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Evolution equations of p-Laplace type with absorption or source
terms and measure data

Marie-Francoise BIDAUT-VERON* Quoc-Hung NGUYENT

Abstract
Let Q be a bounded domain of RY, and Q = © x (0, T). We consider problems of the type
{ ur — Apu £ G(u) = p in Q,

u=20 on 99 x (0,7),
u(0) = uo in Q,

where A, is the p-Laplacian, p is a bounded Radon measure, ug € L'(), and £G(u) is an absorption
or a source term. In the model case G(u) = =+ |u|” ' u (¢ > p — 1), or G has an exponential type. We
prove the existence of renormalized solutions for any measure y in the subcritical case, and give sufficient
conditions for existence in the general case, when u is good in time and satisfies suitable capacitary
conditions.

1 Introduction

Let © be a bounded domain of RV, and Q = Q x (0,T), T > 0. We consider the quasilinear parabolic
problem
us — Au) £ G(u) = p in Q,
u=0 on 902 x (0,7, (1.1)
u(0) = uo in Q,

where p is a bounded Radon measure on Q, ug € L*(Q). We assume that A(u) =div(A(z, Vu)) and A is a
Carathéodory function on  x RY, such that, for a.e. € Q, and any &, ¢ € RV,

Az, 6.6 > A€, A, ) < A€, A A2 >0, (1.2)

for p > 1; and G(u) = G(x,t,u), where (x,t,r) — G(z,t,r) is a Caratheodory function on @ x R with
Gz, t,r)r >0, for a.e.(x,t) €Q andanyreR. (1.4)

The model problem is relative to the p-Laplace operator: A(u) = Apu = div(|Vul|P~2Vu), and G has a
power-type G(u) = + |u|q*1 u (¢ > p—1), or an exponential type. Our aim is to give sufficient conditions on
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the measure p in terms of capacity to obtain existence results. We denote by M;(€Q) and M;(Q) the sets of
bounded Radon measures on €2 and @) respectively.

Next we make a brief survey of the main works on problem (1.1). First we consider the case of an
absorption term:
u— Au) +Gu) =p  inQ,
u=0 on 90 x (0,T), (1.5)
u(0) = ug in Q.

For p = 2, A(u) = Au and G(u) = |u|7"tu (¢ > 1), the pionnier results concern the case u = 0 and ug is a
Dirac mass in €2, see [12]: existence holds if and only if ¢ < (N +2)/N. Then optimal results are given in [3],
for any u € Mp(Q) and ug € M;p(2). Here two capacities are involved: the elliptic Bessel capacity Capg,, s
defined, for o > 0,5 > 1 and any Borel set E C RY, by

CapGays(E) = inf{||<p||is(RN) NS LS(RN),go >0 Gou*xp>1onE},

where G,, is the Bessel kernel of order «; and the capacity Caps 1 s defined, for any compact set K C RV*1
by
Cap, ; ((K) = inf {HSDH?/VSZ’I(]RN+1) cp € SRNTY), > 1 on a neighborhood of K} ,

and extended classically to Borel sets, where

lellwz @niny = llLe@aeny + 1@l lLe@any + VOl lLe@roy + D Paw|lLe@yy-
ij=1,2,...,N

In [3], Baras and Pierre proved that there exists a solution if and only if p does not charge the sets of
Capg 4 Ll—capacity zero and ug does not charge the sets of Capg, Ll—capacity Z€ero.
» by g— E’qf

The case where G has an exponential type was initiated by [17], and studied in the framework of Orlicz
spaces in [29, 19], and very recently by [24] in the context of Wolff parabolic potentials.

For p # 2, most of the contributions are relative to the case G(u) = |u|?"tu, pu = 0, with Q bounded, or
) = RY. The case where v is a Dirac mass in Q was studied in [18, 20] when p > 2, and [13] when p < 2.
Existence and uniqueness hold in the subcritical case

p
q<pc:=p 1+N. (1.6)
If ¢ > p. and ¢ > 1, there is no solution with an isolated singularity at ¢ = 0. For ¢ < p,, and ug € M} (Q),
the existence was obtained in the sense of distributions in [30], and for any ug € M;(Q) in [8]. The case u €
LY(Q), up = 0 was treated in [14], and with u € LY(Q), uo € L*() in [1], where G can be multivalued. A
larger set of measures, introduced in [16], was studied in [26]. Let M(Q) be the set of Radon measures
on @ that do not charge the sets of zero cg-capacity, where for any Borel set E C Q,

c@(E) = inf(

» {llullw : v e Wiu=xu  ae in@}),

inf
ECU openCQ

and W is the space of functions z € LP((0,T); Wy *(Q) N L?()) such that z; € LP (0, T); W57 (Q)+L*(Q))
imbedded with the norm

1l = 2l Logo,myw » @nzz@) 12l enw om0 @)+ 220 -



It was shown that existence and uniqueness hold for any measure p € Mp(Q) N Mo(Q), called regular, or
diffuse, and p > 1, and for any function G € C(R) such that G(u)u > 0. Up to our knowledge, up to now no
existence results have been obtained for a measure p & Mo (Q).

The case of a source term

- Aw) =Gw)+p  inQ,
u= on 002 x (0,7, (1.7)
u(0) = uo in Q,

with G(u) = w9 with nonnegative v and p,ug was treated in [2] for p = 2, giving optimal conditions for
existence. As in the absorption case the arguments of proofs cannot be extended to general p.

2 Main results

In Section 3, we introduce the notion of renormalized solutions, called R-solutions, of problem (1.1), and we
recall at Theorem 3.4 the stability result that we proved in [7] for the problem without perturbation

Ut — A(u) =p in Q7
u=0 on 99 x (0,7T), (2.1)
u(0) = ug in Q.

under the assumption
p>pri=2N+1)/(N+1),

that we make in all the sequel. This condition ensures that the functions u and |Vu| are well defined in
L'(Q). Combined with some approximation properties of the measures, Theorem 3.4 is the key point of our
results.

In Section 4, we first give existence results of subcritical type, valid for any measure u € Mp(Q). Let
G € C(R™T) be a nondecreasing function with values in R™, such that

|G(x,t,r)] < G(Jr|) for a.e. x € Q and any 7 € R, (2.2)

/ G(s)s ' 7Peds < o0, (2.3)
1
where p. is defined at (1.6).

Theorem 2.1 Assume (1.4), (2.2), (2.3). Then, for any p € My(Q) and ug € LY(Q), there exists a
R-solution u of problem
w— AW+ 0w = nQ,
u=0 in 00 x (0,7, (2.4)
u(0) = ug in Q.

