ·
(

k2
x + k2

y + m2 2Ψ2

gB

)
· P̂

ρ0
+ikx2β

P̂

ρ0
+Ψkxky

P̂

ρ0
= 0, (51)

and, from the imaginary part of Equation (51), we obtain the
following dispersion relation for the centrifugal waves:

ω̄ = −2β · kx

k2
x + k2

y + m2 ·
(

2Ψ2

gB

) , (52a)

c̄k = −2β

k2
x + k2

y + m2 ·
(

2Ψ2

gB

) . (52b)

Upon comparison with the dispersion relation for geostrophic
Rossby waves below (Salby 1996), it can be seen that the main
differences are that we have 2Ψ2 instead of f 2, which is the
result of having 2Ψ in the meridional momentum equation
(Equation (40b)) instead of a single Ψ:

ω̄ = −β · kx

k2
x + k2

y +
(
m2 + 1

4H 2
0

)
·
(

f 2

gB

) . (53)

We also see that the density scale height (H0) has disappeared as
a result of filtering the acoustic and gravity waves by regarding
the atmosphere as incompressible. In the case of Earth, the
anelastic approximation is typically used for the derivation of
Rossby waves.

Equation (52b) also shows that the centrifugal waves are
dispersive and do not appear as pairs of westward and eastward
waves relative to the background wind, but their sense depends
on the sign of β (in the case of Venus, this is negative for almost
all latitudes except poleward of 75o at lower heights). This also
implies that—except at polar latitudes where β can change its

sign—the phase of the centrifugal waves moves in the opposite
sense of the superrotation: on Venus, it moves eastward relative
to the mean flow, while in the case of the Rossby waves on Earth,
the phase moves westward (relative to a mean flow, if present).
The range for possible wavelengths and intrinsic phase velocities
can be examined in the dispersion graph already shown (see
Figure 1). If we examine the limit case of centrifugal waves
with short wavelengths, then k2

x 
 k2
y + m2 · (2Ψ2/gB

)
, and the

dispersion relation can be expressed as

ω̄ ≈ −2β

kx

, (54a)

c̄k ≈ −2β

k2
x

. (54b)

In this case, we can see that, relative to the background zonal
wind, for the centrifugal waves, the group velocity is of the
opposite sign of the phase velocity, identical to what happens
with Rossby waves on Earth,

ck ≈ u0 − 2β

k2
x

, (55a)

cg ≈ u0 +
2β

k2
x

. (55b)

6. CLASSIFICATION OF ATMOSPHERIC PERIODICITIES

Up until this point, we have successfully derived the dis-
persion relation for up to six types of atmospheric waves that
can propagate in a planet whose atmosphere is governed by a
cyclostrophic regime: acoustic, inertia-gravity, Lamb, surface,
and centrifugal waves. These dispersion relations easily permit
a classification of the atmospheric waves apparent in observa-
tions whenever we can measure some of their parameters: for
instance, we can use a dispersion graph (see Figure 1) to iden-
tify waves once the horizontal wavelength and intrinsic phase
velocity are obtained, as we already did in Paper I for mesoscale
waves (Peralta et al. 2014). Unfortunately, actual observational
techniques do not yet allow observing wave packets apparent
in exoplanet clouds or carrying out limb soundings in search of
vertical wave oscillations.

The first evidence of atmospheric waves in exoplanets will
undoubtedly come through the identification of periodicities
arising from planetary-scale waves affecting different physical
parameters such as the thermal emission of a planet or the
albedo of clouds. In fact, Demory et al. (2013) recently provided
promising results of cloud contrasts on an exoplanet. In the case
of Venus, a wide variety of periodicities has been detected with
observations at different wavelengths through their effects on
upper cloud patterns for reflected sunlight (Del Genio & Rossow
1990; Hosouchi et al. 2012), thermal emission (Apt & Leung
1982), and also winds (Rossow et al. 1990; Kouyama et al.
2013; Khatuntsev et al. 2013). The wave period T is given by
the expression

