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Evolution equations of p-Laplace type with absorption or source terms and measure data

Let Ω be a bounded domain of R N , and Q = Ω × (0, T ). We consider problems of the type

where ∆p is the p-Laplacian, µ is a bounded Radon measure, u0 ∈ L 1 (Ω), and ±G(u) is an absorption or a source term. In the model case G(u) = ± |u| q-1 u (q > p -1), or G has an exponential type. We prove the existence of renormalized solutions for any measure µ in the subcritical case, and give sufficient conditions for existence in the general case, when µ is good in time and satisfies suitable capacitary conditions.

Introduction

Let Ω be a bounded domain of R N , and Q = Ω × (0, T ), T > 0. We consider the quasilinear parabolic problem

   u t -A(u) ± G(u) = µ in Q, u = 0 on ∂Ω × (0, T ), u(0) = u 0 in Ω, (1.1) 
where µ is a bounded Radon measure on Q, u 0 ∈ L 1 (Ω). We assume that A(u) =div(A(x, ∇u)) and A is a Carathéodory function on Ω × R N , such that, for a.e. x ∈ Ω, and any ξ,

ζ ∈ R N , A(x, ξ).ξ ≥ Λ 1 |ξ| p , |A(x, ξ)| ≤ Λ 2 |ξ| p-1 , Λ 1 , Λ 2 > 0, (1.2) 
(A(x, ξ) -A(x, ζ)). (ξ -ζ) > 0 if ξ = ζ, (1.3) 
for p > 1; and G(u) = G(x, t, u), where (x, t, r) → G(x, t, r) is a Caratheodory function on Q × R with G(x, t, r)r ≥ 0, for a.e.(x, t) ∈ Q and any r ∈ R.

(1.4)

The model problem is relative to the p-Laplace operator: A(u) = ∆ p u = div(|∇u| p-2 ∇u), and G has a power-type G(u) = ± |u| q-1 u (q > p -1), or an exponential type. Our aim is to give sufficient conditions on For p = 2, most of the contributions are relative to the case G(u) = |u| q-1 u, µ = 0, with Ω bounded, or Ω = R N . The case where u 0 is a Dirac mass in Ω was studied in [START_REF] Gmira | On quasilinear parabolic equations involving measure data[END_REF][START_REF] Kamin | Singular solutions of some nonlinear parabolic equations[END_REF] when p > 2, and [START_REF] Chen | Singular solutions of parabolic p-Laplacian with absorption[END_REF] when p < 2. Existence and uniqueness hold in the subcritical case q < p c := p -1 + p N .

(1.6)

If q ≥ p c and q > 1, there is no solution with an isolated singularity at t = 0. For q < p c , and u 0 ∈ M + b (Ω), the existence was obtained in the sense of distributions in [START_REF] Zhao | Source-type solutions of a quasilinear degenerate parabolic equation with absorption[END_REF], and for any u 0 ∈ M b (Ω) in [START_REF] Bidaut-Véron | Initial trace of solutions odf some quasilinear parabolic equations with absorption[END_REF]. The case µ ∈ L 1 (Q), u 0 = 0 was treated in [START_REF] Dall'aglio | Existence results for some nonlinear parabolic equations with nonregular data[END_REF], and with µ ∈ L 1 (Q), u 0 ∈ L 1 (Ω) in [START_REF] Andreianov | On uniqueness and existence of entropy solutions for a nonlinear parabolic problem with absorption[END_REF], where G can be multivalued. A larger set of measures, introduced in [START_REF] Droniou | Parabolic capacity and soft measures for nonlinear equations[END_REF], was studied in [START_REF] Petitta | Diffuse measures and nonlinear parabolic equations[END_REF]. Let M 0 (Q) be the set of Radon measures µ on Q that do not charge the sets of zero c Q p -capacity, where for any Borel set

E ⊂ Q, c Q p (E) = inf( inf E⊂U open⊂Q {||u|| W : u ∈ W, u ≥ χ U a.e. in Q}),
and W is the space of functions z ∈ L p ((0, T ); W 1,p 0 (Ω) ∩ L 2 (Ω)) such that z t ∈ L p ′ ((0, T ); W -1,p ′ (Ω)+L 2 (Ω)) imbedded with the norm z W = z L p ((0,T );W 1,p 0 (Ω)∩L 2 (Ω)) + z t t∈L p ′ ((0,T );W -1,p ′ (Ω)+L 2 (Ω)) .

It was shown that existence and uniqueness hold for any measure µ ∈ M b (Q) ∩ M 0 (Q), called regular, or diffuse, and p > 1, and for any function G ∈ C(R) such that G(u)u ≥ 0. Up to our knowledge, up to now no existence results have been obtained for a measure µ ∈ M 0 (Q).

The case of a source term

   u t -A(u) = G(u) + µ in Q, u = 0 on ∂Ω × (0, T ), u(0) = u 0 in Ω, (1.7) 
with G(u) = u q with nonnegative u and µ, u 0 was treated in [START_REF] Baras | Critère d'existence de solutions positives pour des équations semi-linéaires non monotones[END_REF] for p = 2, giving optimal conditions for existence. As in the absorption case the arguments of proofs cannot be extended to general p.

Main results

In Section 3, we introduce the notion of renormalized solutions, called R-solutions, of problem (1.1), and we recall at Theorem 3.4 the stability result that we proved in [START_REF] Bidaut-Véron | Stability properties for quasilinear parabolic equations with measure data[END_REF] for the problem without perturbation

   u t -A(u) = µ in Q, u = 0 on ∂Ω × (0, T ), u(0) = u 0
in Ω.

(2.1) under the assumption p > p 1 := (2N + 1)/(N + 1), that we make in all the sequel. This condition ensures that the functions u and |∇u| are well defined in L 1 (Q). Combined with some approximation properties of the measures, Theorem 3.4 is the key point of our results.

In Section 4, we first give existence results of subcritical type, valid for any measure µ ∈ M b (Q). Let G ∈ C(R + ) be a nondecreasing function with values in R + , such that |G(x, t, r)| ≤ G(|r|) for a.e. x ∈ Ω and any r ∈ R, (2.2)

∞ 1 G(s)s -1-pc ds < ∞, (2.3) 
where p c is defined at (1.6).

Theorem 2.1 Assume (1.4), (2.2), (2.3). Then, for any µ ∈ M b (Q) and

u 0 ∈ L 1 (Ω), there exists a R-solution u of problem    u t -A(u) + G(u) = µ in Q, u = 0 in ∂Ω × (0, T ), u(0) = u 0 in Ω.
(2.4)

Theorem 2.2 Assume (1.4), (2.
2), (2.3). There exists ε > 0 such that, for any λ > 0,

any µ ∈ M + b (Q) and any nonneagtive u 0 ∈ L 1 (Ω), if λ + µ(Q) + ||u 0 || L 1 (Ω) ≤ ε, then there exists a nonnegative R-solution u of problem    u t -A(u) = λG(u) + µ in Q, u = 0 in ∂Ω × (0, T ), u(0) = u 0 in Ω, (2.5) 
In particular for any if G(u) = |u| q-1 u, condition (2.3) is equivalent to the fact that q is subcritical: 0 < q < p c , where p c is defined at (1.6).

Next we consider the general case, with no subcriticality assumptions, when G is nondecreasing in u, and G has a power type, or an exponential type. For G(u) = |u| q-1 u for q ≥ p c , and p = 2, up to now the good capacities for solving the problem are not known. In the following, we search sufficient conditions on the measures µ and u 0 ensuring that there exists a solution.To our knowledge, the question of finding necessary conditions for existence is still an open problem.