Theorem 2.2 Assume (1.4), (2.2), (2.3). There exists ¢ > 0 such that, for any A > 0, any p € M (Q)
and any nonneagtive ug € L'(Q), if A+ pu(Q) + [|uol| L1 () < &, then there exists a nonnegative R-solution u
of problem

ug — Au) = AG(u) + p in Q,

w=0  indQx(0,T), (2.5)

u(0) = ug in Q,



In particular for any if G(u) = |u|?" " u, condition (2.3) is equivalent to the fact that ¢ is subcritical:
0 < ¢ < p¢, where p. is defined at (1.6).

Next we consider the general case, with no subcriticality assumptions, when G is nondecreasing in u, and
G has a power type, or an exponential type. For G(u) = |u|q_1 u for ¢ > p¢, and p # 2, up to now the good
capacities for solving the problem are not known. In the following, we search sufficient conditions on the
measures p and ug ensuring that there exists a solution.To our knowledge, the question of finding necessary
conditions for existence is still an open problem.

In the sequel we give sufficient conditions for existence for measures that have a good behaviour in t,
based on recent results of [9] relative to the elliptic case. We recall the notion of (truncated) Wolff potential:
for any nonnegative measure w € MT(RY) any R > 0, o € RY,

R
Wfp[w] (z9) = / (Tpin(B(SC(),T))) ol (2.6)
0

Any measure w € My(Q) is identified with its extension by 0 to RY. In case of absorption, we obtain the
following:

Theorem 2.3 Let p< N, ¢>p—1, u € Mp(Q), f € LY(Q) and ug € L* (). Assume that
| <w®F, withwe M} (Q),F e L' ((0,T)),F >0. (2.7)

If w does not charge the sets of Capg, g -capacity zero, then there exists a R-solution u of problem
'q+1-—p

ug — A(u) + |u|lu=f+u in Q,
u=0 on I x (0,T), (2.8)
u(0) = ug in Q.

From [3, Proposition 2.3], a measure w € M,({2) does not charge the sets of Capg, _s_-capacity zero
T
if and only if w ® x(o,7) does not charge the sets of Cap, ; . -capacity zero. Therefore, when A(u) = Au
BIP

and p = w ® X(0,1), Uo € LY(Q), we find again the existence result of [3]. Besides, in view of [16, Theorem
2.16], there exists data u € M;(Q) in Theorem 2.3 such that p ¢ My(Q), see Remark 5.7, thus our result
is the first one of existence for non diffuse measure. Otherwise our result can be extended to a more general
function G, see Remark 5.9.

We also consider a source term. Denoting by D = sup, ,cq |* — y| the diameter of Q, we obtain the
following:

Theorem 2.4 Let p < N, ¢ >p— 1. Let p € M} (Q), and nonnegative ug € L>(£2). Assume that
u<w®xorr), withwe MZF(Q)

Then there exist \g and by, depending of N,p,q, A1, Ao, D, such that, if

w(E) < XoCapg, o _(E), VE compact set C RV, and ||uol| () < bo, (2.9)

q+1—p
there exists a nonnegative R-solution u of problem
u— Alu) =ul+p in Q,

u=0 on 002 x (0,T), (2.10)
u(0) = ug in £,



which satisfies, a.e. in Q,
u(e,t) < CWiD[w](x) + 2/uol[ L= (o), (2.11)

where C = C(N,p, A1, As).

In case where G is an exponential, we introduce the notion of maximal fractional operator, defined for
any n >0, R >0, 2o € RN by

MZ,R[W]@UO): sup M

, where h,(r) = inf((—Inr)~"7, (In2)™")).
TE(O,R) TTN*phn(T) 77( ) (( ) ( ) ))

In the case of absorption, we obtain the following:
Theorem 2.5 Letp < N and 7> 0,8 > 1,u € My(Q), f € LY (Q) and ug € L*(Q). Assume that
| <w®F, withwe M (), FeL'Y((0,7)),F >0,

and that one of the following assumptions is satisfied:
(7’) ||F||L°°((O,T)) < 15 and fO’f’ some MO = MO(NapvﬂvTvAlvAQa D)a
p=1
ML p W]l poo (mvy < Mo; (2.12)

1

(ii) there exists Bo > [ such that M}EGD [w] € L=®(RY).
Then there exists a R-solution to the problem
up— A(w) + (" — Dsignu = f+p inQ,

u=0 on 9 x (0,T),
u(0) = ug in Q.

In the case of a source term, we obtain:

Theorem 2.6 Let 7 > 0,l € N and 8 > 1 such that I >p—1. We set

-1
E(s)=¢° —ZS_—', Vs e R. (2.13)

Let n € M (Q), such that
p<w®Xor), withwe M (Q).

Then, there exist by and My depending on N,p, 8,7,1, A1, Aa, D, such that if

(p=1)(B-1)
||Mp,2Dﬂ (W]l oo rvy < Mo, and  |[uol|Le(q) < bo,

the problem
ug — A(u) = E(TuP) + in Q,
u=20 on I x (0,T), (2.14)
u(0) = ug in Q,

admits a nonnegative R-solution u, which satisfies, a.e. in Q, for some C = C(N,p, A1, Aa),

u(z,t) < CWID[w](z) + 2bo. (2.15)



3 Renormalized solutions and stability theorem
Here we recall the definition of renormalized solutions of the problem without perturbation (2.1), given in
[25] for p > p;.

Let M;(Q) be the set of measures p € My(Q) with support on a set of zero cg—capacity7 also called singular.
Let M (Q), Md(Q), MI(Q) be the positive cones of My(Q), Mo(Q), Ms(Q).

Recall that any measure p € Mp(Q) can be written (in a unique way) under the form

[ = pio + pis, Where g € Mo(Q), ps = pd —py,  with pf, u; € MF(Q).

In turn pg € Mo(Q) admits (at least) a decomposition under the form
po=f—divgth,  feL'Q), ge (@)Y, helP((0.T);Wy"(),

see [16]; and we write uo = (f, g,h).

We set Ty (r) = max{min{r, k}, —k}, for any k > 0 and r € R. If u is a measurable function defined and
finite a.e. in Q, such that Ty (u) € LP((0,T); Wy P ()) for any k > 0, there exists a measurable function w
from @Q into RN such that VTj(u) = X|u|<kW, a.e. in @, and for any k& > 0. We define the gradient Vu of u
by w = Vu.