T = 2π

ω
= 2π

ω̄ + kxu0
=

(
u0

λx

+
ω̄

2π

)−1

, (56)

where λx is the horizontal wavelength, u0 is the background
zonal wind, and ω̄ is the intrinsic frequency for each type of
atmospheric wave. Using in Equation (56) the corresponding
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Figure 4. Dispersion graphs for periodicities detected in the Venus atmosphere at a height of about 60 km and latitudes of 20o (panels above) and 70o (panels below).
The absolute periods for westward and eastward acoustic, gravity, inertial, Lamb, and centrifugal waves are shown in red, blue, orange, pink, and blue, respectively,
with several vertical wavelengths marked with different line styles for the acoustic, gravity, and centrifugal waves. The reference value u0/λx (see Equation (60)) is
displayed with a thick black continuous line, and values for the background zonal wind have been taken from our reference atmosphere (Peralta et al. 2014). The
maximum value possible for the horizontal wavelength at each latitude is shown with the gray area. Finally, the following periodicities (given in days) are displayed
with gray dotted lines for classification: 3.94, 4.0, 4.73, 5.03 (Del Genio & Rossow 1990), 3.5, 4.9, 8.4 (Hosouchi et al. 2012), 2.9, 5.3 (Apt & Leung 1982), and
255 days (Kouyama et al. 2013).

(A color version of this figure is available in the online journal.)

dispersion relation ω̄(kx,m) for the waves deduced in this work,
we can display a dispersion graph similar to Figure 1 but dis-
playing observed periods against different values of horizontal
wavelength (see Figure 4). Note that, in most cases, for a sin-
gle period, several combinations of horizontal intrinsic phase
velocity and wavelength are possible. Low-latitude periodici-
ties detected on the dayside cloud brightness distribution (Del
Genio & Rossow 1990), infrared absorption lines (Hosouchi
et al. 2012), and on the zonal winds (Kouyama et al. 2013) are
displayed in the top panels of Figure 4, while periodicities iden-
tified in thermal emission at polar latitudes (Apt & Leung 1982)
are shown in the lower panels.

We can extract several conclusions from our dispersion
graphs. For periodicities detected at low latitudes, (1) peri-
ods higher than four days can only correspond to waves prop-
agating eastward—in this case, centrifugal or inertia-gravity
waves—while lower periods can correspond to waves propagat-
ing in both senses, (2) the long period of 255 days detected on
the winds by Kouyama et al. (2013) corresponds to a global-
scale centrifugal wave propagating eastward with a horizontal
wavelength slightly lower than 30000 km. On the other hand, for
periodicities at polar latitudes obtained from the thermal emis-
sion during the Pioneer Venus mission (Apt & Leung 1982), we
are dealing with eastward gravity waves.

10
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7. CONCLUSIONS

This is the second paper in a two-part work devoted to
studying the wide variety of waves that are possible in a
planet with a cyclostrophic atmosphere behaving as an adiabatic
ideal gas and with a background zonal wind that varies both
meridionally and vertically (Tellmann et al. 2009). Provided
that the method of the multiple scales in height is applicable
(Peralta et al. 2014), we studied the general properties of the
atmospheric waves by solving the problem at a given height with
only horizontal shear of the wind. In Paper I, a generic dispersion
relation was analytically deduced for the acoustic and inertia-
gravity waves. We also studied how waves are filtered when
applying the classical atmospheric approximations and applied
the resulting dispersion relations to classifying mesoscale waves
on Venus (Peralta et al. 2014). In this second paper, we have
deduced for the first time the dispersion relations for the
Lamb, surface, and centrifugal waves in a cyclostrophic regime,
applying all of the results to classifying global periodicities on
Venus.

The Lamb waves are shown to be the solution for horizontally
propagating waves, and their corresponding dispersion relation
resembles that of a geostrophic analog except that the Coriolis
factor is replaced by the centrifugal frequency modified by the
meridional shear of the wind. Identical to the case of Earth,
the Lamb waves are of an acoustic nature with high phase
velocities and they can be filtered out when the atmosphere
behaves anelastically relative to the background zonal wind.