In the sequel we give sufficient conditions for existence for measures that have a good behaviour in t, based on recent results of [START_REF] Bidaut-Véron | Quasilinear Emden-Fowler equations with absorption terms and measure data[END_REF] relative to the elliptic case. We recall the notion of (truncated) Wolff potential: for any nonnegative measure

ω ∈ M + (R N ) any R > 0, x 0 ∈ R N , W R 1,p [ω] (x 0 ) = R 0 r p-N ω(B(x 0 , r)) 1 p-1 dr r . (2.6) 
Any measure ω ∈ M b (Ω) is identified with its extension by 0 to R N . In case of absorption, we obtain the following:

Theorem 2.3 Let p < N , q > p -1, µ ∈ M b (Q), f ∈ L 1 (Q) and u 0 ∈ L 1 (Ω). Assume that |µ| ≤ ω ⊗ F, with ω ∈ M + b (Ω), F ∈ L 1 ((0, T )), F ≥ 0. (2.7) 
If ω does not charge the sets of Cap Gp, q q+1-p -capacity zero, then there exists a R-solution

u of problem    u t -A(u) + |u| q-1 u = f + µ in Q, u = 0 on ∂Ω × (0, T ), u(0) = u 0 in Ω. (2.8) 
From [3, Proposition 2.3], a measure ω ∈ M b (Ω) does not charge the sets of Cap G2, q q-1 -capacity zero if and only if ω ⊗ χ (0,T ) does not charge the sets of Cap 2,1, q q-1 -capacity zero. Therefore, when A(u) = ∆u and µ = ω ⊗ χ (0,T ) , u 0 ∈ L 1 (Ω), we find again the existence result of [START_REF] Baras | Problèmes paraboliques semi-linéaires avec données mesures[END_REF]. Besides, in view of [START_REF] Droniou | Parabolic capacity and soft measures for nonlinear equations[END_REF]Theorem 2.16], there exists data µ ∈ M b (Q) in Theorem 2.3 such that µ / ∈ M 0 (Q), see Remark 5.7, thus our result is the first one of existence for non diffuse measure. Otherwise our result can be extended to a more general function G, see Remark 5.9.

We also consider a source term. Denoting by D = sup x,y∈Ω |x -y| the diameter of Ω, we obtain the following:

Theorem 2.4 Let p < N , q > p -1. Let µ ∈ M + b (Q), and nonnegative u 0 ∈ L ∞ (Ω). Assume that µ ≤ ω ⊗ χ (0,T ) , with ω ∈ M + b (Ω).
Then there exist λ 0 and b 0 , depending of N, p, q, Λ 1 , Λ 2 , D, such that, if

ω(E) ≤ λ 0 Cap Gp, q q+1-p (E), ∀E compact set ⊂ R N , and ||u 0 || L ∞ (Ω) ≤ b 0 , (2.9) 
there exists a nonnegative R-solution u of problem

   u t -A(u) = u q + µ in Q, u = 0 on ∂Ω × (0, T ), u(0) = u 0 in Ω, (2.10) which satisfies, a.e. in Q, u(x, t) ≤ CW 2D 1,p [ω](x) + 2||u 0 || L ∞ (Ω) , (2.11) 
where

C = C(N, p, Λ 1 , Λ 2 ).
In case where G is an exponential, we introduce the notion of maximal fractional operator, defined for any η ≥ 0, R > 0,

x 0 ∈ R N by M η p,R [ω](x 0 ) = sup r∈(0,R) ω(B(x 0 , r)) r rN -p h η (r)
, where h η (r) = inf((-ln r) -η , (ln 2) -η )).

In the case of absorption, we obtain the following:

Theorem 2.5 Let p < N and τ > 0, β > 1, µ ∈ M b (Q), f ∈ L 1 (Q) and u 0 ∈ L 1 (Ω). Assume that |µ| ≤ ω ⊗ F, with ω ∈ M + b (Ω), F ∈ L 1 ((0, T )), F ≥ 0,
and that one of the following assumptions is satisfied:

(i) ||F || L ∞ ((0,T )) ≤ 1,
and for some

M 0 = M 0 (N, p, β, τ, Λ 1 , Λ 2 , D), ||M p-1 β ′ p,2D [ω]|| L ∞ (R N ) < M 0 ;
(2.12)

(ii) there exists β 0 > β such that M p-1 β ′ 0 p,2D [ω] ∈ L ∞ (R N ).
Then there exists a R-solution to the problem

   u t -A(u) + (e τ |u| β -1)signu = f + µ in Q, u = 0 on ∂Ω × (0, T ), u(0) = u 0 in Ω.
In the case of a source term, we obtain:

Theorem 2.6 Let τ > 0, l ∈ N and β ≥ 1 such that lβ > p -1. We set

E(s) = e s - l-1 j=0 s j j! , ∀s ∈ R. (2.13) Let µ ∈ M + b (Q), such that µ ≤ ω ⊗ χ (0,T ) , with ω ∈ M + b (Ω).
Then, there exist b 0 and M 0 depending on N, p, β, τ, l, Λ 1 , Λ 2 , D, such that if

||M (p-1)(β-1) β p,2D [ω]|| L ∞ (R N ) ≤ M 0 , and ||u 0 || L ∞ (Ω) ≤ b 0 , the problem    u t -A(u) = E(τ u β ) + µ in Q, u = 0 on ∂Ω × (0, T ), u(0) = u 0 in Ω, (2.14) 
admits a nonnegative R-solution u, which satisfies, a.e. in Q, for some

C = C(N, p, Λ 1 , Λ 2 ), u(x, t) ≤ CW 2D 1,p [ω](x) + 2b 0 . (2.15)
3 Renormalized solutions and stability theorem

Here we recall the definition of renormalized solutions of the problem without perturbation (2.1), given in [START_REF] Petitta | Renormalized solutions of nonlinear parabolic equations with general measure data[END_REF] for p > p 1 .

Let M s (Q) be the set of measures µ ∈ M b (Q) with support on a set of zero c Q p -capacity, also called singular.

Let M + b (Q), M + 0 (Q), M + s (Q) be the positive cones of M b (Q), M 0 (Q), M s (Q).
Recall that any measure µ ∈ M b (Q) can be written (in a unique way) under the form

µ = µ 0 + µ s , where µ 0 ∈ M 0 (Q), µ s = µ + s -µ - s , with µ + s , µ - s ∈ M + s (Q).
In turn µ 0 ∈ M 0 (Q) admits (at least) a decomposition under the form

µ 0 = f -div g + h t , f ∈ L 1 (Q), g ∈ (L p ′ (Q)) N , h ∈ L p ((0, T ); W 1,p 0 (Ω)),
see [START_REF] Droniou | Parabolic capacity and soft measures for nonlinear equations[END_REF]; and we write µ 0 = (f, g, h).

We set T k (r) = max{min{r, k}, -k}, for any k > 0 and r ∈ R. If u is a measurable function defined and finite a.e. in Q, such that T k (u) ∈ L p ((0, T ); W 1,p 0 (Ω)) for any k > 0, there exists a measurable function w from Q into R N such that ∇T k (u) = χ |u|≤k w, a.e. in Q, and for any k > 0. We define the gradient ∇u of u by w = ∇u.

Definition 3.1 Let u 0 ∈ L 1 (Ω), µ = µ 0 +µ s ∈ M b (Q). A measurable function u is a renormalized solution, called R-solution of (2.1) if there exists a decompostion (f, g, h) of µ 0 such that U = u-h ∈ L σ (0, T ; W 1,σ 0 (Ω)∩L ∞ (0, T ; L 1 (Ω)), ∀σ ∈ [1, m c ) ; T k (U ) ∈ L p ((0, T ); W 1,p 0 (Ω)), ∀k > 0;
and:

(i) for any S ∈ W 2,∞ (R) such that S ′ has compact support on R, and S(0) = 0,

-Ω S(u 0 )ϕ(0)dx -Q ϕ t S(U )dxdt + Q S ′ (U )A(x, t, ∇u).∇ϕdxdt + Q S ′′ (U )ϕA(x, t, ∇u).∇U dxdt = Q f S ′ (U )ϕdxdt + Q g.∇(S ′ (U )ϕ)dxdt, for any ϕ ∈ L p ((0, T ); W 1,p 0 (Ω)) ∩ L ∞ (Q) such that ϕ t ∈ L p ′ ((0, T ); W -1,p ′ (Ω)) + L 1 (Q) and ϕ(., T ) = 0; (ii) for any φ ∈ C(Q), lim m→∞ 1 m {m≤U<2m} φA(x, t, ∇u).∇U dxdt = Q φdµ + s , lim m→∞ 1 m {-m≥U>-2m} φA(x, t, ∇u).∇U dxdt = Q φdµ - s .
In the sequel we consider the problem (1.1) where

