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Abstract. A statistical method trained and optimized to re-

trieve seven-layer relative humidity (RH) profiles is pre-

sented and evaluated with measurements from radiosondes.

The method makes use of the microwave payload of the

Megha-Tropiques platform, namely the SAPHIR sounder

and the MADRAS imager. The approach, based on a gen-

eralized additive model (GAM), embeds both the physical

and statistical characteristics of the inverse problem in the

training phase, and no explicit thermodynamical constraint

– such as a temperature profile or an integrated water va-

por content – is provided to the model at the stage of re-

trieval. The model is built for cloud-free conditions in order

to avoid the cases of scattering of the microwave radiation

in the 18.7–183.31 GHz range covered by the payload. Two

instrumental configurations are tested: a SAPHIR-MADRAS

scheme and a SAPHIR-only scheme to deal with the stop of

data acquisition of MADRAS in January 2013 for technical

reasons. A comparison to learning machine algorithms (ar-

tificial neural network and support-vector machine) shows

equivalent performance over a large realistic set, promis-

ing low errors (biases < 2.2 %RH) and scatters (correlations

> 0.8) throughout the troposphere (150–900 hPa). A compar-

ison to radiosonde measurements performed during the inter-

national field experiment CINDY/DYNAMO/AMIE (winter

2011–2012) confirms these results for the mid-tropospheric

layers (correlations between 0.6 and 0.92), with an expected

degradation of the quality of the estimates at the surface and

top layers. Finally a rapid insight of the estimated large-scale

RH field from Megha-Tropiques is presented and compared

to ERA-Interim.

1 Introduction

The atmospheric water vapor is a key parameter of the cli-

mate system and the understanding of its variation under a

climate evolution relies on a thorough documentation of its

horizontal and vertical distributions (Held and Soden, 2000;

Roca et al., 2010; Sherwood et al., 2010). It is a major green-

house gas, part of a strong positive feedback that amplifies

the warming caused by increases of greenhouse gases in the

atmosphere (Spencer and Braswell, 1997; Hall and Manabe,

2000; Held and Soden, 2006), and, because of its short life

cycle compared to other species, its distribution is mainly in-

fluenced by natural processes that occur at all scales, from the

large scale cells of the atmospheric circulation to the scale of

the hydrometeor (e.g., Houze and Betts, 1981; Pierrehumbert

and Roca, 1998; Pierrehumbert et al., 2007).

While direct measurements by radiosondes are the most

simple ways to look at the vertical structure of the rela-

tive humidity (RH) field, the network of stations (perma-

nent or not) is unequally distributed between the two hemi-

spheres and there is a clear gap of data over the oceans

(Durre et al., 2006). The climate record built by aggregat-

ing the observations from the various operational sensors

used worldwide (e.g., Vaïsala, MEISEI, IM-MK3, MODEM)

requires regular intercomparison campaigns, such as those

organized by the World Meteorological Organization (Nash

et al., 2005), and the development of dedicated correction

schemes in order to correct most of the observational er-

rors (such as the drying effect of the radiative heating on the

Vaïsala sensor or the insensitivity of the MEISEI system un-
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der dry conditions). Quite recently Wang and Zhang (2008)

have summarized the systematic instrumental biases between

several versions of the Vaïsala system that, if uncorrected,

would affect analyses of the global moisture field. An al-

ternative is the fleet of space-borne radiometers with chan-

nels located in spectral bands sensitive to the absorption by

water vapor. Such instruments provide a more global sight

of the distribution of the water vapor field since the late

1970s, in the thermal infrared (IR) (in the 6.3 µm band) and in

the microwave (MW) domain (in the 183.31 GHz absorption

line). One can mention, among others, the successive imagers

of METEOSAT (Meteorological satellite, EUMETSAT) and

of GOES (Geostationary Operational Environmental Satel-

lite, NOAA); the sounders HIRS (High resolution Infrared

Radiation Sounder, NOAA), AIRS (Atmospheric Infrared

Sounder, NASA), IASI (Infrared Atmospheric Sounding In-

terferometer, EUMETSAT and CNES) and CrIS (Cross-

track Infrared Sounder, NASA); and the microwave sounders

AMSU-B (Advanced Microwave Sounding Unit-B, NOAA),

MHS (Microwave Sounding Unit, EUMETSAT), MWHS

(Microwave Humidity Sounder, CMA) and ATMS (Ad-

vanced Technology Microwave Sounder, NASA). One can

browse the OSCAR web page (Observing Systems Capabil-

ity Analysis and Review tool) of the WMO (World Meteoro-

logical Organization) for an exhaustive list of the past, cur-

rent and planned missions (http://www.wmo-sat.info/oscar/).