Definition 3.1 Let ug € LY(Q), = po+ps € Myp(Q). A measurable function u is a renormalized solution,
called R-solution of (2.1) if there exists a decompostion (f,g,h) of po such that

U=u—heL0,T; Wy (DNL®(0,T; L' (), Voe[l,m.);  Tu(U)ec LP((0,T); W, P(Q)), Vk>0;

and:

(i) for any S € W2°°(R) such that S' has compact support on R, and S(0) = 0,

— Joo, S(uo)p(0)da — fQ ©S(U)dxdt + fQ S'(U)A(z, t, Vu).Vodzdt
+ Jo S"(U)pA(x,t, Vu). VU dzdt = [, [S'(U)pdadt + [, 9.V(S'(U)p)dwdt,

for any o € LP((0,T); Wol’p(Q)) N L>(Q) such that o, € Lp,((O, T); W’lvp,(Q)) + LY(Q) and o(.,T) = 0;

(ii) for any ¢ € C(Q),

1
lim — / PA(x,t, Vu).Vdedt:/ ddu?,
Q

m—o00 M
{m<U<2m}

1
lim — / qu(x,t,Vu).Vdedt:/qﬁd,u;.
Q

m—o00 M
{—-m>U>—-2m}

In the sequel we consider the problem (1.1) where p € M,(Q), up € L*(£2). We say that u is a R-solution
of problem (1.1) if G(u) € L'(Q) and u is a R-solution of (2.1) with data (u F G(u),uo)-

We recall some properties of R-solutions which we proved in [7, Propositions 2.8,2.10 and Remark 2.9]:



Proposition 3.2 Let u € LY(Q) and ug € LY(Q), and u be the (unique) R-solution of problem (1.1) with
data p and ug. Then

p+N

meas {[u] > k} < C(l[uol|r(@) + [ul(@))~ k7P, VE >0, (3.1)

for some C = C(N,p, A1, A2).

Proposition 3.3 Let {u,} C My(Q), and {uon} C L*(Q), with

sup |, | (Q) < 0o, and sup||ugn||L1 o) < .
n n

Let {un} be a sequence of R-solutions of (1.1) with data tin, = fin,0+ tin,s and g n, relative to a decomposition
(frrs Gns b)) Of fino. Assume that {f,} is bounded in L*(Q), {gn} bounded in (L? (Q))N and {hy,} converges
in LP(0,T; WyP(2)).

Then, up to a subsequence, {un} converges to a function u a.e in Q and in L*(Q) for any s € [1,m.).

Moreover, if {jn} is bounded in L'(Q), then {u,} converges to u in L*(0,T;Wy*(2)) in s € [1,p — NLH)

Our results are based on the stability theorem that we obtained for problem (2.1) in [7], extending the
elliptic result of [15, Theorem 3.4] to the parabolic case. Note that it is valid under more general assumptions
on the operator A, see [7]. Recall that a sequence {u,} C Mp(Q) converges to u € Myp(Q) in the narrow
topology of measures if

tin [ pdun = [ pdu e C@QNLTQ).
Q Q

rims 00
Theorem 3.4 Let p > p1, ug € L*(Q), and
p=f—divg+h+pd —p; € My(Q),
with f € LY(Q),g € (LP (Q))N, h € LP((0,T); Wy *(Q)) and ui, u; € MH(Q). Let ug., € L'(R),
fn = fro = divgn + (hn)t + pn — M € Mp(Q),
with fn € LYQ), gn € (L7 (Q))N, hn, € LP((0,T); Wy (), and pn,n, € M (Q), such that
pn = pr — div p2 + pn.s, T = 1y, — dVI, + s,

with py,my € LNQ), p2,m2 € (L7 (Q)N and pps,nn,s € ME(Q). Assume that

sup || (Q) < oo,

and {uo.n} converges to ug strongly in L*(Q), {fn} converges to f weakly in L'(Q), {gn} converges to g
strongly in (LP (Q))N, {hn} converges to h strongly in LP((0,T); Wo'* (), {pn} converges to u} and {n,}
converges to pi; in the narrow topology of measures; and {p,lz} , {77,11} are bounded in L*(Q), and {p%} , {77,21}
bounded in (LP (Q))N.

Let {u,} be a sequence of R-solutions of
Un,t — A(un) = Hn in @,

Up =0 on 9 x (0,7T),
un(0) = ug pn in Q.



relative to the decomposition (fn + pL — 0k, gn + P2 — 1%, hy) of pino. Let Uy, = upy — hy.

Then up to a subsequence, {u,} converges a.e. in Q to a R-solution u of (2.1), and {U,} converges a.e.
in Q to U = u — h. Moreover, {Vu,},{VU,} converge respectively to Vu,VU a.e. in Q, and {Ty(Uy)}
converge to Ty,(U) strongly in LP((0,T); Wy P(Q)) for any k > 0.

For applying Theorem 3.4, we require some approximation properties of measures, see [7]:

Proposition 3.5 Let = o + ps € M (Q) with po € Mg (Q) and ps € MF(Q).
(i) Then, we can find a decomposition yo = (f,g,h) with f € LY(Q),g € (L” (Q))N,h € LP(0,T; Wy ()
such that

[fllzrq) + HgH(Lp’(Q))N + ||h||LP(07T;W01'p(Q)) + 1s(2) < 2p(Q). (3:2)

(ii) Furthermore, there exists sequences of measures pio,n = (fn,gn,hn) and pisyn such that fn,gn,hn €
C(Q) strongly converge to f,g,h in LY(Q),(L¥ (Q)N and LP(0,T;WyP(Q)) respectively, and js, €
(C(Q))T converges to ps and fun := fio.n + ps,n converges to y in the narrow topology of measures, and
satisfying |pn|(Q) < 1(Q),

fallzr@ + 190l 2oy + 1l oo zawt oy + ben (Q) < 20(Q): (3.3)
In particular we use in the sequel a property of approximation by nondecreasing sequences:

Proposition 3.6 Let i € M} (Q). Let {u,} be a nondecreasing sequence in M (Q) converging to p in
My(Q). Then, there exist fn,f € LYQ), gn,g € (LP (Q))N and hy,h € LP(0,T;WyP(2)), s pts €
MF(Q) such that

p=f—divg+he+ps,  pn=fo—divgn + (hn)i + pn,s,

and {fn},{gn},{hn} strongly converge to f,g,h in L*(Q), (Lp/ Q)N and LP(O,T;WOLP(Q)) respectively,
and {pn,s} converges to us (strongly) in My(Q) and

[fnllzr(@) + ||gn||(LP’(Q))N + ||hn||LP(0,T;W01’p(Q)) + 1in,s(92) < 2u(Q). (3.4)

As a consequence of the above results, we get the following;:

Corollary 3.7 (i) Let ug € L'(Q) and p € My(Q). Then there exists a R-solution u to the problem 2.1
with data (1, ug) such that u satisfies (3.1).