µ ∈ M b (Q), u 0 ∈ L 1 (Ω). We say that u is a R-solution of problem (1.1) if G(u) ∈ L 1 (Q) and u is a R-solution of (2.1) with data (µ ∓ G(u), u 0 ).
We recall some properties of R-solutions which we proved in [7, Propositions 2.8,2.10 and Remark 2.9]: Proposition 3.2 Let µ ∈ L 1 (Q) and u 0 ∈ L 1 (Ω), and u be the (unique) R-solution of problem (1.1) with data µ and u 0 . Then

meas {|u| > k} ≤ C(||u 0 || L 1 (Ω) + |µ|(Q)) p+N N k -pc , ∀k > 0, (3.1) 
for some

C = C(N, p, Λ 1 , Λ 2 ). Proposition 3.3 Let {µ n } ⊂ M b (Q), and {u 0,n } ⊂ L 1 (Ω), with sup n |µ n | (Q) < ∞, and sup n ||u 0,n || L 1 (Ω) < ∞.
Let {u n } be a sequence of R-solutions of (1.1) with data µ n = µ n,0 +µ n,s and u 0,n , relative to a decomposition

(f n , g n , h n ) of µ n,0 . Assume that {f n } is bounded in L 1 (Q), {g n } bounded in (L p ′ (Q)) N and {h n } converges in L p (0, T ; W 1,p 0 (Ω)). Then, up to a subsequence, {u n } converges to a function u a.e in Q and in L s (Q) for any s ∈ [1, m c ). Moreover, if {µ n } is bounded in L 1 (Q), then {u n } converges to u in L s (0, T ; W 1,s 0 (Ω)) in s ∈ [1, p -N N +1 ).
Our results are based on the stability theorem that we obtained for problem (2.1) in [START_REF] Bidaut-Véron | Stability properties for quasilinear parabolic equations with measure data[END_REF], extending the elliptic result of [START_REF] Maso | Renormalized solutions of elliptic equations with general measure data[END_REF]Theorem 3.4] to the parabolic case. Note that it is valid under more general assumptions on the operator A, see [START_REF] Bidaut-Véron | Stability properties for quasilinear parabolic equations with measure data[END_REF]. Recall that a sequence

{µ n } ⊂ M b (Q) converges to µ ∈ M b (Q) in the narrow topology of measures if lim n→∞ Q ϕdµ n = Q ϕdµ ∀ϕ ∈ C(Q) ∩ L ∞ (Q). Theorem 3.4 Let p > p 1 , u 0 ∈ L 1 (Ω), and 
µ = f -div g + h t + µ + s -µ - s ∈ M b (Q), with f ∈ L 1 (Q), g ∈ (L p ′ (Q)) N , h ∈ L p ((0, T ); W 1,p 0 (Ω)) and µ + s , µ - s ∈ M + s (Q). Let u 0,n ∈ L 1 (Ω), µ n = f n -div g n + (h n ) t + ρ n -η n ∈ M b (Q), with f n ∈ L 1 (Q), g n ∈ (L p ′ (Q)) N , h n ∈ L p ((0, T ); W 1,p 0 (Ω)), and ρ n , η n ∈ M + b (Q), such that ρ n = ρ 1 n -div ρ 2 n + ρ n,s , η n = η 1 n -divη 2 n + η n,s , with ρ 1 n , η 1 n ∈ L 1 (Q), ρ 2 n , η 2 n ∈ (L p ′ (Q)) N and ρ n,s , η n,s ∈ M + s (Q). Assume that sup n |µ n | (Q) < ∞,
and {u 0,n } converges to u 0 strongly in L 1 (Ω), {f n } converges to f weakly in L 1 (Q), {g n } converges to g strongly in (L p ′ (Q)) N , {h n } converges to h strongly in L p ((0, T ); W 1,p 0 (Ω)), {ρ n } converges to µ + s and {η n } converges to µ - s in the narrow topology of measures; and ρ 1 n , η 1 n are bounded in L 1 (Q), and ρ 2 n , η 2 n bounded in (L p ′ (Q)) N . Let {u n } be a sequence of R-solutions of    u n,t -A(u n ) = µ n in Q, u n = 0 on ∂Ω × (0, T ), u n (0) = u 0,n in Ω.
relative to the decomposition

(f n + ρ 1 n -η 1 n , g n + ρ 2 n -η 2 n , h n ) of µ n,0 . Let U n = u n -h n .
Then up to a subsequence, {u n } converges a.e. in Q to a R-solution u of (2.1), and

{U n } converges a.e. in Q to U = u -h. Moreover, {∇u n } , {∇U n } converge respectively to ∇u, ∇U a.e. in Q, and {T k (U n )} converge to T k (U ) strongly in L p ((0, T ); W 1,p 0 (Ω)) for any k > 0.
For applying Theorem 3.4, we require some approximation properties of measures, see [START_REF] Bidaut-Véron | Stability properties for quasilinear parabolic equations with measure data[END_REF]:

Proposition 3.5 Let µ = µ 0 + µ s ∈ M + b (Q) with µ 0 ∈ M + 0 (Q) and µ s ∈ M + s (Q). (i) Then, we can find a decomposition µ 0 = (f, g, h) with f ∈ L 1 (Q), g ∈ (L p ′ (Q)) N , h ∈ L p (0, T ; W 1,p 0 (Ω)) such that ||f || L 1 (Q) + g (L p ′ (Q)) N + ||h|| L p (0,T ;W 1,p 0 (Ω)) + µ s (Ω) ≤ 2µ(Q). (3.2) 
(ii) Furthermore, there exists sequences of measures

µ 0,n = (f n , g n , h n ) and µ s,n such that f n , g n , h n ∈ C ∞ c (Q) strongly converge to f, g, h in L 1 (Q), (L p ′ (Q)) N and L p (0, T ; W 1,p 0 (Ω)) respectively, and µ s,n ∈ (C ∞ c (Q))
+ converges to µ s and µ n := µ 0,n + µ s,n converges to µ in the narrow topology of measures, and satisfying

|µ n |(Q) ≤ µ(Q), ||f n || L 1 (Q) + g n (L p ′ (Q)) N + ||h n || L p (0,T ;W 1,p 0 (Ω)) + µ s,n (Q) ≤ 2µ(Q). (3.3)
In particular we use in the sequel a property of approximation by nondecreasing sequences:

Proposition 3.6 Let µ ∈ M + b (Q). Let {µ n } be a nondecreasing sequence in M + b (Q) converging to µ in M b (Q). Then, there exist f n , f ∈ L 1 (Q), g n , g ∈ (L p ′ (Q)) N and h n , h ∈ L p (0, T ; W 1,p 0 (Ω)), µ n,s , µ s ∈ M + s (Q) such that µ = f -div g + h t + µ s , µ n = f n -div g n + (h n ) t + µ n,s ,
and {f n } , {g n } , {h n } strongly converge to f, g, h in L 1 (Q), (L p ′ (Q)) N and L p (0, T ; W 1,p 0 (Ω)) respectively, and {µ n,s } converges to µ s (strongly) in M b (Q) and

||f n || L 1 (Q) + ||g n || (L p ′ (Q)) N + ||h n || L p (0,T ;W 1,p 0 (Ω)) + µ n,s (Ω) ≤ 2µ(Q). (3.4)
As a consequence of the above results, we get the following:

Corollary 3.7 (i) Let u 0 ∈ L 1 (Ω) and µ ∈ M b (Q).
Then there exists a R-solution u to the problem 2.1 with data (µ, u 0 ) such that u satisfies (3.1).

(ii) Furthermore, if v 0 ∈ L 1 (Ω) and ν ∈ M b (Q) such that u 0 ≤ v 0 and µ ≤ ν, then one can find Rsolutions u and v to the problem 2.1 with respective data (µ, u 0 ) and (ω, v 0 ) such that u ≤ v, u satisfies (3.1) and

meas {|v| > k} ≤ C(||v 0 || L 1 (Ω) + |ν|(Q)) p+N N k -pc , ∀k > 0. (3.5)
Proof. (i) We approximate µ by a smooth sequence {µ n } defined at Proposition 3.5-(ii) and apply Proposition 3.2 and Theorem 3.4.