The dispersion relation for surface waves has also been
deduced for two limit cases: short and large waves, with the
latter subdivided into deep and shallow water situations. In all
cases, the wave perturbation that affects the vertical velocity is
found to be phase-shifted 90o relative to the perturbed height of
the free surface. On the other hand, large-scale waves in deep
water and short-wavelength surface waves have a dispersion
relation quite similar to the geostrophic cases.

A new type of Rossby wave for cyclostrophic regimes (here
called centrifugal waves) has been found under the assumptions
of hydrostatic balance, Boussinesq approximation, negligible
meridional shear of the background zonal wind, and with the
centrifugal frequency following a β-plane approximation. The
metric terms from the cyclostrophic regime act as a restoring
force in this case, and they can be regarded as equivalent to
geostrophic Rossby waves when a profile of zonal winds with
solid-body rotation is applicable. The centrifugal waves move
eastward instead of westward in the case of Venus due to the
sense of atmospheric superrotation.

Finally, we used the dispersion relations for acoustic, inertia-
gravity, Lamb, and centrifugal waves to derive an expression for
the absolute wave period. The results were used in dispersion
graphs to classify the wide variety of periodicities found in the
atmosphere of Venus at equatorial and polar latitudes. Most of
the periodicities are found to fit with inertia-gravity waves, while
longer periods (typically more than four days) must correspond
to waves propagating only eastward. The low-latitude period of
about 255 days detected on the winds by Kouyama et al. (2013)
corresponds to a global-scale centrifugal wave with a horizontal
wavelength slightly lower than 30000 km. Polar periodicities
found from thermal emission (Apt & Leung 1982) correspond
to eastward gravity waves.

The analytical dispersion relations obtained in this work are
expected to contribute to the general knowledge of the atmo-
spheric waves in slowly rotating planets with a cyclostrophic
regime and atmospheric superrotation and to help in future stud-

ies by providing new tools with which to predict not only the
properties of waves but also their role in the source, dissipation,
and transportation of energy and momentum. In addition, our
equations have allowed us to obtain dispersion graphs for dif-
ferent regions of Venus’s atmosphere which will be useful for
classifying waves that have been identified in the many space
missions that have explored Venus, an important task yet to be
extended to Titan and exoplanets. The derivation of the atmo-
spheric waves that arise as solutions in the equatorial region of
cyclostrophic regimes (namely, mixed and Kelvin waves) seems
to be the natural continuation of this work and will be addressed
in a forthcoming article.
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APPENDIX A

WAVE EQUATIONS FOR A CYCLOSTROPHIC
ATMOSPHERE UNDER HYDROSTATIC BALANCE AND

THE BOUSSINESQ APPROXIMATION

In the Boussinesq approximation, the density is replaced by
a mean value (ρ0) that is constant everywhere except in the
buoyancy term in the vertical momentum equation (Holton
2004). If we apply this approximation along with assuming
that the atmosphere is in hydrostatic balance, we will have the
following system of primitive equations:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= − 1

ρ0

∂P

∂x
+

uv

a
tan φ, (A1a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= − 1

ρ0

∂P

∂y
− u2

a
tan φ, (A1b)

∂P

∂z
= −ρ · g, (A1c)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (A1d)

∂Θ
∂t

+ u
∂Θ
∂x

+ v
∂Θ
∂y

+ w
∂Θ
∂z

= 0, (A1e)

P = ρ · R · T , (A1f)

where we have considered that the atmosphere is an ideal
gas with adiabatic motions. The variables (u, v,w) are the
three components of the wind velocity; P, ρ, T , and Θ are
the atmospheric pressure, density, temperature, and natural
logarithm of the potential temperature; and R is the constant for
the gases. Now, we assume that every variable can be divided
into two parts: a basic state and a local deviation from the basic
state called perturbation or disturbance. The basic states or mean
values of the variables should satisfy the governing equations
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themselves and the disturbances should be small enough to
neglect cross terms that are products of perturbations. In this
case, the disturbances for each atmospheric parameter will be

u = u0(y) + u′(x, y, z, t)

v = v′(x, y, z, t)

w = w′(x, y, z, t)

ρ = ρ0(z) + ρ ′(x, y, z, t)