(ii) Furthermore, if vo € LY(Q) and v € My(Q) such that ug < vo and p < v, then one can find R-
solutions u and v to the problem 2.1 with respective data (p,uo) and (w,vg) such that u < v, u satisfies (3.1)
and

pEN
meas {|v| > k} < C(|Jvol|pr) + [V[(Q)) ™™ kP, VEk > 0. (3.5)

Proof. (i) We approximate p by a smooth sequence {u,} defined at Proposition 3.5-(ii) and apply
Proposition 3.2 and Theorem 3.4.

(il) We set wg = vg — ug > 0 and A = w — x> 0. In the same way, we consider a nonnegative, smooth
sequence (A, wo,,) of approximations of (A, wp) defined at Proposition 3.5-(ii). Let v,, be the solution of the
problem with data (A, + i, Wo n + ton). Clearly, u, < v, and (A, + fn, wo n + top) is an approximation
of data (w,wvp) in the sense of Theorem 3.4, then we reach the conclusion. ]



4 Subcritical case

We first consider the subcritical case with absorption. We obtain Theorem 2.1 as a direct consequence of
Theorem 3.4 and Proposition 3.5. We follow the well-known technique introduced in [4] for the elliptic
problem with absorption

—A(u) +Gu) =w inQ, u=0 on 09, (4.1)
where w € M,,(Q),p > 1, and G is nondecreasing and odd, and [;~ G(s)s~(N-DP/(N=P)ds < .

Proof of Theorem 2.1. Let u = po+ps € Mp(Q), with g € Mo(Q), s € M4(Q), and ug € L1(Q). By
Proposition 3.5, we can find f, ;, gn.i, bn.i € C2°(Q) which strongly converge to fi, gi, h; in L1(Q), (Lp/ )N
and LP((0,T); Wol’p(Q)) respectively, for i = 1,2, such that ud = (f1,91,h1), g = (f2, 92, ha), and pin 0, =
(fniirGn.ir hn,i), converge respectively for i = 1,2 to pug, pg in the narrow topology; and we can find
nonnegative i, s ; € C>°(Q),7 = 1,2, converging respectively to uJ, p; in the narrow topology.
Furthermore, if we set

Hn = HUn,0,1 — HUn,0,2 + Hn,s,1 — Mn,s,2,
then |, |(Q) < |p/(Q). Consider a sequence {ug ,} C C°(Q) which strongly converges to ug in L'(£2) and
satisfies ||ug n|l1,0 < ||U0||L1(Q).

Let u,, be a solution of
(un)e = Aun) + G(un) = pn in Q,
Up, =0 on 990 x (0,T),
Un(0) = ug p in Q.

We can choose ¢ = ¢ 1T, (u,) as test function of above problem. Since

/ (Efli(un))tdxdt:/f—:fli(un(T))d:c—/Efli(uoﬁn)dzzf||u01n||L1(Q),
Q Q Q

there holds from (1.2)
/Qg(z,tvun)flTe(un)dxdt < (@) + [fwo,nl L) < |1I(Q) + [luollLr ()-

Letting € — 0, we obtain

[ 166t dodt < 141(@) + ol o

Q

Next we apply the estimate (3.1) of Proposition 3.2 to uy, with initial data ug , and measure data p, —G(uy) €
LY(Q). We get for any s > 0 and any n € N,

p+N

meas {|un| > s} < Ms™P, M = C(|u[(Q) + [[uollzr ) ¥, €= C(N,p, A1, As).

For any L > 1, we set GL(5) = X[L,00)(5)G(5), and |u,[*(s) = inf{a > 0 : meas {|u,| > a} < s}. For any
s > 0, we obtain
G(|un|)dzdt = / Gr(|uy|)dzdt < /OO Gr(Jun|*(s))ds (4.2)
{lun|>L} N ’
Since |G(z,t,un)| < G(Jun|), we deduce that {|G(u,)|} is equi-integrable. Then, from Proposition 3.3, up

to a subsequence, {u,} converges to some function u, a.e. in @, and {G(u,)} converges to G(u) in L'(Q).
Therefore, applying Theorem 3.4, u is a R-solution of (2.4). [ |



Next we study the subcritical case with a source term. We proceed by induction by constructing an
nondecreasing sequence of solutions. Here we meet a difficulty, due to the possible nonuniqueness of the
solutions, that we solve by using Corollary 3.7.

Proof of Theorem 2.2. Let {uy}n>1 be defined by induction as nonnegative R-solutions of

(w)e—A(w) =p  inQ, (Un+1)t — Altnt1) = p+ AG(un)  InQ,
ur=0  on o x(0,T), Une1 =0  on 9N x (0,7),
u1(0) = ug in Q, Un+1(0) = ug in Q,

From Corollary 3.7 we can assume that {u,} is nondecreasing and satisfies, for any s > 0 and n € N
meas {|u,| > s} < C1K,s7Pe, (4.3)

where C does not depend on s,n, and

p+N

K1 = ([luollLr @) + [1l(@) ¥,
p+N
K1 = (lluollr@) + Q) + AlIG (un)[Lr@) ™,

for any n > 1. Take € = A + |u|(Q) + [|uo||£1 (@) < 1. Denoting by C; some constants independent on n, ¢,
there holds Ky < Cse, and for n > 1,

I+%
K1 < Cse(||G(un) 115y +1)-

From (4.2) and (4.3), we find

1G(un)ll 11 q) < |1QIG(2) + / G(up)dzdt < |Q|G(2) + C4Kn/ G (s) s~ 7Peds.
2
{un=>2}]

Thus, K41 < C5€(K711+% +1). Therefore, if ¢ is small enough, { K, } is bounded. Since {u,,} is nondecreasing,

from (4.2) and the relation G(z,t,u,) < G(uy), we deduce that {G(un)} converges. Then by Theorem 3.4,
up to a subsequence, {u,} converges to a R-solution u of (2.5). |

Remark 4.1 Theorems 2.1 and 2.2 are still valid for operators A also depending on t, satisfying conditions
analogous to (1.2), (1.3).

5 General case with absorption terms

In the sequel we combine the results of Theorem 3.4 with delicate techniques introduced in [9] for the elliptic
problem (4.1), for proving Theorems 2.3 and 2.5. In these proofs the use of the elliptic Wolff potential is an
essential tool.