(ii) We set w 0 = v 0 -u 0 ≥ 0 and λ = ω -µ ≥ 0. In the same way, we consider a nonnegative, smooth sequence (λ n , w 0,n ) of approximations of (λ, w 0 ) defined at Proposition 3.5-(ii). Let v n be the solution of the problem with data (λ n + µ n , w 0,n + u 0,n ). Clearly, u n ≤ v n and (λ n + µ n , w 0,n + u 0,n ) is an approximation of data (ω, v 0 ) in the sense of Theorem 3.4, then we reach the conclusion.

Subcritical case

We first consider the subcritical case with absorption. We obtain Theorem 2.1 as a direct consequence of Theorem 3.4 and Proposition 3.5. We follow the well-known technique introduced in [START_REF] Benilan | An L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations[END_REF] for the elliptic problem with absorption

-A(u) + G(u) = ω in Ω, u = 0 on ∂Ω, (4.1) 
where ω ∈ M b (Ω), p > 1, and G is nondecreasing and odd, and

∞ 1 G(s)s -(N -1)p/(N -p) ds < ∞. Proof of Theorem 2.1. Let µ = µ 0 +µ s ∈ M b (Q), with µ 0 ∈ M 0 (Q), µ s ∈ M s (Q), and u 0 ∈ L 1 (Ω). By Proposition 3.5, we can find f n,i , g n,i , h n,i ∈ C ∞ c (Q) which strongly converge to f i , g i , h i in L 1 (Q), (L p ′ (Q)) N and L p ((0, T ); W 1,p 0 (Ω)) respectively, for i = 1, 2, such that µ + 0 = (f 1 , g 1 , h 1 ), µ - 0 = (f 2 , g 2 , h
2 ), and µ n,0,i = (f n,i , g n,i , h n,i ), converge respectively for i = 1, 2 to µ + 0 , µ - 0 in the narrow topology; and we can find nonnegative µ n,s,i ∈ C ∞ c (Q), i = 1, 2, converging respectively to µ + s , µ - s in the narrow topology. Furthermore, if we set

µ n = µ n,0,1 -µ n,0,2 + µ n,s,1 -µ n,s,2 , then |µ n |(Q) ≤ |µ|(Q). Consider a sequence {u 0,n } ⊂ C ∞ c (Ω) which strongly converges to u 0 in L 1 (Ω) and satisfies ||u 0,n || 1,Ω ≤ ||u 0 || L 1 (Ω) . Let u n be a solution of    (u n ) t -A(u n ) + G(u n ) = µ n in Q, u n = 0 on ∂Ω × (0, T ), u n (0) = u 0,n in Ω. We can choose ϕ = ε -1 T ε (u n ) as test function of above problem. Since Q ε -1 T ε (u n ) t dxdt = Ω ε -1 T ε (u n (T ))dx - Ω ε -1 T ε (u 0,n )dx ≥ -||u 0,n || L 1 (Ω) ,
there holds from (1.2)

Q G(x, t, u n )ε -1 T ε (u n )dxdt ≤ |µ n |(Q) + ||u 0,n || L 1 (Ω) ≤ |µ|(Q) + ||u 0 || L 1 (Ω) .
Letting ε → 0, we obtain

Q |G(x, t, u n )| dxdt ≤ |µ|(Q) + ||u 0 || L 1 (Ω) .
Next we apply the estimate (3.1) of Proposition 3.2 to u n , with initial data u 0,n and measure data µ n -G(u n ) ∈ L 1 (Q). We get for any s > 0 and any n ∈ N,

meas {|u n | ≥ s} ≤ M s -pc , M = C(|µ|(Q) + ||u 0 || L 1 (Ω) ) p+N N , C = C(N, p, Λ 1 , Λ 2 ). For any L > 1, we set G L (s) = χ [L,∞) (s)G(s), and |u n | * (s) = inf{a > 0 : meas {|u n | > a} ≤ s}. For any s ≥ 0, we obtain {|un|≥L} G(|u n |)dxdt = Q G L (|u n |)dxdt ≤ ∞ 0 G L (|u n | * (s))ds (4.2) Since |G(x, t, u n )| ≤ G(|u n |), we deduce that {|G(u n )|} is equi-integrable.
Then, from Proposition 3.3, up to a subsequence, {u n } converges to some function u, a.e. in Q, and

{G(u n )} converges to G(u) in L 1 (Q).
Therefore, applying Theorem 3.4, u is a R-solution of (2.4).

Next we study the subcritical case with a source term. We proceed by induction by constructing an nondecreasing sequence of solutions. Here we meet a difficulty, due to the possible nonuniqueness of the solutions, that we solve by using Corollary 3.7.

Proof of Theorem 2.2. Let {u n } n≥1 be defined by induction as nonnegative R-solutions of

   (u 1 ) t -A(u 1 ) = µ in Q, u 1 = 0 on ∂Ω × (0, T ), u 1 (0) = u 0 in Ω,    (u n+1 ) t -A(u n+1 ) = µ + λG(u n ) in Q, u n+1 = 0 on ∂Ω × (0, T ), u n+1 (0) = u 0 in Ω,
From Corollary 3.7 we can assume that {u n } is nondecreasing and satisfies, for any s > 0 and n ∈ N

meas {|u n | ≥ s} ≤ C 1 K n s -pc , (4.3) 
where C 1 does not depend on s, n, and

K 1 = (||u 0 || L 1 (Ω) + |µ|(Q)) p+N N , K n+1 = (||u 0 || L 1 (Ω) + |µ|(Q) + λ||G(u n )|| L 1 (Ω) ) p+N N , for any n ≥ 1. Take ε = λ + |µ|(Q) + ||u 0 || L 1 (Ω) ≤ 1.
Denoting by C i some constants independent on n, ε, there holds K 1 ≤ C 2 ε, and for n ≥ 1,

K n+1 ≤ C 3 ε(||G(u n )|| 1+ p N L 1 (Ω) + 1).
From (4.2) and (4.3), we find

G(u n ) L 1 (Q) ≤ |Q| G(2) + {un≥2}| G(u n )dxdt ≤ |Q| G(2) + C 4 K n ∞ 2 G (s) s -1-pc ds.
Thus, K n+1 ≤ C 5 ε(K

1+ p N n +1 
). Therefore, if ε is small enough, {K n } is bounded. Since {u n } is nondecreasing, from (4.2) and the relation G(x, t, u n ) ≤ G(u n ), we deduce that {G(u n )} converges. Then by Theorem 3.4, up to a subsequence, {u n } converges to a R-solution u of (2.5).

Remark 4.1 Theorems 2.1 and 2.2 are still valid for operators A also depending on t, satisfying conditions analogous to (1.2), (1.3).

General case with absorption terms

In the sequel we combine the results of Theorem 3.4 with delicate techniques introduced in [START_REF] Bidaut-Véron | Quasilinear Emden-Fowler equations with absorption terms and measure data[END_REF] for the elliptic problem (4.1), for proving Theorems 2.3 and 2.5. In these proofs the use of the elliptic Wolff potential is an essential tool.

We recall a first result obtained in [9, Corollary 3.4 and Theorem 3.8] for the elliptic problem without perturbation term, inspired from [27, Theorem 2.1]:

Theorem 5.1 Let 1 < p < N , Ω be a bounded domain of R N and ω ∈ M b (Ω) with compact support in Ω. Suppose that u n is a solution of problem -A(u n ) = ϕ n * ω in Ω, u n = 0 on ∂Ω,
where {ϕ n } is a sequence of mollifiers in R N . Then, up to subsequence, u n converges a.e in Ω to a renormalized solution u of -A(u) = ω in Ω, u = 0 on ∂Ω, in the elliptic sense of [START_REF] Maso | Renormalized solutions of elliptic equations with general measure data[END_REF], satisfying

-κW 2D 1,p [ω -] ≤ u ≤ κW 2D 1,p [ω + ] (5.1)
where κ is a constant which only depends of N, p, Λ 1 , Λ 2 .