However, these so-called “water vapor” channels provide

indirect estimations of the RH since they measure the up-

welling radiation. Estimation of the RH from these measure-

ments are thus strongly linked to the constraints of the under-

lying inverse problem (RH = f (radiation)).

Upper tropospheric humidity (UTH) can be one way to in-

terpret these “water vapor” measurements. The retrieval of

UTH was initiated by Schmetz and Turpeinen (1988) and

Soden and Bretherton (1993) for observations in the 6.3 µm

band and successfully applied to 183.31 GHz measurements

by Spencer and Braswell (1997), Buehler et al. (2005) or

Brogniez and Pierrehumbert (2006). The logarithmic trans-

formation of the BT into UTH is quite simple and elegant. It

relies on a large training data set that provides the parameters

of the transformation and on a precise definition of UTH: a

mean RH value vertically weighted by a dedicated function

(a so-called sensitivity function) that is related to the trans-

mission of the atmosphere in the spectral domain. The well-

known drawback of this method is that the weighting opera-

tor used to define the UTH has a width and altitude of peak

that depend on both the absorber amount and on the tem-

perature profile: the drier the atmosphere (i.e., higher BTs),

the thicker the layer, and the peak of maximum of sensitivity

shifts downwards. Therefore, there is no pressure attribution

of the area of the troposphere under consideration.

The first aim of this study is to perform an analysis of

the contribution of the two microwave instruments of the

Megha-Tropiques mission, operating since October 2011, for

the retrieval of layer-averaged RH profiles. The SAPHIR

sounder and the MADRAS imager are both dedicated to im-

proving the documentation of the atmospheric water cycle.

In a previous paper, Brogniez et al. (2013) showed the ex-

pected improvements for the estimation of the RH profiles

thanks to the combination of those two instruments, high-

lighting the gain of information for both ends of the tro-

posphere when only a subset of the channels of MADRAS

are combined to SAPHIR measurements. Despite the short

lifetime of MADRAS, the availability of a few months of

measurements constitutes a test bed for future missions, such

as the Second Generation of the Meteorological Operational

satellite program (MetOp-SG, EUMETSAT Polar Satellite)

planned for launch in 2020. Indeed, the Microwave Sounder

(MWS) and the Microwave Imager (MWI) of MetOp-SG

have channels very close to those of SAPHIR and MADRAS.

The second objective is to demonstrate the potential of

purely statistical methods in the following problem: given a

set of brightness temperatures (BTs) provided by a space-

borne radiometer, what is the vertical distribution of RH and

what are the expected limits of such an approach? Many re-

trieval approaches exist; however, to our knowledge, a few of

them estimate the RH profile from a simple input data set re-

stricted to the BTs. Indeed, most of the approaches are physi-

cally based iterative techniques such as a n-dimensional vari-

ational algorithm that converges to the least biased profile us-

ing other inputs as prior knowledge of the system under study

(such as surface emissivity, temperature profile and some-

times a prior water vapor profile for BT simulations). These

variational techniques are well established (Kuo et al., 1994;

Cabrera-Mercadier and Staelin, 1995; Rieder and Kirchen-

gast, 1999; Blankenship et al., 2000; Liu and Weng, 2005)

and it would be unnecessary to reinvent a similar algorithm.

Here, the selected approach is to learn the relationship be-

tween the inputs (i.e., the BTs) and the output (i.e., the av-

eraged RH in a specific atmospheric layer) directly from a

training set that implicitly contains all the relevant informa-

tion such as the statistical distribution of the atmospheric

RH or the radiative transfer equation from the set of BTs.

We chose not to discuss the relevant a priori constraints that

could improve the retrieval or on the choice of a relaxation

scheme.

The current operational retrieval (version 6, released in

2013) of water vapor profiles (layer and level products) from

the instruments of the Aqua mission (namely AIRS, AMSU

and HSB (Humidity Sounder for Brazil, INPE), see Au-

mann et al., 2003) differs from these approaches (Fetzer

et al., 2013): a stochastic approach combined with a neural-

network defines the first guesses of clear-air temperature and

humidity profiles following Blackwell (2005) instead of a cli-

matology in the previous version. Above 118 hPa, the water

vapor profiles are filled with a climatology from the ECMWF

IFS model (European Center for Medium-Range Weather

Forecasts/Integrated Forecasting System). The final profiles

are obtained from a physically based iterative procedure that

adjusts the transmittance of the radiative transfer model. This
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algorithm requires either both IR and MW measurements

(AIRS + AMSU) or IR-only measurements (AIRS) and fore-

cast surface pressures, which are taken from the ECMWF

forecasts. This last version is currently under evaluation, but

first performance analyses using radiosondes measurements

as a reference show an improvement of the estimation of wa-

ter vapor in the mid and lower troposphere that is related

to the new definition of the first guesses and to the cloud-

clearing methodology (Van Dang et al., 2012).