P = P0(y, z) + P ′(x, y, z, t)

Θ = Θ0(z) + Θ′(x, y, z, t), (A2)

where we have regarded the atmosphere to be at rest ex-
cept for a zonal background wind that depends on the lati-
tude, i.e., u0 = u0(y), v0 = w0 = 0 (Peralta et al. 2007;
Hueso et al. 2012). Introducing perturbations (Equation (A2))
in Equations (A1a)–(A1f), neglecting all terms containing prod-
ucts of perturbations, and defining a centrifugal frequency as
Ψ ≡ (u0/a) tan φ,

∂u′

∂t
+ u0

∂u′

∂x
+

∂

∂x

(
P ′

ρ0

)
− Ψ · v′ +

∂u0

∂y
v′ = 0, (A3a)

∂v′

∂t
+ u0

∂v′

∂x
+

∂

∂y

(
P ′

ρ0

)
+ 2Ψ · u′ = 0, (A3b)

1

ρ0

∂P ′

∂z
+

ρ ′

ρ0
g = 0, (A3c)

∂u′

∂x
+

∂v′

∂y
+

∂w′

∂z
= 0, (A3d)

∂Θ′

∂t
+ u0

∂Θ′

∂x
+ w′ ∂Θ0

∂z
= 0, (A3e)

P ′

P0
= ρ ′

ρ0
+

T ′

T0
. (A3f)

As a first step, we combine the equation of the ideal gases
(Equation (A3f)) and the vertical momentum equation (Equa-
tion (A3c)) to get rid of the density. Taking into account that,

∂

∂z

(
P ′

ρ0

)
= 1

ρ0

∂P ′

∂z
− P ′

ρ0

∂ ln ρ0

∂z
. (A4)

We then have

∂

∂z

(
P ′

ρ0

)
+

P ′

ρ0

∂ ln ρ0

∂z
+

ρ ′

ρ0
g = 0, (A5a)

P ′

P0
= ρ ′

ρ0
+

T ′

T0
. (A5b)

Now, manipulating the Poisson’s equation for the basic state,
we can obtain the following expression:

θ0 = P0

ρ0R

(
Pref

P0

)R/CP

⇒

ln θ0 = ln
P

R/CP

ref

R
+

(
1 − R

CP

)
ln P0 − ln ρ0 ⇒

∂ ln θ0

∂z
=

(
1 − R

CP

)
∂ ln P0

∂z
− ∂ ln ρ0

∂z
. (A6)

Replacing ∂ ln ρ0/∂z in Equation (A5a) and considering that the
stability is defined as B ≡ ∂ ln θ/∂z, the vertical momentum and
ideal gas equations become

∂

∂z

(
P ′

ρ0

)
−B

P ′

ρ0
+

P ′

ρ0

(
1 − R

CP

)
∂ ln P0

∂z
+

ρ ′

ρ0
g = 0, (A7a)

P ′

P0
= ρ ′

ρ0
+

T ′

T0
. (A7b)

Using the hydrostatic balance again,

∂

∂z

(
P ′

ρ0

)
− B

P ′

ρ0
− P ′

P0

(
1 − R

CP

)
· g +

ρ ′

ρ0
g = 0, (A8a)

P ′

P0
= ρ ′

ρ0
+

T ′

T0
. (A8b)

Joining all the terms multiplied by the acceleration of gravity in
Equation (A8a) and making use of Equation (A8b), we arrive at
the following expression for the vertical momentum equation:

∂

∂z

(
P ′

ρ0

)
− B

P ′

ρ0
− g

(
T ′

T0
− R

CP

P ′

P0

)
= 0. (A9)

Then, dividing Poisson’s equations for disturbed and undis-
turbed states and operating,

θ0 + θ ′

θ0
=

(
T0 + T ′) · [

Pref/
(
P0 + P ′)]R/CP

T0 · (Pref/P0)R/CP
⇒

1 +
θ ′

θ0
=

(
1 +

T ′

T0

)
·
(

1 +
P ′

P0

)−R/CP

⇒

ln

(
1 +

θ ′

θ0

)
= ln

(
1 +

T ′

T0

)
− R

CP

ln

(
1 +

P ′

P0

)
. (A10)