Next we give a general result for the parabolic problem (1.5) with absorption:

Theorem 5.2 Let p < N , and assume that s → G(x, t, s) is nondecreasing and odd, for a.e.

(x, t) in Q. Let µ 1 , µ 2 ∈ M + b (Q) such that there exist {ω n } ⊂ M + b (Ω) and nondecreasing sequences {µ 1,n } , {µ 2,n } in M + b (Q) with compact support in Q, converging to µ 1 , µ 2
, respectively in the narrow topology, and satisfying

µ 1,n , µ 2,n ≤ ω n ⊗ χ (0,T ) , and G((n + κW 2D 1,p [ω n ])) ∈ L 1 (Q),
where the constant κ is given at Theorem 5.1. Let u 0 ∈ L 1 (Ω), and µ = µ 1 -µ 2 .

Then there exists a R-solution u of problem (1.5). Moreover if u 0 ∈ L ∞ (Ω), and ω n ≤ γ for any n ∈ N,

for some γ ∈ M + b (Ω), then a.e. in Q, |u(x, t)| ≤ κW 2D 1,p [γ] (x) + ||u 0 || L ∞ (Ω) . (5.2) 
For proving this result, we need two Lemmas:

Lemma 5.3 Let G satisfy the assumptions of Theorem 5.2 and G ∈ L ∞ (Q × R). For i = 1, 2, let u 0,i ∈ L ∞ (Ω) be nonnegative, and

λ i = λ i,0 + λ i,s ∈ M + b (Q) with compact support in Q, γ ∈ M + b (Ω)
with compact support in Ω such that λ i ≤ γ ⊗ χ (0,T ) . Let λ i,0 = (f i , g i , h i ) be a decomposition of λ i,0 into functions with compact support in Q.

Then, there exist R-solutions u, u 1 , u 2 , to problems

   u t -A(u) + G(u) = λ 1 -λ 2 in Q, u = 0 on ∂Ω × (0, T ), u(0) = u 0,1 -u 0,2 , in Ω, (5.3) 
   (u i ) t -A(u i ) + G(u i ) = λ i in Q, u i = 0 on ∂Ω × (0, T ), u i (0) = u 0,i , in Ω, (5.4 
)

relative to decompositions (f 1,n -f 2,n -G(u n ), g 1,n -g 2,n , h 1,n -h 2,n ), (f i,n -G(u i,n ), g i,n , h i,n ), such that a.e. in Q, -||u 0,2 || L ∞ (Ω) -κW 2D 1,p [γ] (x) ≤ -u 2 (x, t) ≤ u(x, t) ≤ u 1 (x, t) ≤ κW 2D 1,p [γ] (x) + ||u 0,1 || L ∞ (Ω) , (5.5) 
and

Q |G(u)| dxdt ≤ i=1,2 λ i (Q) + ||u 0,i || L 1 (Ω) and Q G(u i )dxdt ≤ λ i (Q) + ||u 0,i || L 1 (Ω) , i = 1, 2. (5.6)
Furthermore, assume that H, K have the same properties as G, and H(x, t, s) ≤ G(x, t, s) ≤ K(x, t, s) for any s ∈ (0, +∞) and a.e. in Q. Then, one can find solutions u i (H), u i (K), corresponding to H, K with data λ i , such that

u i (H) ≥ u i ≥ u i (K), i = 1, 2.
Assume that ω i , θ i have the same properties as λ i and ω i ≤ λ i ≤ θ i , u 0,i,1 , u 0,i,2 ∈ L ∞+ (Ω), u 0,i,2 ≤ u 0,i ≤ u 0,i,1 . Then one can find solutions u i (ω i ), u i (θ i ), corresponding to (ω i , u 0,i,2 ), (θ i , u 0,i,1 ), such that u i (ω i , u 0,i,2 ) ≤ u i ≤ u i (θ i , u 0,i,1 ).

Proof. Let {ϕ 1,n } , {ϕ 2,n } be sequences of mollifiers in R and R N , and

ϕ n = ϕ 1,n ϕ 2,n . Set γ n = ϕ 2,n * γ, and for i = 1, 2, u 0,i,n = ϕ 2,n * u 0,i , λ i,n = ϕ n * λ i = f i,n -div(g i,n ) + (h i,n ) t + λ i,s,n , where f i,n = ϕ n * f i , g i,n = ϕ n * g i , h i,n = ϕ n * h i , λ i,s,n = ϕ n * λ i,s , and 
λ n = λ 1,n -λ 2,n = f n -div(g n ) + (h n ) t + λ s,n , where f n = f 1,n -f 2,n , g n = g 1,n -g 2,n , h n = h 1,n -h 2,n , λ s,n = λ 1,s,n -λ 2,s,n . Then for n large enough, λ 1,n , λ 2,n , λ n ∈ C ∞ c (Q), γ n ∈ C ∞ c (Ω). Thus there exist unique solutions u n , u i,n , v i,n , i = 1, 2, of problems    (u n ) t -A(u n ) + G(u n ) = λ 1,n -λ 2,n in Q, u n = 0 on ∂Ω × (0, T ), u n (0) = u 0,1,n -u 0,2,n in Ω,    (u i,n ) t -A(u i,n ) + G(u i,n ) = λ i,n in Q, u i,n = 0 on ∂Ω × (0, T ), u i,n (0) = u 0,i,n in Ω, -A(w n ) = γ n in Ω, w n = 0 on ∂Ω, such that -||u 0,2 || L ∞ (Ω) -w n (x) ≤ -u 2,n (x, t) ≤ u n (x, t) ≤ u 1,n (x, t) ≤ w n (x) + ||u 0,1 || L ∞ (Ω) , a.e. in Q.
Otherwise, as in the Proof of Theorem 2.1, (i), there holds

Q |G(u n )|dxdt ≤ i=1,2 λ i (Q) + ||u 0,i,n || L 1 (Ω) , and Q G(u i,n )dxdt ≤ λ i (Q) + ||u 0,i,n || L 1 (Ω) , i = 1, 2.
From Proposition 3.3, up to a common subsequence, {u n , u 1,n , u 2,n } converge to some (u,

u 1 , u 2 ), a.e. in Q. Since G is bounded, in particular, {G(u n )} converges to G(u) and {G(u i,n )} converges to G(u i ) in L 1 (Q). Thus, (5.6) is satisfied. Moreover {λ i,n -G(u i,n ), f i,n -G(u i,n ), g i,n , h i,n , λ i,s,n , u 0,i,n } is an approximation of (λ i -G(u i ), f i -G(u i ), g i , h i , λ i,s , u 0,i ), and {λ n -G(u n ), f n -G(u n ), g n , h n , λ s,n , u 0,1,n -u 0,2,n } is an ap- proximation of (λ 1 -λ 2 -G(u), f -G(u), g, h, λ s , u 0,1 -u 0,2 )
, in the sense of Theorem 3.4. Thus, we can find (different) subsequences converging a.e. to u, u 1 , u 2 , R-solutions of (5.3) and (5.4). Furthermore, from Theorem 5.1, up to a subsequence, {w n } converges a.e. in Q to a renormalized solution of

-A(w) = γ in Ω, w = 0 on ∂Ω, such that w ≤ κW 2D 1,p [γ] ,
a.e. in Ω. Hence, we get the inequality (5.5). The other conclusions follow in the same way.

Lemma 5.4 Let G satisfy the assumptions of Theorem 5.2. For i = 1, 2, let u 0,i ∈ L ∞ (Ω) be nonnegative,

λ i ∈ M + b (Q) with compact support in Q, and γ ∈ M + b (Ω) with compact support in Ω, such that λ i ≤ γ ⊗ χ (0,T ) , and G((||u 0,i || L ∞ (Ω) + κW 2D 1,p [γ])) ∈ L 1 (Q).
(5.7)

Let λ i,0 = (f i , g i , h i ) be a decomposition of λ i,0 into functions with compact support in Q.