As in Brogniez et al. (2013), the retrieval technique is

based on the Generalized Additive Model (hereafter GAM,

Hastie and Tibshirani, 1990) and its ability to model multi-

variate and non-linear relationships. The choice of GAM

over other retrieval techniques is relatively subjective. So to

ensure that the main patterns are independent from the choice

of the statistical model, a comparison against two other mod-

els is done. We consider two other machine learning regres-

sion methods based on different design algorithms and dif-

ferent learning techniques. A multi-layer perceptron (MLP),

which is a neural-network, and a least squares support vec-

tor machine (LS-SVM), which is a kernel method. The MLP,

as defined by Rumelhart et al. (1986), is generally consid-

ered as reference because it is the most common approach to

develop non-parametric and non-linear regression in various

application domains. MLPs have been successfully applied

in remote sensing application, with or without prior informa-

tion (e.g., Mallet et al., 1993; Cabrera-Mercadier and Staelin,

1995; Aires and Prigent, 2001; Franquet, 2003; Karbou et al.,

2005; Aires et al., 2010). The second one is the least squares

support vector machines (LS-SVMs) (Suykens et al., 2002),

which belongs to the family of kernel methods. LS-SVMs are

models with high generalization capabilities and numerous

analysis involving real data in other areas (Balabin and Lo-

makina, 2011; Wun-Hua et al., 2006) have shown that SVM-

based techniques are comparable in efficiency to MLPs.

The description of the data at hand and of the context of the

work is made in Sect. 2. The three non-linear models, GAM,

MLP and LS-SVM and their design for the study are detailed

in Sect. 3. Section 4 is dedicated to the evaluation of the es-

timations over a realistic data set in order to have a large

sample of evaluation. The application to Megha-Tropiques

measurements is discussed in Sect. 5 with a comparison to

radiosonde measurements. Section 6 finally draws a conclu-

sion on the study and discuss the ongoing work.

2 Data and context

2.1 Overview of the Megha-Tropiques mission

Megha-Tropiques is an Indo-French satellite that is dedi-

cated to the observation of the energy budget and of the

water cycle within the tropical belt (±30◦ in latitude). The

platform carries four instruments: MADRAS, a microwave

imager for the observation of rain and clouds (Microwave

Analysis and Detection of Rain and Atmospheric Structures),

SAPHIR, a microwave sounder of tropospheric RH (Sondeur

Atmosphérique du Profil d’Humidité Intertropicale par Ra-

diométrie), ScaRaB, a wide band instrument for the measure-

ment of radiative fluxes at the top of the atmosphere (Scan-

ner for Radiation Budget), and ROSA, a GPS receiver (Radio

Occultation Sounder for the Atmosphere). In this study, we

focus on the combined use of SAPHIR and MADRAS obser-

vations, whose characteristics are listed in Table 1 together

with their in-flight radiometric sensitivities as estimated by

the CNES space agency (Karouche et al., 2012). SAPHIR is

the main instrument for RH profiling with six channels in the

183.31 GHz strong absorption line of water vapor. The first

channel is close to the center of the line and is aimed at reach-

ing the upper levels of the troposphere while the sixth chan-

nel is located on the wings of the absorption line and provides

a deeper sounding of the atmosphere. In the context of the

RH estimations, the measurements provided by MADRAS

(dedicated to rainfall estimation) will obviously better con-

strain the problem since 23.8 GHz measurements are gen-

erally used for the determination of the total water vapor

content (Schaerer and Wilheit, 1979) and the two 157 GHz

channels can help removing the contribution of the surface to

the upwelling radiation (English et al., 1994). However, due

to a mechanical anomaly affecting the rotating mechanism

of MADRAS, its measurements are considered invalid since

26 January 2013 and only SAPHIR observations are avail-

able to the scientific community after this date (joint CNES

and ISRO communication done on 24 September 2013).

2.2 Data description

High quality RH soundings sampling the tropical tropo-

sphere, reasonably collocated in space and time with Megha-

Tropiques observations are quite scarce, yielding to use a

synthetic training set to overcome the problem. This set

is made of thermodynamical profiles representative of the

30◦ N–30◦ S atmosphere and of the associated BTs simulated

using a radiative transfer model. This method embeds both

the physical and statistical characteristics of the inverse prob-

lem in the training phase.