We recall a first result obtained in [9, Corollary 3.4 and Theorem 3.8] for the elliptic problem without
perturbation term, inspired from [27, Theorem 2.1]:

Theorem 5.1 Let 1 < p < N, Q be a bounded domain of RY and w € My(Q) with compact support in €.
Suppose that u, is a solution of problem

—A(up) = pn *w in Q,
Uy =0 on 012,
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where {p,} is a sequence of mollifiers in RY. Then, up to subsequence, u, converges a.e in Q to a renor-
malized solution u of

—Au) =w in §,
u=20 on 012,

in the elliptic sense of [15], satisfying
—HW%g[wf] <u< KW%g[er] (5.1)
where K is a constant which only depends of N,p, A1, As.
Next we give a general result for the parabolic problem (1.5) with absorption:

Theorem 5.2 Let p < N, and assume that s — G(x,t,s) is nondecreasing and odd, for a.e. (x,t) in Q.
Let p1, pa € MF(Q) such that there exist {w,} C M (Q) and nondecreasing sequences {p1n},{pi2,n} in
M;(Q) with compact support in Q, converging to w1, e, respectively in the narrow topology, and satisfying

[i1ns 2 < wn ® X017y, and  G((n+kWT2 [wn])) € L'(Q),

where the constant k is given at Theorem 5.1. Let ug € LY(2), and p = p1 — .

Then there exists a R-solution u of problem (1.5). Moreover if ug € L*(Q), and w, < v for any n € N,
for some v € M (), then a.e. in Q,

|u(z, )| < KWED 3] (2) + [Juol | () (5-2)
For proving this result, we need two Lemmas:

Lemma 5.3 Let G satisfy the assumptions of Theorem 5.2 and G € L>®(Q x R). For i = 1,2, let up; €
L>(Q) be nonnegative, and A\; = \j o+ Ais € MJ(Q) with compact support in Q, v € M;(Q) with compact
support in 0 such that \i < v ® x(o,1). Let \io = (fi,gi, hi) be a decomposition of \io into functions with
compact support in Q.

Then, there exist R-solutions u,ui,us, to problems

ur — A(u) + G(u) = A\ — Ao in @,
u=0 on I x (0,7T), (5.3)
u(0) = uo,1 — uo,2, in £,

(ui)t - A(uz) + g(uz) = )\1 m Q,
u; =0 on I x (0,T), (5.4)
UZ(O) = UO,i; mn Q,

relative to decompositions (fi,n — fon — G(Un), g1.n — G2,m, P10 — han), (fin — G(Win)s Gin, Rin), sSuch that
a.e. in Q,

—[[uo2llL=(@) = #Wip 1] (2) < —ua(@.t) < (@, t) S wi(,t) < kW] (@) + [[uoall=@),  (5.5)

and

/Q G(w)|dwdt < > (\(@Q) + [luollLr(e)  and /Qg(uz')dfﬂdt <N(Q) +|uoillLr), i=1,2. (5.6)

i=1,2
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Furthermore, assume that H, K have the same properties as G, and H(z,t,s) < G(x,t,s) < K(z,t,s) for any

s € (0,4+00) and a.e. in Q. Then, one can find solutions u;(H),u;(K), corresponding to H,K with data A;,
such that w;(H) > u; > u;(K), i =1,2.

Assume that w;,0; have the same properties as N; and w; < N\ < 0;, ugi1,u042 € L®T(Q), w2 <
w0, < ugi1. Then one can find solutions u;(w;),u;(0;), corresponding to (wi,uo.i2), (05, %0,i,1), such that
wi(wi, vo,i,2) < ui < ui(0i,u0,4,1)-

Proof. Let {1}, {®2..} be sequences of mollifiers in R and RY, and ¢,, = ©1 npa.n. Set v, = pan *7,
and for ¢ = 1,2, ug,in = Y2,n * Uo,i,

)\i,n = Pn * Ai = fi,n - div(gi,n) + (hi,n)t + )\i,s,na
where fi,n = ©n * fia Ji;n = Pn * Gi, hi,n = Pn * hi; )\i,s,n = Pn * )\i,s; and
)\n = )\1,71 - )\2,71 = fn - dlv(gn) + (hn)t + )\s,na

where f,, = fin — fon, 9n = 910 — 92, hn = Rin — han, Asn = Asn — A2,s,n- Then for n large enough,
Ay A2y An € C(Q), o € C°(€2). Thus there exist unique solutions wy,, u; n, Vin, @ = 1,2, of problems

(Un>t - A(Un) + g(un) = Al,n — Agyn in Q,
up, =0 on 092 x (0,7T),
Un(0) = up1,n — Uo,2,n in Q,

(ui,n)t - A(Ui,n) + g(ul,n) — )\i,n in Q;
Ui =0 on 09 x (0,7,

ul7n(0) = U0,i,n n Q,

—A(wp) =7, in Q, wp, =0 on 99,

such that
o2l () = Wn (@) € —tnn(,8) < (@) < Ut n(,8) < wa (@) + [0l o)y e in Q.

Otherwise, as in the Proof of Theorem 2.1, (i), there holds

/ G (un)|dxdt < Z (Xi(Q) + lJuoinllLr(y) , and /g(ui,n>dzdt <N(Q) + [|uosinllLiey, i=1,2.
Q Q

i=1,2

From Proposition 3.3, up to a common subsequence, {uy, U1 5, Uz} converge to some (u,u1,uz), a.e. in Q.
Since G is bounded, in particular, {G(u,)} converges to G(u) and {G(u;,)} converges to G(u;) in L*(Q).
Thus, (5.6) is satisfied. Moreover {\; , — G(U;in), fiin — G(Win)s Gin, Pin, Aiosn, Uo,in} IS an approximation
of (Ai —G(w;), fi —G(ws), g, hiy Mijs, o), and {An — G(un), fr — G(Un), Gn, An, As.ns U0,1,n — Uo,2,n} IS a0 ap-
proximation of (A1 — A2 — G(u), f — G(u), g, h, As, w01 — up,2), in the sense of Theorem 3.4. Thus, we can
find (different) subsequences converging a.e. to u, uy, uz, R-solutions of (5.3) and (5.4). Furthermore, from
Theorem 5.1, up to a subsequence, {w,} converges a.e. in @) to a renormalized solution of

—A(w) =+ in Q, w=0 ondQ,

such that w < kWL [7], a.e. in Q. Hence, we get the inequality (5.5). The other conclusions follow in the
same way. [
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Lemma 5.4 Let G satisfy the assumptions of Theorem 5.2. For i = 1,2, let ug,; € L*(2) be nonnegative,
A € M;(Q) with compact support in Q, and v € M;(Q) with compact support in ), such that

X <y@xor), nd G((|[uoillL=(o) +rWTH ) € LY(Q). (5.7)
Let \i.o = (fi, i, hi) be a decomposition of Ao into functions with compact support in Q.
Then, there exist R-solutions u,uy,us of the problems (5.8) and (5.4), respectively relative to the decom-
positions (f1 — f2 — G(u), g1 — g2, h1 — h2), (fi — G(wi), 9, hi), satifying (5.5) and (5.6).