Then, there exist R-solutions u, u 1 , u 2 of the problems (5.3) and (5.4), respectively relative to the decompositions (f 1 -f 2 -G(u), g 1 -g 2 , h 1 -h 2 ), (f i -G(u i ), g i , h i ), satifying (5.5) and (5.6). Moreover, assume that ω i , θ i have the same properties as λ i and

ω i ≤ λ i ≤ θ i , u 0,i,1 , u 0,i,2 ∈ L ∞ (Ω), 0 ≤ u 0,i,2 ≤ u 0,i ≤ u 0,i,1 .
Then, one can find solutions u i (ω i , u 0,i,2 ), u i (θ i , u 0,i,1 ), corresponding with (ω i , u 0,i,2 ), (θ i , u 0,i,1 ), such that u i (ω i , u 0,i,2 ) ≤ u i ≤ u i (θ i , u 0,i,1 ).

Proof. From Lemma 5.3 there exist R-solutions u n , u i,n to problems

   (u n ) t -A(u n ) + T n )) = λ 1 -λ 2 in Q, u n = 0 on ∂Ω × (0, T ), u n (0) = u 0,1 -u 0,2 in Ω,    (u i,n ) t -A(u i,n ) + T n (G(u i,n )) = λ i in Q, u i,n = 0 on ∂Ω × (0, T ), u i,n (0) = u 0,i , in Ω, relative to the decompositions (f 1 -f 2 -T n (G(u n )), g 1 -g 2 , h 1 -h 2 ), (f i -T n (G(u i,n )), g i , h i ); and they satisfy, a.e. in Q, -||u 0,2 || L ∞ (Ω) -κW 2D 1,p [γ] (x) ≤ -u 2,n (x, t) ≤ u n (x, t) ≤ u 1,n (x, t) ≤ κW 2D 1,p γ(x) + ||u 0,1 || L ∞ (Ω) , (5.8) 
Q |T n (G(u n )) |dxdt ≤ i=1,2 (λ i (Q) + ||u 0,i || L 1 (Ω)
), and

Q T n (G(u i,n )) dxdt ≤ λ i (Q) + ||u 0,i || L 1 (Ω) .
As in Lemma 5.3, up to a common subsequence, {u n , u 1,n , u 2,n } converges a.e. in Q to {u, u 1 , u 2 } for which (5.5) is satisfied a.e. in Q. From (5.7), (5.8) and the dominated convergence Theorem, we deduce that {T n (G(u n ))} converges to G(u) and {T n (G(u i,n ))} converges to G(u i ) in L 1 (Q). Thus, from Theorem 3.4, u and u i are respective R-solutions of (5.3) and (5.4) relative to the decompositions (f

1 -f 2 -G(u), g 1 - g 2 , h 1 -h 2 ), (f i -G(u i ), g i , h i )
, and (5.5) and (5.6) hold. The last statement follows from the same assertion in Lemma 5.3.

Proof of Theorem 5.2. By Proposition 3.6, for i = 1, 2, there exist

f i,n , f i ∈ L 1 (Q), g i,n , g i ∈ (L p ′ (Q)) N and h i,n , h i ∈ L p ((0, T ); W 1,p 0 (Ω)), µ i,n,s , µ i,s ∈ M + s (Q) such that µ i = f i -div g i + (h i ) t + µ i,s , µ i,n = f i,n -div g i,n + (h i,n ) t + µ i,n,s ,
and {f i,n } , {g i,n } , {h i,n } strongly converge to f i , g i , h i in L 1 (Q), (L p ′ (Q))
N and L p ((0, T ); W 1,p 0 (Ω)) respectively, and {µ i,n } , {µ i,n,s } converge to µ i , µ i,s (strongly) in M b (Q), and

||f i,n || L 1 (Ω) + ||g i,n || L p ′ (Ω) + ||h i,n || L p ((0,T );W 1,p 0 (Ω)) + µ i,n,s (Ω) ≤ 2µ(Q).
By Lemma 5.4, there exist R-solutions u n , u i,n to problems

   (u n ) t -A(u n ) + G(u n ) = µ 1,n -µ 2,n in Q, u n = 0 on ∂Ω × (0, T ), u n (0) = T n (u 0 ) in Ω,    (u i,n ) t -A(u i,n ) + G(u i,n ) = µ i,n in Q, u i,n = 0 on ∂Ω × (0, T ), u i,n (0) = T n (u ± 0 ) in Ω, for i = 1, 2, relative to the decompositions (f 1,n -f 2,n -G(u n ), g 1,n -g 2,n , h 1,n -h 2,n ), (f i,n -G(u i,n ), g i,n , h i,n ),
such that {u i,n } is nonnegative and nondecreasing, and -u 2,n ≤ u n ≤ u 1,n ; and

Q |G(u n )|dxdt, Q G(u i,n )dxdt ≤ µ 1 (Q) + µ 2 (Q) + ||u 0 || L 1 (Ω) . (5.9) 
As in the proof of Lemma 5.4, up to a common subsequence {u n , u 1,n , u 2,n } converge a.e. in Q to {u, u 1 , u 2 }.

Since {G(u i,n )} is nondecreasing, and nonnegative, from the monotone convergence Theorem and (5.9), we obtain that

{G(u i,n )} converges to G(u i ) in L 1 (Q), i = 1, 2. Finally, {G(u n )} converges to G(u) in L 1 (Q), since |G(u n )| ≤ G(u 1,n ) + G(u 2,n
). Thus, we can see that

{µ 1,n -µ 2,n -G(u n ), f 1,n -f 2,n -G(u n ), g 1,n -g 2,n , h 1,n -h 2,n , µ 1,s,n -µ 2,s,n , T n (u 0 )} is an approximation of (µ 1 -µ 2 -G(u), f 1 -f 2 -G(u), g 1 -g 2 , h 1 -h 2 , µ 1,s -µ 2,s , u 0 )
, in the sense of Theorem 3.4. Therefore, u is a R-solution of (1.1), and (5.2) holds if u 0 ∈ L ∞ (Ω) and ω n ≤ γ for any n ∈ N and some γ ∈ M + b (Ω). As a consequence of Theorem 5.2, we get a result for problem (2.1), used in Section 6:

Corollary 5.5 Let u 0 ∈ L ∞ (Ω), and µ ∈ M b (Q) such that |µ| ≤ ω ⊗ χ (0,T ) for some ω ∈ M + b (Ω).
Then there exist a R-solution u of (2.1), such that

|u(x, t)| ≤ κW 2D 1,p [ω](x) + ||u 0 || L ∞ (Ω) , for a.e. (x, t) ∈ Q, (5.10) 
where κ is defined at Theorem 5.1.

Proof. Let {φ n } be a nonnegative, nondecreasing sequence in C ∞ c (Q) which converges to 1, a.e. in Q. Since {φ n µ + }, {φ n µ -} are nondecreasing sequences, the result follows from Theorem 5.2.

The power case

First recall some results relative to the elliptic case for the model problem

-∆ p u + |u| q-1 u = ω in Ω, u = 0 on ∂Ω, (5.11) 
with ω ∈ M b (Ω), q > p -1 > 0. For p = 2, it is shown in [START_REF] Baras | Critère d'existence de solutions positives pour des équations semi-linéaires non monotones[END_REF] that (5.11) admits a solution if and only if ω does not charge the sets of Bessel Cap G2, q q-1 -capacity zero. For p = 2, existence holds for any measure ω ∈ M b (Ω) in the subcritical case q < p e := N (p -1)/(N -p) (5.12) from [START_REF] Benilan | An L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations[END_REF]. Some necessary conditions for existence have been given in [START_REF] Bidaut-Véron | Removable singularities and existence for a quasilinear equation[END_REF][START_REF] Bidaut-Véron | Necessary conditions of existence for an elliptic equation with source term and measure data involving the p-Laplacian[END_REF]. From [9, Theorem 1.1], a sufficient condition for existence is that ω does not charge the sets of Cap Gp, q q+1-p -capacity zero, and it can be conjectured that this condition is also necessary.