2.2.1 The radiosonde profiles

The RH profiles come from the Analyzed RadioSound-

ings Archive (ARSA, http://ara.abct.lmd.polytechnique.fr/

index.php?page=arsa) that is a reprocess of the operational

radiosoundings used in the ECMWF assimilation model,

performed by the Laboratoire de Métérologie Dynamique

(N. Scott, LMD, personal communication, 2015). The main

aspects of the reprocess are (i) the discarding of incomplete

profiles both in temperature (threshold of 30 hPa) and humid-

ity (threshold of 350 hPa), (ii) a vertical extrapolation of the

remaining profiles up to 2× 10−3 hPa, considered to be the

top of the atmosphere, using space–time collocated profiles

www.atmos-meas-tech.net/8/1055/2015/ Atmos. Meas. Tech., 8, 1055–1071, 2015
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Table 1. Observational characteristics of SAPHIR and MADRAS. θzen is the viewing zenith angle. “H” and “V” correspond respectively to

the horizontal and vertical polarizations of the observed electromagnetic field. f0 corresponds to SAPHIR central frequency at 183.31 GHz.

The instrumental noises obtained from in-orbit performance are also indicated (from Karouche et al., 2012).

Instrument Central frequency Bandwidth Resolution (km) In-orbit instrumental

(name) (GHz) (MHz) (along × across track) Noise (NE1T (K))

S1 f0± 0.2 ±200 1.44

SAPHIR S2 f0± 1.1 ±350 from (10× 10) km2 at nadir 1.05

cross-track S3 f0± 2.8 ±500 to (14.5× 22.7) km2 0.91

(θzen =±50.7◦) S4 f0± 4.2 ±700 on the edge of the swath 0.77

S5 f0± 6.6 ±1200 0.63

S6 f0± 11.0 ±2000 0.54

M1 & M2 18.7 (H & V) ±100 0.48 & 0.56

MADRAS M3 23.8 (V) ±200 (67.25× 40) km2 0.49

conical scan M4 & M5 36.5 (H & V) ±500 0.40 & 0.40

(θzen = 53.5◦) M6 & M7 89.0 (H & V) ±1350 (16.81× 10) km2 0.55 & 0.53

M8 & M9 157.0 (H & V) ±1350 (10.1× 6) km2 1.59 & 1.49

from ECMWF Reanalysis (ERA) Interim outputs and (iii) a

projection on a 43-level fixed pressure grid with a surface

level extracted from surface reanalyses files of ECMWF. An

evaluation of the resulting profiles against IASI, MHS or

HIRS/4, using a radiative transfer model has led to empiri-

cally correct the ERA-Interim profiles around 300 hPa, which

can be explained by the lack of observational constraints (in

situ or space-borne) in the model.

In the current study, the profiles are vertically restricted

to the troposphere (from the surface up to 85 hPa) simply

because of the characteristics of the weighting functions of

SAPHIR. Figure 1a shows the profiles sampled from ARSA

(mean and standard deviation) together with the six tropically

averaged weighting functions of SAPHIR that do not go be-

yond (on average) the tropopause. We also applied a physical

constraint on the RH in order to remove the extremely dry

profiles (RH< 2 %) and the super-saturated layers encoun-

tered in the upper troposphere (RH> 150 %, e.g., Gierens

et al. (1999), Read et al. (2007), Read et al. (2001), the RH

being defined with respect to ice or liquid water depending

on pressure and temperature). In the following the term RH

will refer to the relative humidity computed with respect to

the liquid phase of water only.

Only clear-sky conditions are considered. Indeed, as un-

derlined by Brogniez et al. (2013), the representation of the

cloudy conditions in a training database still presents a limit

because reference profiles of cloudy situations with known

uncertainties are difficult to gather, which could introduce

unwanted additional errors in the methodology. Moreover,

we chose to restrict the main part of the current work to a full

description of the retrieval models dedicated to oceanic situ-

ations. The retrieval models for land surfaces have a similar

design and we will mainly discuss the approach followed to

consider the extremely variable continental emissivity (Kar-

bou et al., 2005).

The base is finally made of 1631 thermodynamic 22-level

profiles that cover the tropical oceans (30◦ S–30◦ N) over the

1990–2007 period. Figure 1b shows the evolution of the to-

tal column water vapor (TCWV) with the surface tempera-

ture within the base. The increase of TCWV as the surface

temperature increases is a well-known and strong charac-

teristic of the tropical oceanic atmosphere, which is largely

(but not entirely) explained by the Clausius–Clapeyron law

(Stephens, 1990). A few profiles sample conditions asso-

ciated to extremely dry (TCWV< 20 mm) and very moist

(TCWV> 80 mm) columns.