Moreover, assume that w;, 0; have the same properties as A; andw; < A; < 0;, ug i1, up,i2 € L=(Q), 0 <
ugi2 < ug; < upi1. Then, one can find solutions w;(ws, uo.4,2), wi(0i,u0.4,1), corresponding with (w;, o4 2),
(03, u0,i,1), such that u;(w;, wo,i,2) < ui < wi(s,uo4,1)-

Proof. From Lemma 5.3 there exist R-solutions wu,, u;, to problems

(un)t - A(un) + Tn(g(un)) =1 — A2 in Q,
U, =0 on 99 x (0,7,
un(0) = uo,1 — uo,2 in Q,

(win)e — A(uin) + Tn(G(uin)) = Ni n Q,

Ui =0 on 002 x (0,T),

Ui,n(O) = U0,3, in Q,
relative to the decompositions (f1 — fo — T,(G(un)), 91 — g2, h1 — h2), (fi = Tn(G(uin)), gi, hi); and they
satisfy, a.e. in @,

—[|uo2l| Lo () — HW%? ] (z) < —ugn(z,t) < up(z,t) <upn(z,t) < HW%?V(ZE) +uoallz=@), (5.8)

/Q T (G (un)) |dedt < Z (N (@) + [|uo,illL1(e)), and /QTn (G(uin)) dzdt < \i(Q) + |[uo,ill L1 (0)-

i=1,2

As in Lemma 5.3, up to a common subsequence, {uy, U1 n, U2 n} converges a.e. in @ to {u,uy, us} for which
(5.5) is satisfied a.e. in Q. From (5.7), (5.8) and the dominated convergence Theorem, we deduce that
{T.(G(uy))} converges to G(u) and {T},(G(u;i,))} converges to G(u;) in L*(Q). Thus, from Theorem 3.4,
u and u; are respective R-solutions of (5.3) and (5.4) relative to the decompositions (f; — fo — G(u), g1 —
92, h1 —h2), (fi —G(us), gi, hsi), and (5.5) and (5.6) hold. The last statement follows from the same assertion
in Lemma 5.3. |

Proof of Theorem 5.2. By Proposition 3.6, for i = 1,2, there exist f; ., f; € L'(Q), gin, gi € (L7 (Q))N
and hi p, hi € LP((0,T); Wy P(Q)), fin.s, fti.s € MT(Q) such that

pi = fi —div gi + (hi)e + fis, Win = fin — diV Gin + (Rin)t + Bin,s

and {fin},{gin}, {hin} strongly converge to fi, gi, hi in LY(Q), (L¥ (Q))N and LP((0,T); Wy (R2)) respec-
tively, and {pin}, {tin,s} converge to u;, pi s (strongly) in M;y(Q), and

fimllzr @) + [19inll Lo @) + 1hinll oo,y wiw ) + Hin.s() < 20(Q).
By Lemma 5.4, there exist R-solutions u,,, u;, to problems
(Un)t - A(Un) + g(un) = M1n — H2.mn in Qa

Uy, =0 on 00 x (0,T),
un(0) = T (up) in €,
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(Ui,n)t - A(Ui,n) + g(ui,n) = Min in Qa
Uip =10 on 02 x (0,7,
win(0) = To(ug)  in 9,

for i = 1, 2, relative to the decompositions (f1.n— fo.n—G(Un), g1.n—92,n, F1.n—h2.n)s (fin—=GWin), Gin, Pin)s
such that {u;,} is nonnegative and nondecreasing, and —us , < up < u1,; and

/Ig(un)ldwdt,/ G(uin)dedt < pi(Q) + p2(Q) + [luollL1(0)- (5.9)
Q Q

As in the proof of Lemma 5.4, up to a common subsequence {uy, u1 n, U2 n} converge a.e. in Q to {u, w1, us}.
Since {G(u; )} is nondecreasing, and nonnegative, from the monotone convergence Theorem and (5.9), we
obtain that {G(u;,)} converges to G(u;) in L'(Q), i = 1,2. Finally, {G(u,)} converges to G(u) in L'(Q),
since |G (un)| < G(u1,n) + G(uz,n). Thus, we can see that

{Ml,n - MQ,TI - g(un)v fl,n - f2,n - g(un)v gl,n - g2,n7 hl,n - h?,ny Ml,s,n - ,UQ,S,n; Tn(uO)}

is an approximation of (1 — p2 —G(u), f1 — fo—G(u), g1 — g2, h1 — ha, pi1,s — H2,s, o), in the sense of Theorem
3.4. Therefore, u is a R-solution of (1.1), and (5.2) holds if ug € L*°(Q2) and w,, < for any n € N and some
v € MF(RQ). [

As a consequence of Theorem 5.2, we get a result for problem (2.1), used in Section 6:

Corollary 5.5 Let ug € L®(2), and p € My(Q) such that |p| < w ® x(o,) for some w € M (). Then
there exist a R-solution u of (2.1), such that

|u(z,t)| < ang[w](z) + [|uol| Lo (), for a.e. (z,t) € Q, (5.10)

where K is defined at Theorem 5.1.

Proof. Let {¢,} be a nonnegative, nondecreasing sequence in C2°(Q) which converges to 1, a.e. in Q.
Since {¢nput}, {dnpn~} are nondecreasing sequences, the result follows from Theorem 5.2. ]

5.1 The power case

First recall some results relative to the elliptic case for the model problem
—Apu+ufu=w inQ,  wu=0 ondQ, (5.11)

with w € Mp(Q),g >p—1>0.
For p = 2, it is shown in [2] that (5.11) admits a solution if and only if w does not charge the sets of
Bessel Capg, _a_-capacity zero. For p # 2, existence holds for any measure w € My(£2) in the subcritical
7 E
case

q<pe:=N(p—-1)/(N—p) (5.12)

from [4]. Some necessary conditions for existence have been given in [5, 6]. From [9, Theorem 1.1], a

sufficient condition for existence is that w does not charge the sets of CapGp g —capacity zero, and it can
’q+1-p

be conjectured that this condition is also necessary.

Next we prove Theorem 2.3. We use the following result of [9]:
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Proposition 5.6 Let ¢ > p—1 and v € M; ().

If v does not charge the sets of Capg -capacity zero, there exists a nondecreasing sequence {v,} C
P

q

q+1—p
M (Q) with compact support in Q which converges to v strongly in My(2) and such that Wit [v,] € LI(RY),
for anyn € N and R > 0.