Next we prove Theorem 2.3. We use the following result of [START_REF] Bidaut-Véron | Quasilinear Emden-Fowler equations with absorption terms and measure data[END_REF]: Remark 5.8 Let G : Q×R → R be a Caratheodory function such that the map s → G(x, t, s) is nondecreasing and odd, for a.e.

(x, t) in Q. Let µ ∈ M b (Q), f ∈ L 1 (Q), u 0 ∈ L 1 (Ω) and ω ∈ M + b (Ω) such that (2.7) holds. If ω({x : W 2D
1,p [ω](x) = ∞}) = 0, then, (1.5) has a R-solution with data (f + µ, u 0 ). The proof is similar to the one of Theorem 2.3, after replacing ω n by χ W 2D 1,p [ω]≤n ω. Note that ω({x : W 2D 1,p [ω](x) = ∞}) = 0 if and only if ω ∈ M 0,e (Ω), see [START_REF] Mikkonen | On the Wolff potential and quasilinear elliptic equations involving measures[END_REF].

Remark 5.9 As in [START_REF] Bidaut-Véron | Quasilinear Emden-Fowler equations with absorption terms and measure data[END_REF], from Theorem 5.2, we can extend Theorem 2.3 given for G(u) = |u| q-1 u, to the case of a function G(x, t, .), odd for a.e. (x, t) ∈ Q, such that

|G(x, t, u)| ≤ G(|u|), ∞ 1 G(s)s -q-1 ds < ∞,
where G is a nondecreasing continuous, under the condition that ω does not charge the sets of zero Cap G p, q q+1-p ,1capacity, where for any Borel set E ⊂ R N ,

Cap G p, q q+1-p ,1 (E) = inf{||ϕ|| L q q-p+1 ,1 (R N ) : ϕ ∈ L q q-p+1 ,1 (R N ), G p * ϕ ≥ χ E }
where L q q-p+1 ,1 (R N ) is the Lorentz space of order (q/(q -p + 1), 1). 

The exponential case

Ω exp(δ (W 2D 1,p [ν]) β ||M p-1 β ′ p,2D [ν]|| β p-1 L ∞ (R N ) )dx ≤ C δ 0 -δ .
Proof of Theorem 2.5. Let Q n be defined at (5.14), and ω n = ωχ Ωn , where Ω n = {x ∈ Ω : d(x, ∂Ω) > 1/n}. We still consider µ 1 , µ 2 , F n , µ 1,n , µ 2,n as in (5.13), (5.15). Case (i): Assume that ||F || L ∞ ((0,T )) ≤ 1 and (2.12) holds. We have µ 1,n , µ 2,n ≤ nχ Ω + ω. For any ε > 0, there exists c ε = c ε (ε, N, p, β, κ,D) > 0 such that

(n + κW 2D 1,p [nχ Ω + ω]) β ≤ c ε n βp p-1 + (1 + ε)κ β (W 2D 1,p [ω]) β
a.e. in Ω. Thus,

exp τ (n + κW 2D 1,p [nχ Ω + ω]) β ≤ exp τ c ε n βp p-1 exp τ (1 + ε)κ β (W 2D 1,p [ω]) β .
If (2.12) holds with M 0 = δ 0 /τ κ β (p-1)/β then we can chose ε such that

τ (1 + ε)κ β ||M p-1 β ′ p,2D [ν]|| β p-1 L ∞ (R N ) <δ 0 .
From Proposition 5.10, we get exp(τ

(1 + ε)κ β W 2D 1,p [ω]) β ) ∈ L 1 (Ω), which implies exp(τ (n + κ β W 2D 1,p [nχ Ω + ω]) β ) ∈ L 1 (Ω)
for all n. We conclude from Theorem 5.2.

Case (ii): Assume that there exists ε > 0 such that M (p-1)/(β+ε) ′ p,2D

[ω] ∈ L ∞ (R N ). Now we use the inequality µ 1,n , µ 2,n ≤ n(χ Ω + ω). For any ε > 0 and any n ∈ N there exists c ε,n > 0 such that

(n + κW 2D 1,p [n(χ Ω + ω)]) β ≤ c ε,n + ε(W 2D 1,p [ω]) β0 .
Thus, from Proposition 5.10, we obtain that exp(τ (n + κ

β W 2D 1,p [n(χ Ω + ω)]) β ) ∈ L 1 (Ω)
for any n ∈ N. We conclude from Theorem 5.2.

General case with source term

The results of this Section are based on Corollary 5.5 and elliptic techniques of Wolff potential used in [START_REF] Phuc | Quasilinear and Hessian equations of Lane-Emden type[END_REF], [START_REF] Phuc | Singular quasilinear equations and Hessian equations and inequalities[END_REF] and [START_REF] Quoc | Quasilinear and Hessian equations with exponential reaction and measure data[END_REF]Theorem 2.5].

The power case

Recall some results of [START_REF] Phuc | Quasilinear and Hessian equations of Lane-Emden type[END_REF], [START_REF] Phuc | Singular quasilinear equations and Hessian equations and inequalities[END_REF] for the nonnegative solutions of equation

-∆ p u = u q + ω in Ω, u = 0 on ∂Ω. (6.1) 
It was proved that if ω(E) ≤ CCap G p, q q+1-p (E),for any compact of R N , with C small enough, problem (

has at least a solution, and conversely if there exists a solution, and ω has a compact support, then there exists a constant C ′ such that

ω(E) ≤ C ′ Cap G p, q q+1-p (E), for any compact set E of R N .
For proving Theorem 2.4 we use the following property of Wolff potentials, shown in [START_REF] Phuc | Quasilinear and Hessian equations of Lane-Emden type[END_REF]:

Theorem 6.1 Let q > p -1, 0 < p < N , ω ∈ M + b (Ω). If for some λ > 0, ω(E) ≤ λCap G p, q q+1-p (E) for any compact set E ⊂ R N , (6.2) 
then (W 2D 1,p [ω]) q ∈ L 1 (Ω), and there exists M = M (N, p, q, diam(Ω)) such that, a.e. in Ω,

W 2D 1,p (W 2D 1,p [ω]) q ≤ M λ q-p+1 (p-1) 2 W 2D 1,p [ω] < ∞. (6.3) 
We deduce the following:

Lemma 6.2 Let ω ∈ M + b (Ω)
, and b ≥ 0 and K > 0. Suppose that {u m } m≥1 is a sequence of nonnegative functions in Ω that satisfies

u 1 ≤ KW 2D 1,p [ω] + b, u m+1 ≤ KW 2D 1,p [u q m + ω] + b ∀m ≥ 1.
Assume that ω satisfies (6.2) for some λ > 0. Then there exist λ 0 and b 0 , depending on N, p, q, K,D, such that, if λ ≤ λ 0 and b ≤ b 0 , then W 2D 1,p [ω] ∈ L q (Ω) and for any m ≥ 1,

u m ≤ 2β p KW 2D 1,p [ω] + 2b, β p = max(1, 3 2-p p-1 ). ( 6 

.4)

Proof. Clearly, (6.4) holds for m = 1. Now, assume that it holds at the order m. Then

u q m ≤ 2 q-1 (2β p ) q K q (W 2D 1,p [ω]) q + 2 q-1 (2b) q .
Using (6.3) we get

u m+1 ≤ KW 2D 1,p 2 q-1 (2β p ) q K q (W 2D 1,p [ω]) q + 2 q-1 (2b) q + ω + b ≤ β p K A 1 W 2D 1,p (W 2D 1,p [ω]) q + W 2D 1,p [(2b) q ] + W 2D 1,p [ω] + b ≤ β p K(A 1 M λ q-p+1 (p-1) 2 + 1)W 2D 1,p [ω] + β p KW 2D 1,p [(2b) q ] + b = β p K(A 1 M λ q-p+1 (p-1) 2 + 1)W 2D 1,p [ω] + A 2 b q p-1 + b,
where M is as in (6.3) and

A 1 = 2 q-1 (2β p ) q K q 1/(p-1) , A 2 = β p K2 q/(p-1) |B 1 | 1/(p-1) (p ′ ) -1 (2D) p ′ .
Thus, (6.4) holds for m = n + 1 if we prove that

A 1 M λ q-p+1 (p-1) 2 ≤ 1 and A 2 b q p-1 ≤ b, which is equivalent to λ ≤ (A 1 M ) -(p-1) 2 q-p+1 and b ≤ A -p-1 q-p+1 2 
.