Taking into account that ln (1 + x) ∼= x when x � 1, we can
modify Equation (A9) and obtain

∂

∂z

(
P ′

ρ0

)
− B

P ′

ρ0
− g

θ ′

θ0
= 0. (A11)

Considering that Θ ≡ ln θ , we can demonstrate that Θ′ ∼= θ ′/θ0
by again applying ln (1 + x) ∼= x when x � 1:

Θ0 + Θ′ = ln(θ0 + θ ′) = ln θ0 + ln

(
1 +

θ ′

θ0

)
∼= ln θ0 +

θ ′

θ0
,

(A12)
and we obtain for the vertical momentum equation:

∂

∂z

(
P ′

ρ0

)
− B

P ′

ρ0
− g · Θ′ = 0. (A13)

As a last step, remembering that B ≡ ∂ ln θ/∂z = ∂Θ0/∂z,
we introduce the stability in the thermodynamic equation
(Equation (A3e)) and we finally obtain the following set of
equations for the wave disturbances:

∂u′

∂t
+u0

∂u′

∂x
+

∂

∂x

(
P ′

ρ0

)
−Ψ ·v′ +

∂u0

∂y
v′ = 0, (A14a)

∂v′

∂t
+ u0

∂v′

∂x
+

∂

∂y

(
P ′

ρ0

)
+ 2Ψ · u′ = 0, (A14b)
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∂

∂z

(
P ′

ρ0

)
− n3 · B

P ′

ρ0
− g · Θ′ = 0, (A14c)

∂u′

∂x
+

∂v′

∂y
+

∂w′

∂z
= 0, (A14d)

∂Θ′

∂t
+ u0

∂Θ′

∂x
+ B · w′ = 0, (A14e)

thus demonstrating that applying the Boussinesq approximation
with hydrostatic balance allows one to obtain the same set of
equations as when we rotate the local frame of coordinates
to have the Z-axis with the same direction as the sum of the
centrifugal and gravitation forces as well as apply hydrostatic
balance and an incompressible atmosphere (see Section 2).

APPENDIX B

ROSSBY WAVES FOR A FRAME FIXED TO THE
SUPERROTATING WINDS IN A CYCLOSTROPHIC

ATMOSPHERE

The aim of this appendix is to demonstrate that the centrifugal
waves are a new type of Rossby waves in cyclostrophic regimes
and that they can be regarded as locally equivalent to the classical
Rossby waves when observed relative to a frame fixed on the
superrotating winds. As a result of applying a proper scale
analysis for such a frame, we obtain the following system of
equations (for details, see Peralta et al. 2014):

Du

Dt
= − 1

ρ

∂P

∂x
+ 2Ω · v sin φ, (B1a)

Dv

Dt
= − 1

ρ

∂P

∂y
− 2Ω · u sin φ, (B1b)

Dw

Dt
= − 1

ρ

∂P

∂z
− g, (B1c)

Dρ

Dt
= −ρ

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)
, (B1d)

DΘ
Dt

= 0, (B1e)

which corresponds to an atmosphere that is approximately
in geostrophic balance instead of cyclostrophic balance. To
linearize the equations, we assume that every field variable can
be divided into two parts (a basic state and a local deviation
from the basic state called perturbation or disturbance):

u = u′(x, y, z, t)

v = v′(x, y, z, t)

w = w′(x, y, z, t)

ρ = ρ0(z) + ρ ′(x, y, z, t)

P = P0(z) + P ′(x, y, z, t)

Θ = Θ0(z) + Θ′(x, y, z, t), (B2)

where we have regarded the atmosphere to be at rest in its basic
state. Inserting these equations into Equations (B1a)–(B1e),
neglecting all terms containing products of perturbations, and
applying hydrostatic balance and the Boussinesq approximation,
we obtain (see details of the procedure in Peralta et al. 2014)

∂u′

∂t
+

∂

∂x

(
P ′

ρ0

)
− 2Ω sin φ · v′ = 0, (B3a)