Proof of Theorem 2.3. Let f € LY(Q), up € L'(R2), and p € My(Q) such that |u| < w ® F, where
F € L'((0,T)) and w does not charge the sets of Capg , -capacity zero. From Proposition 5.6, there

Prgti-p
exists a nondecreasing sequence {w,} C MZF(Q) with compact support in €2 which converges to w, strongly

in My(Q), such that W3 [w,] € LY(RY). We can write

frp=m—pe, m=f"+p"  pa=f "+, (5.13)

and pT, p” <w® F. We set
1 1 1
Qn={(x,t) e QA x (=, T — =) :d(z,00) > -}, Fr=Th(x(1r-1)F), (5.14)
n n n ni T
MHin = Tn(XQn,f+) + inf{ﬂ—i_awn ® Fn}a 20 = Tn(XQn,f_) + inf{:u_awn ® Fn} (515)
Then {u1,n},{#2,n} are nondecreasing sequences with compact support in @, and

H1ns H2,n < Wn @ X(0,T)> with @, = n(XQ + Wn);

and (n +kWiD[@,])? € L'(Q). Besides, w, ® F, converges to w ® F' strongly in My(Q). Indeed we easily
check that

llwn @ Fr = w @ Fllam,(@) < Fnllro,mllwn = wllamy@) + llwllag @)1 Fn = Fllro,my)
Observe that for any measures v,0,n1 € My(Q), there holds
[inf{v, 8} —inf{v,n}| <10 —n|,

hence {p1 0}, {p2.n} converge to pi, u2 respectively in My(@Q). Therefore, the result follows from Theorem
5.2. [ |

Remark 5.7 From Theorem 2.3, we deduce the existence for any measure w € My(Q2) for p < pe, whre pe
is defined at (5.12), since p. is the critical exponent of the elliptic problem (5.11). Note that p. > p. since
p > p1. Let Mo (§2) be the set of Radon measures w on that do not charge the sets of zero cg—capacity,
where, for any compact set K C 2,

cg(K) = inf{/ [VolPde : ¢ > xk,p € C°(Q)}.
Q

From [16, Theorem 2.16], for any F € L*((0,T)) with fOT F(t)dt # 0, and w € Mp(Q),
wEMpe() <= wF € My(Q).

If ¢ > pe, there exist measures w € /\/l;r(Q) which do not charge the sets of Capg -capacity zero, such
PrgFi—p

that w & Mo (). As a consequence, Theorem 2.3 shows the existence for some measures u & Mo(Q).
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Remark 5.8 Let G : QxR — R be a Caratheodory function such that the map s — G(x,t, s) is nondecreasing
and odd, for a.e. (z,t) in Q. Let p € My(Q), f € LYHQ),uo € L*(R) and w € M () such that (2.7) holds.

If w({z : WiD[w](z) = 00}) = 0, then, (1.5) has a R-solution with data (f + i, uo). The proof is similar
to the one of Theorem 2.3, after replacing wn by Xwzp ., <nw- Note that w({z : WiDlw](z) = oo}) = 0 if
and only if w € Mo(), see [21].

Remark 5.9 As in [9], from Theorem 5.2, we can extend Theorem 2.3 given for G(u) = |u|' " u, to the
case of a function G(x,t,.), odd for a.e. (x,t) € Q, such that

G2, u)| < G(Jul), /OO Gls)s~01ds < oo,
1

where G is a nondecreasing continuous, under the condition that w does not charge the sets of zero Capg
Prgri—p-’

capacity, where for any Borel set E C RV,

CapGP,qﬂg,p,l(E) = inf{||<,0||Lq_ﬂqjﬁ,1(RN) cp e LT L (RY), Gp*x¢ > XE}

where La=s71' (RN is the Lorentz space of order (q/(q —p+ 1),1).

5.2 The exponential case

Theorem 2.5 extends the elliptic result of [9, Theorem 1.2] to the parabolic case. For the proof, we use the
following property of [9, Theorem 2.4]:

Proposition 5.10 Suppose 1 < p < N. Let v € M (), B > 1, and do = ((128)"1)’pIn2. There exists
C =C(N,p,B,D) such that, for any § € (0,do),

(WiZlv])?

C
/Qexp(é == ——)dz < 55
| |Mpf32D V| |Lp;ol(RN)

Proof of Theorem 2.5. Let @), be defined at (5.14), and w,, = wxq,,, where Q,, = {x € Q : d(z,0Q) >
1/n}. We still consider gy, pi2, Fi, 1,0, 2,0 as in (5.13), (5.15).

Case (i): Assume that ||F||Le(0,r)) < 1 and (2.12) holds. We have ji1 n, pto,n < nxqo +w. For any € > 0,
there exists ¢. = c.(¢, N, p, 8, k,D) > 0 such that

Bp.
(n+ HW%g[TLXQ +w))? <eni T+ (14 E)nﬁ(ng[w])ﬁ

a.e. in . Thus,

exp (T(TL + HW%g[nXQ + w])B) < exp (Tcgn%) exp (T(l + E)HB(ng [w])B) .

If (2.12) holds with M, = (50/Tfiﬁ)(p71)/ﬁ then we can chose € such that
BIM - []| 7T
T(1+e)k ||Mp,2D[y]||zw(RN) <dg.
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From Proposition 5.10, we get exp(7(1 + €)s* W32 [w])?) € L*(Q), which implies exp(r(n + kP W3D[nxq +
w])?) € LY(Q) for all n. We conclude from Theorem 5.2.

Case (ii): Assume that there exists € > 0 such that M;’?;;)/(ﬁﬂ)/[w] € L>=(RY). Now we use the inequality

M1y 2. < n(xo +w). For any € > 0 and any n € N there exists c. ,, > 0 such that
(n+ kWD In(xa +w))’ < con + (WD W)™

Thus, from Proposition 5.10, we obtain that exp(r(n + £ WiD[n(xq +w)])?) € L(Q) for any n € N. We
conclude from Theorem 5.2. ]

6 General case with source term

The results of this Section are based on Corollary 5.5 and elliptic techniques of Wolff potential used in [27],
[28] and [22, Theorem 2.5].

6.1 The power case
Recall some results of [27], [28] for the nonnegative solutions of equation
—Apu=ul4+w inQ, u=0 on 0. (6.1)

It was proved that if w(E) < CCapg (E),for any compact of RY, with C' small enough, problem (6.1)
Prgi=

D
has at least a solution, and conversely if there exists a solution, and w has a compact support, then there
exists a constant C” such that

w(E) < C'Capg , (E), for any compact set E of RY.