Therefore, we obtain the result with λ 0 = (A 1 M ) -(p-1) 2 /(q-p+1) and b 0 = A -(p-1)/(q-p+1) 2

.

Proof of Theorem 2.4. From Corollary 3.7 and 5.5, we can construct a sequence of nonnegative nondecreasing R-solutions {u m } m≥1 , defined in the following way: u 1 is a R-solution of (2.1), and u m+1 is a nonnegative R-solution of

   (u m+1 ) t -A(u m+1 ) = u q m + µ in Q, u m+1 = 0 on ∂Ω × (0, T ), u m+1 (0) = u 0 in Ω.
Setting u m = sup t∈(0,T ) u m (t) for all m ≥ 1, there holds

u 1 ≤ κW 2D 1,p [ω] + ||u 0 || L ∞ (Ω) , u m+1 ≤ κW 2D 1,p [u q m + ω] + ||u 0 || L ∞ (Ω) ∀m ≥ 1.
From Lemma 6.2, we can find λ 0 = λ 0 (N, p, q, D) and b 0 = b 0 (N, p, q, D) such that if (2.9) is satisfied with λ 0 and b 0 ; then

u m ≤ u m ≤ 2β p κW 2D 1,p [ω] + 2||u 0 || L ∞ (Ω) ∀m ≥ 1. (6.5)
Thus {u m } converges a.e. in Q and in L q (Q) to some function u, for which (2.11) is satisfied in Ω with c = 2β p κ. Finally, one can apply Theorem 3.4 to the sequence of measures {u q m + µ} , and obtain that u is a R-solution of (2.10).

The exponential case

We end this Section by proving Theorem 2.6. We first recall an approximation property, which is a consequence of [22, Theorem 2.5]: Theorem 6.3 Let τ > 0, b ≥ 0, K > 0, l ∈ N and β ≥ 1 such that lβ > p -1. Let E be defined by (2.13). Let {v m } be a sequence of nonnegative functions in Ω such that, for some K > 0, Thus, from Theorem 6.3, there exist b 0 ∈ (0, 1] and M 0 > 0, depending on N, p, β, τ, l, D, such that, if (6.6) holds, then (6.7) is satisfied with v m = u m . As a consequence, u m is well defined. Thus, {u m } converges a.e. in Q to some function u, for which (2.15) is satisfied in Ω. Furthermore, E(τ u β m ) converges to E(τ u β ) in L 1 (Q). Finally, one can apply Theorem 3.4 to the sequence of measures E(τ u β m ) + µ , and obtain that u is a R-solution of (2.14). has a renormalized solution in the sense of [START_REF] Maso | Renormalized solutions of elliptic equations with general measure data[END_REF]. We claim the following:

Let A = ∆ p and u 0 ≡ 0. If (6.9) has a renormalized solution v and ω ∈ M 0,e (Ω), then the problem (2.14) in Theorem 2.6 admits a R-solution u, satisfying u(x, t) ≤ v(x) a.e in Q.

Indeed, since ω ∈ M 0,e (Ω), there holds µ ∈ M 0 (Q). Otherwise, for any measure η ∈ M 0 (Q) the problem

   u t -∆ p u = η in Q, u = 0
on ∂Ω × (0, T ), u = 0

in Ω, has a (unique) R-solution, and the comparison principle is valid, see [START_REF] Petitta | Diffuse measures and nonlinear parabolic equations[END_REF]. Thus, as in the proof of Theorem 2.6, we can construct a unique sequence of nonnegative nondecreasing R-solutions {u m } m≥1 , defined in the following way: u 1 is a R-solution of problem (2.1) and satisfies u 1 ≤ v a.e in Q ; and by induction, u m+1 is a R-solution of (6.8) and satisfies u m+1 ≤ v a.e in Q. Then E(τ u β m ) converges to E(τ u β ) in L 1 (Q). Finally, u := lim n→∞ u n is a solution of (2.14). Clearly, this claim is also valid for power source term.

Theorem 2 .

 2 5 extends the elliptic result of [9, Theorem 1.2] to the parabolic case. For the proof, we use the following property of [9, Theorem 2.4]: Proposition 5.10 Suppose 1 < p < N. Let ν ∈ M + b (Ω), β > 1, and δ 0 = ((12β) -1 ) β p ln 2. There exists C = C(N, p, β, D) such that, for any δ ∈ (0, δ 0 ),

v 1 ≤. 7 )

 17 KW 2D 1,p [µ] + b, v m+1 ≤ KW 2D 1,p [E(τ v β m ) + µ] + b, ∀m ≥ 1.Then, there exist b 0 and M 0 , depending on N, p, β, τ, l, K, D, such that if b ≤ b 0 and||M (p-1)(β-1) β p,2D [µ]|| ∞,R N ≤ M 0 ,(6.6)then, settingc p = 2max(1,2 2-p p-1 ), exp(τ (Kc p W 2D 1,p [µ] + 2b 0 ) β ) ∈ L 1 (Ω), v m ≤ Kc p W 2D 1,p [µ] + 2b 0 , ∀m ≥ 1. (6Proof of Theorem 2.6. From Corollary 3.7 and 5.5 we can construct a sequence of nonnegative nondecreasing R-solutions {u m } m≥1 defined in the following way: u 1 is a R-solution of problem (2.1), and by induction, u m+1 is a R-solution of   (u m+1 ) t -A(u m+1 ) = E(τ u β m ) + µ in Q, u m+1 = 0 on ∂Ω × (0, T ), u m+1 (0) = u 0 in Ω. (6.8)And, setting u m = sup t∈(0,T ) u m (t), there holdsu 1 ≤ κW 2D 1,p [ω] + ||u 0 || ∞,Ω , u m+1 ≤ κW 2D 1,p [E(τ u β m ) + ω] + ||u 0 || L ∞ (Ω) , ∀m ≥ 1.

Remark 6 . 4

 64 In[START_REF] Quoc | Quasilinear and Hessian equations with exponential reaction and measure data[END_REF] Theorem 1.1], when A = ∆ p , we showed that there exist M = M (N, p, β, τ, l, D) such that if||M (p-1)(β-1) β p,2D [ω]|| L ∞ (R N ) ≤ M, then the problem -∆ p v = E(τ v β ) + ω in Ω, v = 0on ∂Ω. (6.9)

Proposition 5.6 Let q > p -1 and ν ∈ M + b (Ω). If ν does not charge the sets of Cap G p, q q+1-p -capacity zero, there exists a nondecreasing sequence {ν n } ⊂ M + b (Ω) with compact support in Ω which converges to ν strongly in M b (Ω) and such that

where F ∈ L 1 ((0, T )) and ω does not charge the sets of Cap G p, q q+1-p -capacity zero. From Proposition 5.6, there exists a nondecreasing sequence

and µ + , µ -≤ ω ⊗ F. We set

Then {µ 1,n } , {µ 2,n } are nondecreasing sequences with compact support in Q, and

and

Observe that for any measures ν, θ, η ∈ M b (Q), there holds |inf{ν, θ} -inf{ν, η}| ≤ |θ -η| , hence {µ 1,n } , {µ 2,n } converge to µ 1 , µ 2 respectively in M b (Q). Therefore, the result follows from Theorem 5.2.

Remark 5.7 From Theorem 2.3, we deduce the existence for any measure ω ∈ M b (Ω) for p < p e , whre p e is defined at (5.12), since p e is the critical exponent of the elliptic problem (5.11). Note that p e > p c since p > p 1 . Let M 0,e (Ω) be the set of Radon measures ω on that do not charge the sets of zero c Ω p -capacity, where, for any compact set K ⊂ Ω,

From [16, Theorem 2.16], for any

If q ≥ p e , there exist measures ω ∈ M + b (Ω) which do not charge the sets of Cap G p, q q+1-p -capacity zero, such that ω ∈ M 0,e (Ω). As a consequence, Theorem 2.3 shows the existence for some measures µ ∈ M 0 (Q).