2.2.2 Definition of the considered atmospheric layers

Given a set of BTs, the expected accuracy in the estimated

RH will obviously highly depend on the atmospheric area un-

der consideration. Therefore for a specific atmospheric layer,

the relevant inputs will not be necessarily the same as for

the layer above. One can indeed expect that the estimation

of RH in the mid-troposphere will not significantly benefit

from MADRAS measurements, while these should be an as-

set for a surface layer. This is why layer-dependent models

are considered here. The RH profiles were analyzed to group

the 22 original levels in relatively homogeneous layers. First,

the analysis of the variance–covariance matrix determined

groups of correlated successive levels. Then, self-organized

maps (SOM also named Kohonen maps) (Kohonen, 1982,

2001) made of 10× 10 elements (artificial neurons) are used

to visualize the 22-D original profiles as 22 2-D images (not

shown). Here, each neurons represent a cluster of RH pro-

files close to one another in terms of Euclidian distance. This

visual analysis allows to group the original levels with simi-

lar patterns taking into account linear and nonlinear relation-

ships. This visualization is also used to analyze the patterns

of the errors of estimation. The analysis of these SOM yields

to combine the original pressure levels with a semi-empirical

Atmos. Meas. Tech., 8, 1055–1071, 2015 www.atmos-meas-tech.net/8/1055/2015/
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Figure 1. Characteristics of the database. (a) Distribution of total

column water vapor (mm) according to the surface temperature (K).

The top panel represents the average plus or minus 1 standard devia-

tion. The number of observations is represented in the bottom panel.

(b) The initial 22-level RH profiles are summarized by their mean

(black line) and their standard deviation (grey envelope) and the re-

duced seven-layer clustering using box-and-whiskers diagram. For

each layer, the box-and-whiskers diagram indicates the median (the

central vertical line), and the lower and upper quartiles (left and

right edges of the box). The whiskers indicate the lower and up-

per limits of the distribution within 1.5 times the interquartile range

from the lower and upper quartiles, respectively. The tropical mean

normalized weighting functions of SAPHIR are also represented on

the side (no scale). S1. . . S6 refers to SAPHIR channels (see Ta-

ble 1).

iterative method in order to have layers with minimal vari-

ance of RH and minimal mean-median distance. From this

reduction, the training RH data set is composed of seven-

layer profiles (grossly: 85–100, 130–250, 275–380, 425–650,

725–850, 900–955 and 1013 hPa).

Figure 1a shows the result of this vertical reduction us-

ing box-and-whiskers diagrams in order to present the main

characteristics of the atmospheric layers (median, first and

third quartiles, upper and lower limits of the distribution).

The weighting functions of SAPHIR recall that this radiome-

ter is designed to focus on the free troposphere (layers 3 to

6), with very little information near the tropopause and in the

boundary layer.

2.2.3 Synthetic Megha-Tropiques observations

The RTTOV fast radiative transfer model, version 9.3 (Radia-

tive Transfer for Television and Infrared Observation Satel-

lite Operational Vertical Sounder, Matricardi et al., 2004), is

used to simulate SAPHIR and MADRAS BTs from the 22-

level thermodynamic profiles described above. Because the

surface emissivity contributes strongly to the upwelling radi-

ation in the microwave domain (Ulaby et al., 1981; Bennartz

and Bauer, 2003) its implementation is important for realis-

tic radiative transfer simulations. Indeed, the surface emissiv-

ity affects the observed microwave upwelling radiation in the

two lower channels of SAPHIR (183.31±6.8 and±11 GHz,

with a difference of BT of up to 5 K for some cases) and of all

the nine channels of MADRAS. In RTTOV v9.3, the oceanic

surface emissivities are computed with the FASTEM-3 sur-

face model (fast emissivity model, Deblonde and English,

2001) using the 10 m wind speed. Here we use the wind ex-

tracted from a 18-year climatology from the ERA-Interim

model covering the same period as the thermodynamic pro-

files (1990–2008). Over continental surfaces, the emissivity

atlas of Prigent et al. (2006), elaborated from 10 years of Spe-

cial Sensor Microwave Imager (SSM/I) observations, is pre-

ferred over the internal module of RTTOV. Finally, SAPHIR

BTs are simulated only in the nadir geometry, whereas the

simulations of MADRAS BTs are performed at the radiome-

ter’s constant viewing angle of 53.5◦.