For proving Theorem 2.4 we use the following property of Wolff potentials, shown in [27]:
Theorem 6.1 Let g >p—1,0<p< N, w € M, (Q). If for some X > 0,

w(E) < XACapg (E) for any compact set E C RY, (6.2)

q

'q+1—p

then (W3D[w])? € L'(Q), and there exists M = M(N, p,q, diam(Q)) such that, a.e. in €,
g—p+1
WD [(WiD[w])?] < MAG-D? WD [w] < occ. (6.3)
We deduce the following:

Lemma 6.2 Let w € M:(Q), and b >0 and K > 0. Suppose that {tum}m>1 is a sequence of nonnegative
functions in Q that satisfies

up < KW%g[w] + b,
um+1§Kng[ufn+w]+b VYm > 1.

Assume that w satisfies (6.2) for some A > 0. Then there exist Ao and by, depending on N,p,q, K,D, such
that, if X\ < Xo and b < by, then WiD[w] € LY(Q) and for any m > 1,

U < 28, KW3PL] +2b, B, = max(1,371). (6.4)
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Proof. Clearly, (6.4) holds for m = 1. Now, assume that it holds at the order m. Then
ut, < 2071 (26,)TKI(WR L)) + 2071 (25)7,
Using (6.3) we get
i1 < KWED (207128, KAWED ) + 2971 (20)7 + ] + b
< B, K (MWD [(WEP))] + W3R [(20)"] + WEP[w]) +b
g—p+1
< BpK (AMAC? + 1)WEDlw] + B, KW [(20)"] + b
g—p+1 q
= Bp K (ALMAG=D? + )W Tlw] + A7 +b,
where M is as in (6.3) and

A1 _ (2q71(2ﬂp)qKq)l/(p_1) , AQ _ ﬂpKQQ/(p71)|B1|1/(p71) (p/)fl(QD)p/.

Thus, (6.4) holds for m = n + 1 if we prove that
q—p+1 q
A MN@E-D% <1 and Asbr—1 < b,
which is equivalent to
p—1)2 __p—1_
A< (A M) ¢ and b< A, T
Therefore, we obtain the result with Ag = (A; M)~@=1*/(a=p+1) and py = 45 @~/ a=pD), [

Proof of Theorem 2.4. From Corollary 3.7 and 5.5, we can construct a sequence of nonnegative
nondecreasing R-solutions {uy, }m>1, defined in the following way: uq is a R-solution of (2.1), and w11 is
a nonnegative R-solution of

(umt1)e = A(ums1) = ul, +p - inQ,
Umt1 =0 on 002 x (0,7,
Um+1(0) = ug in Q.

Setting m = sup,c (o, 1) Um(t) for all m > 1, there holds

W < kWD W]+ [[uol| L (g,
Uma1 < KW%g[ﬂgn +w]+ ||U0||LOC(Q) VYm > 1.
From Lemma 6.2, we can find A\g = A\o(V,p,q, D) and by = bo(N, p, g, D) such that if (2.9) is satisfied with

Ao and bg; then
Uy < Uy < Qﬂanfg[w] + 2|uo|| Lo () Vm > 1. (6.5)

Thus {u,,} converges a.e. in ) and in L9(Q) to some function u, for which (2.11) is satisfied in Q with
¢ = 2f,k. Finally, one can apply Theorem 3.4 to the sequence of measures {u%, + 11} , and obtain that w is
a R-solution of (2.10). n
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6.2 The exponential case

We end this Section by proving Theorem 2.6. We first recall an approximation property, which is a conse-
quence of [22, Theorem 2.5]:

Theorem 6.3 Let 7 >0,0>0, K >0, €N and > 1 such that I >p—1. Let £ be defined by (2.13).
Let {vy,} be a sequence of nonnegative functions in 0 such that, for some K > 0,

Umt1 < KW%g[E(Tvﬁb) +ul+b, Ym>1.

Then, there exist by and My, depending on N,p, 5, 7,1, K, D, such that if b < by and

(p=1)(B=1)
B

IM,, 55" [ulllsory < Mo, (6.6)
then, setting c, = 2max(1,2%),
exp(r(Ke, WD (1] + 2b0)”) € L'(%),
Um < KepWED ] + 2bo,  ¥m > 1. (6.7)
Proof of Theorem 2.6. From Corollary 3.7 and 5.5 we can construct a sequence of nonnegative

nondecreasing R-solutions {wy, }m>1 defined in the following way: uq is a R-solution of problem (2.1), and
by induction, w41 is a R-solution of

(m+1)e = Alum1) = E(Tup,) +p - inQ,
Umt1 =0 on 99 x (0,7T), (6.8)
Um+1(0) = ug in Q.

And, setting Uy, = sup;¢(o,7) um(t), there holds

u < HWﬁg[W] + ||u0||oo,§2;

U1 < nWﬁ?[ﬁ(Tﬂ,ﬁn) + w] + [|uol| o ()5 Vm > 1.

Thus, from Theorem 6.3, there exist by € (0,1] and My > 0, depending on N, p, 8, 7,1, D, such that, if (6.6)
holds, then (6.7) is satisfied with v,, = U,,. As a consequence, u,, is well defined. Thus, {u,,} converges
a.e. in Q to some function u, for which (2.15) is satisfied in €. Furthermore, {€(Tu2,)} converges to &(Tu?)
in L}(Q). Finally, one can apply Theorem 3.4 to the sequence of measures {5 (Tul)) + ;L} , and obtain that
u is a R-solution of (2.14). ]

Remark 6.4 In [22, Theorem 1.1], when A = A,, we showed that there exist M = M(N,p,3,7,1, D) such

that 1
f (P*l)ﬂ(ﬂfl)
IIM,, 55" [l y) < M,

then the problem
—Apv = E(TvP) +w in Q,
v=20 on 0f2.

has a renormalized solution in the sense of [15]. We claim the following:
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Let A=A, and up = 0. If (6.9) has a renormalized solution v and w € M (), then the problem (2.14)

in Theorem 2.6 admits a R-solution u, satisfying u(z,t) < v(x) a.e in Q.

Indeed, since w € Mg (), there holds u € My(Q). Otherwise, for any measure n € Moy(Q) the problem

u — Apu =1 in Q,
u=0 on 002 x (0,T),
u =0 in €,

has a (unique) R-solution, and the comparison principle is valid, see [26]. Thus, as in the proof of Theorem
2.6, we can construct a unique sequence of nonnegative nondecreasing R-solutions {tum}m>1, defined in the
following way: uy is a R-solution of problem (2.1) and satisfies u1 < v a.e in Q ; and by induction, U1
is a R-solution of (6.8) and satisfies umi1 < v a.e in Q. Then {E(Tul)} converges to E(Tu?) in LY(Q).
Finally, v :=1lim, e Uy, s a solution of (2.14). Clearly, this claim is also valid for power source term.
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