∂v′

∂t
+

∂

∂y

(
P ′

ρ0

)
+ 2Ω sin φ · u′ = 0, (B3b)

∂

∂z

(
P ′

ρ0

)
− g · Θ′ = 0, (B3c)

∂u′

∂x
+

∂v′

∂y
+

∂w′

∂z
= 0, (B3d)

∂Θ′

∂t
+ B · w′ = 0. (B3e)

Despite the resemblances to the equations for the geostrophic
case, this Coriolis factor is equivalent to the classical one only if
the superrotating winds fit a solid-body profile, which is not valid
in the case of Venus (Peralta et al. 2007; Sánchez-Lavega et al.
2008). If we consider that Ω ∼= u0/(a · cos φ) is not a function
of latitude (with u0 being the background zonal wind where
the frame is fixed), we can recover the definition of centrifugal
frequency and obtain that f = 2Ω sin φ = 2Ψ. Replacing,

∂u′

∂t
+

∂

∂x

(
P ′

ρ0

)
− f · v′ = 0, (B4a)

∂v′

∂t
+

∂

∂y

(
P ′

ρ0

)
+ f · u′ = 0, (B4b)

∂

∂z

(
P ′

ρ0

)
− g · Θ′ = 0, (B4c)

∂u′

∂x
+

∂v′

∂y
+

∂w′

∂z
= 0, (B4d)

∂Θ′

∂t
+ B · w′ = 0. (B4e)

If we apply ∂/∂z to Equation (B4e), we can combine Equations
(B4d) and (B4e) to have only four equations:

∂u′

∂t
+

∂

∂x

(
P ′

ρ0

)
− f · v′ = 0, (B5a)

∂v′

∂t
+

∂

∂y

(
P ′

ρ0

)
+ f · u′ = 0, (B5b)

∂

∂z

(
P ′

ρ0

)
− g · Θ′ = 0, (B5c)

∂

∂z

(
∂Θ′

∂t

)
− B ·

(
∂u′

∂x
+

∂v′

∂y

)
= 0. (B5d)

Now applying ∂/∂z and ∂/∂t to Equation (B5c), we can
also combine Equations (B5c) and (B5d) to have only three
equations:

∂u′

∂t
+

∂

∂x

(
P ′

ρ0

)
− f · v′ = 0, (B6a)

∂v′

∂t
+

∂

∂y

(
P ′

ρ0

)
+ f · u′ = 0, (B6b)

∂

∂t

∂2

∂z2

(
P ′

ρ0

)
− g · B ·

(
∂u′

∂x
+

∂v′

∂y

)
= 0. (B6c)

Now we remove the gravity waves by suppressing the lo-
cal rate of change of the horizontal velocity divergence, as it
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was demonstrated in Section 2. Before performing this, we will
consider that we can apply the β-plane approximation between
the equator and midlatitudes to this Coriolis factor, which seems
correct since we have f ≈ f0 +βf ·y = 2Ψ0 +2β ·y, and for the
centrifugal frequency Ψ ≈ Ψ0 +β ·y (with β < 0; see Figure 3).
Calculating ∂/∂x (Equation (B6a)) + ∂/∂y (Equation (B6b)) and
∂/∂y (Equation (B6a))−∂/∂x (Equation (B6b)), and consider-
ing that ∂/∂t

(
∂u′/∂x + ∂v′/∂y

) = 0, we obtain

(
∂2

∂x2
+

∂2

∂y2

)
P ′

ρ0
+ f ·

(
∂u′

∂y
− ∂v′

∂x

)
+ βf · u′ = 0, (B7a)

∂

∂t

(
∂u′

∂y
− ∂v′

∂x

)
− f ·

(
∂u′

∂x
+

∂v′

∂y

)
− βf · v′ = 0. (B7b)

Applying ∂/∂t to Equation (B7a) and multiplying
Equation (B7b) by f , we have

∂

∂t

[
∂2

∂x2

(
P ′

ρ0

)
+

∂2

∂y2

(
P ′

ρ0

)]
+ f · ∂

∂t

(
∂u′

∂y
− ∂v′

∂x

)