The simulations also make use of the instrumental noise to

have a realistic base of work. The radiometric sensitivity is

often considered as the instrumental noise since it gives the

minimum variation in the measured upwelling radiation that

a specific channel can detect (noise-equivalent 1T : NE1T ,

in K). This noise may be considered as additive and mod-

eled as realizations of a random variable following a normal

distribution with a zero mean and a standard deviation equal

to the NE1T value for each channel. The simulated data sets

are re-built by aggregating 10 noisy samples for each original

sample.

With the conclusion of MADRAS after almost 15 months

of measurements, two configurations of the RH retrieval

method have been considered: a SAPHIR-only scheme and

www.atmos-meas-tech.net/8/1055/2015/ Atmos. Meas. Tech., 8, 1055–1071, 2015
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Figure 2. Relationship between the RH of two atmospheric layers

(in %RH) and the associated BT (in K) at 183.31± 1.1 GHz (2nd

channel of SAPHIR). The RH of the 275–380 hPa layer is repre-

sented with black squares, while the gray circles are for the RH of

the 425–650 hPa layer.

a SAPHIR-MADRAS scheme, the latter being associated to

a selection of the optimal channels. For the former configura-

tions all SAPHIR channels are used. For the latter configura-

tion, a selection of the BTs is performed because the BTs that

will be significantly relevant in the RH retrieval of a given

layer will not necessarily be the same set when considering

another layer. For this purpose the optimal subset of channels

is determined thanks to the Gram–Schmidt orthogonalization

(GSO) procedure (see Chen et al., 1989). Here, since the size

of the whole input set (the BTs) does not exceed 15 elements,

the GSO procedure is implemented according to a wrapper

approach. This is performed for each atmospheric layer.

3 Description of the non-linear models

3.1 General aspects

To ensure the consistency between the mathematical descrip-

tions of the three statistical models, the notation will be

as follows: the estimation of the RHi of a specific layer i

(i ∈ [1;7]), namely the output, is performed from a vector

of BTs, the inputs, which is a p-dimensional covariate noted

BT (p ∈ [1;15]). Thus, for each layer i the training data set

is made of (p+ 1)-tuples
{
BT k, RHik

}N
k=1

, where the cardi-

nality of the set N is 16 310 (1631 profiles× 10 noisy repro-

ductions).

The GAM, MLP and LS-SVM models are built with three

different statistical supervised learning techniques. Overall,

the learning phase consists of using a set of training exam-

ples to produce an inferred function. Each example is a pair

made of an input vector (BT ) and a desired output value

(RHi of layer i), without other a priori information. The

nonlinearity between the input vector BT and the RHi is

more or less strong depending on the channel of observa-

tion and the atmospheric layer (Soden and Bretherton, 1993;

Stephens et al., 1996; Brogniez and Pierrehumbert, 2006;

Brogniez et al., 2013). This is especially true for upper tro-

pospheric channels, as illustrated on Fig. 2 for the BT of the

183.31±1.1 GHz channel of SAPHIR and the RH3 and RH4

(taken from the synthetic base). Therefore the approach cho-

sen is to adjust and optimize the BT -to-RHi relationships

separately for each of the seven layers.

The data set described in Sect. 2 is randomly divided into

two subsets: a subset of 2/3 of theN samples (∼ 11 000 sam-

ples) is dedicated to the training and to the validation of the

models while the remaining 1/3 forms the test set (∼ 5000

samples). Some parameters of the three modeling methods

have to be adjusted and the selected models are those with the

best generalization capabilities. These parameters are tuned

to minimize the validation error which is an empirical esti-

mation of the generalization error. Thus the selection of the

models consists of the involvement of an efficient validation

method. Various validation techniques exist in the literature

(Hastie et al., 2009). The most popular techniques are proba-

bly the cross-validation method and the leave-one-out (LOO)

technique, which are implemented according to the modeling

method. Note that since the three modeling methods will be

compared, we focus on efficient validation techniques and

pay less attention to the computational burden they involve.

The input vector BT is normalized (zero mean and unit

variance). While such normalization does not affect the esti-

mation provided by GAM (but only the relative weight of

each predictor in the fit), the normalized input data set is

the same for all models in order to simplify the process.

A principal component analysis (PCA) is also implemented

on the BT to feed each statistical model with uncorrelated

and linearly independent data. Indeed, the weighting func-

tions of the six channels of SAPHIR slightly overlap each

other to cover the entire absorption line. As a result, while

each channel receives mainly the radiation emitted by a given

layer of the atmosphere, contributions from layers above

and below are not negligible, yielding to some interdepen-

dencies between the channels. Finally, in order to account

for the known exponential relationship between the BT in

the 183.31 GHz line and the atmospheric RH (for instance

at 183.31± 1.0 GHz, see Spencer and Braswell, 1997, and

Buehler and John, 2004), the use of the exponential function

is also considered, which has also the advantage to ensure the

retrieval of positive values. The effect of the PCA and of the

exponential function have been evaluated for each statistical

model for each layer i. The configuration with the smallest

validation error was selected.
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3.2 Generalized additive model

GAMs have recently started to be used in environmental

studies as a surrogate to traditional MLP thanks to their abil-

ity to model nonlinear behaviors while providing a control

of the physical content of the statistical relationships (Wood,

2006). Therefore, among the recent works, one can cite the

use of GAM to perform a statistical downscaling of precipita-

tions (e.g., Beckmann and Buishand, 2002; Vrac et al., 2007),

to analyze time series (Davis et al., 1998; Mestre and Halle-

gatte, 2009; Underwood, 2009) and more recently to solve

inverse problems (e.g., Brogniez et al., 2013). A reasonable

number of papers provide in-depth descriptions of the GAM

algorithm, and one can refer to Wood (2006) for a detailed

presentation of the background and the implementation is-

sues of such model. We provide here only briefly its main

characteristics. A GAM infers the possible nonlinear effect

of a set of p predictors (BT1, . . .,BTp) to the expectation of

the predicant RHi . It is expressed as followed:

g(E(R̂H
i
|BT ))= εi+f1(BT1)+f2(BT2)+ . . .+fp(BTp),

where g is a linearizing link function between the expecta-

tion of R̂H
i

given BT and the additive predictors fj (BTj ),

which are smooth and generally non-parametric functions of

the covariates BT1, . . .,BTp. Finally εi is the residual that

follows a normal distribution. Here, penalized regression cu-

bic splines are used as the smoothing functions and are esti-

mated independently of the other covariates using the “back-

fitting algorithm” (Hastie and Tibshirani, 1990). Part of the

model-fitting process is to determine the appropriate degree

of smoothness, which is done through a penalty term in the

model likelihood, controlled by a smoothing parameter λ. λ

determines the trade off between the goodness of fit (λ→ 0,

gives a wiggly function) of the model and its smoothness

(λ→∞).

Part of the GAM fitting process is to choose the appro-

priate degree of smoothness of the regression splines. The

smoothing parameter λ is adjusted to minimize the general-

ized cross validation score (GCV). One can refer to Wood

(2004) and Wood (2006) for more details on the training al-

gorithm.

3.3 Multilayer perceptron algorithm

An artificial neural network is an interconnection of sim-

ple computational elements (nodes or neurons) using func-

tions that are usually non-linear, monotonically increasing

and differentiable (Haykin, 1994). The multilayer percep-

tron (MLP) algorithm belongs to the family of artificial neu-

ral networks (Rumelhart et al., 1986). MLPs are attractive

candidates thanks to various well known properties. For in-

stance, an MLP is a universal function approximator and thus

can represent any arbitrary functions (Bishop, 1995), so they

are widely used for the approximation of non-linear transfer

functions. Moreover MLPs have been shown to be able to

deal with noisy data. In our case, defining the architecture of

the MLP consists of (i) selecting the relevant input variables

and (ii) setting the number of neurons in the hidden layer. A

fixed architecture defines a function family F(·), in which we

seek the best function allowing us to invert BTs. It is possible

to express this MLP model in a mathematical way as

R̂H
i
= F(W,BT ),

where F(·) and W correspond respectively to the transfer

function and the synaptic weights matrix of the model. The

main critical point with the MLP method is the way to choose

the optimal architecture and to adjust the corresponding in-

ternal parameters (the weights). These parameters are deter-

mined so as to minimize the mean quadratic error computed

on the training data set. As our goal is to create a nonlin-

ear model with good generalization capabilities, the problem

of overfitting must be considered. To avoid overfitting, the

LOO validation method is implemented to check the possi-

ble overfitting and to optimally select model parameters such

as to minimize the validation error.

3.4 Least squares support vector machine

SVMs are kernel methods (Scholkopf and Smola, 2002).

They are attractive candidates for nonlinear modeling from

data. Thanks to various desirable properties, they have the

ability to build models with high generalization capabilities

by avoiding overfitting and controlling model complexity. A

least squares formulation of SVM called LS-SVM was pro-

posed to make the SVM approach for modeling more gener-

ally applicable, such as for dynamic modeling (Qu, 2009) or

for implementing sophisticated validation techniques (Caw-

ley and Talbot, 2007). The SVM technique and its derived

formulations have found applications in atmospheric sci-

ences, such as in statistical downscaling of precipitation (Tri-

pathi et al., 2006; Anandhi et al., 2008), in regression prob-

lems (Sun et al., 2005) or in classification from remote sens-

ing measurements (Lee et al., 2004).