+ βf · ∂u′

∂t
= 0, (B8a)

f · ∂

∂t

(
∂u′

∂y
− ∂v′

∂x

)
− f 2 ·

(
∂u′

∂x
+

∂v′

∂y

)
− f · βf · v′ = 0,

(B8b)
and subtracting both equations to get rid of f · ∂/∂t(∂u′/∂y −
∂v′/∂x), we arrive at the following single equation after manip-
ulating the terms:

∂

∂t

[
∂2

∂x2

(
P ′

ρ0

)
+

∂2

∂y2

(
P ′

ρ0

)]
+ f 2

(
∂u′

∂x
+

∂v′

∂y

)

+ βf ·
(

∂u′

∂t
+ f · v′

)
= 0. (B9)

We now replace the term f 2(∂u′/∂x + ∂v′/∂y) in
Equation (B9) using Equation (B6c):

∂

∂t

[
∂2

∂x2

(
P ′

ρ0

)
+

∂2

∂y2

(
P ′

ρ0

)
+

f 2

gB

∂2

∂z2

(
P ′

ρ0

)]

+ βf ·
(

∂u′

∂t
+ f · v′

)
= 0. (B10)

Using Equation (B4a), we can also replace f · v′ and obtain

∂

∂t

[
∂2

∂x2

(
P ′

ρ0

)
+

∂2

∂y2

(
P ′

ρ0

)
+

f 2

gB

∂2

∂z2

(
P ′

ρ0

)]

+ βf ·
[

∂

∂x

(
P ′

ρ0

)
+ 2

∂u′

∂t

]
= 0. (B11)

Finally, as the atmosphere in this case was regarded as approx-
imately in geostrophic balance, it is reasonable to assume that
|∂u′/∂t | � |∂(P̂ /ρ0)/∂x| and |∂u′/∂t | � |f · v′|, so Equa-
tion (B11) finally becomes, in terms of a single variable,

∂

∂t

[
∂2

∂x2

(
P ′

ρ0

)
+

∂2

∂y2

(
P ′

ρ0

)
+

f 2

gB

∂2

∂z2

(
P ′

ρ0

)]

+ βf · ∂

∂x

(
P ′

ρ0

)
= 0. (B12)

If we assume that the perturbations are due to waves with the
form P ′/ρ0 ∝ P̂ /ρ0 · exp[i · (kxx + kyy + mz − ωt)], we can
linearize the different terms of Equation (B12),

∂

∂x

(
P ′

ρ0

)
= ikx

P̂

ρ0
· ei(kxx+kyy+mz−ωt),

∂2

∂x2

(
P ′

ρ0

)
= −k2

x

P̂

ρ0
· ei(kxx+kyy+mz−ωt),

∂

∂t

∂2

∂x2

(
P ′

ρ0

)
= iω · k2

x

P̂

ρ0
· ei(kxx+kyy+mz−ωt), (B13)

thus obtaining the following equation in terms of the wave
amplitudes:

iω ·
(

k2
x + k2

y + m2 f 2

gB

)
· P̂

ρ0
+ ikxβf

P̂

ρ0
= 0, (B14)

and we obtain the following dispersion relation for the Rossby
waves from Equation (B14):

ω = −βf · kx

k2
x + k2

y + m2 ·
(

f 2

gB

) , (B15a)

ck = −βf

k2
x + k2

y + m2 ·
(

f 2

gB

) . (B15b)

Considering Equation (B15b) and βf = 2β (where β is the
slope for the centrifugal frequency), we see that the Rossby
waves that arise in a system of coordinates fixed to the zonal
background wind move eastward with a phase velocity matching
the intrinsic phase velocity for the centrifugal waves:

ω̄ = −2β · kx

k2
x + k2

y + m2 ·
(

2Ψ2

gB

) , (B16a)

c̄k = −2β

k2
x + k2

y + m2 ·
(

2Ψ2

gB

) , (B16b)

hence confirming that the centrifugal waves observed for a frame
fixed to the surface of the planet are equivalent to the Rossby
waves arising for a frame fixed to the mean zonal flow of the
atmosphere when we have the bulk atmosphere following a
solid-body rotation.
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