The LS-SVM training procedure consists of estimating the

set of adjustable parameters w and b by the minimization of

the cost function:

J (w,e)=
1

2
wTw+

1

2
C

N∑
k=1

e2
k,

with ek the prediction error for example k and N the size

of the training set. C is an hyperparameter that controls the

tradeoff between the prediction error and the regularization.

This optimization problem can be cast into a dual form with

unknown parameters α and b, α being the vector of the La-

grange multipliers. Thus, the parameters can be computed by

resolving a set of (N + 1) linear equations.

Since LS-SVM models are linear in their parameters mod-

els, the solution of the training phase is unique and can be
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computed straightforwardly, using the set of (N + 1) lin-

ear equations as stated above. Here the validation error is

estimated using the virtual LOO (or VLOO) method. This

method, first proposed for linear models (Belsley et al., 1980)

and later extended to nonlinear models (Laurent and Cook,

1993), allows to estimate the validation error by performing

one training involving the whole available data. This esti-

mation is exact when dealing with linear-in-their-parameters

models, such as LS-SVM models, while it remains an ap-

proximation for models which are nonlinear with respect to

their parameters. More recently, a framework described by

(Cawley and Talbot, 2007) implements the VLOO method

for LS-SVM models. This method gives a fast and exact es-

timation of the validation error, which is a great benefit for

reducing the computational burden involved by other valida-

tion techniques such as the cross validation method (Hastie

et al., 2009).

4 Performance over the synthetic data set

The retrievals of layer-averaged RH profiles provided by

GAM, MLP and LS-SVM are compared for the two schemes.

The following criteria are computed over the test set (∼ 5000

samples) for each atmospheric layer i: the mean error (re-

ferred to as the “bias”), the standard deviation of the error

(SD) and the Pearson’s correlation coefficient (R) between

the estimated R̂H and the reference RH, using the variance-

covariance matrix (cov):

llSDi =

√√√√ 1

N

N∑
k=1

(RHik − R̂H
i
k)

2

biasi =

N∑
k=1

(RHik − R̂H
i
k)

Ri =
cov(RHi, R̂H

i
)√

SD2(RHi) ·SD2(R̂H
i
)

.

Moreover, the notation %RH will be used to make easier the

discussion between relative units (in %) and RH units (in

%RH). The size of the test set allows to consider that all the

results are significant at the 99.9 % level of confidence.

4.1 On the optimization of the models

As mentioned in Sect. 2.2.3, it is important to underline

that the optimized models are different for each atmospheric

layer. Indeed, in the case of the SAPHIR-MADRAS scheme

a selection of the relevant channels is performed using the

GSO procedure. The GSO procedure helps to reduce the

complexity of the algorithms by reducing the number of in-

puts of the available set of data. It is implemented in the

present case with a reasonable threshold of 10 % on the vari-

ation of the variance. This means that the inputs that en-

hance the error variance less than 10 % are considered as

irrelevant. Of course the same inputs could be used for the

different models with small deterioration. For example, for

the layer 4 (425–650 hPa), a sensitivity analysis has shown

that, when using GAM, the best set of inputs is {S3, S4, S5,

S6, M3, M4} and if M9 is added, the SD decreases from

4 to 3.8 %RH. When the RH retrieval is based on the MLP

approach, the SD increases from 2.8 to 3 %RH. In these

two cases the difference is relatively small. In fact, an in-

depth study of the relevancy of the channels reveals that the

selected inputs are only weakly dependent on the retrieval

model but are highly dependent on the atmospheric layer.

For the SAPHIR-only scheme, all channels are used.

An impact study of the pre-processing of the data on the

accuracy of RH retrieval shows that, whatever the atmo-

spheric layer or algorithm considered, the improvement ob-

tained with PCA is negligible (< 3 % of the error variance).

The use of uncorrelated inputs is thus not necessarily re-

quired for the considered models. Finally, the linearization

of the problem with the exponential function is beneficial

only for the MLP: in this case it leads to a decrease of the

error variance of about 50 %, while no significant improve-

ment is observed for LS-SVM and GAM (< 3 % of the error

variance).

4.2 Performance of GAM against the two other models

From here on, noise-free BTs are considered in order to only

assess the statistical approaches. The radiometric noise of the

two instruments are implemented for the evaluation of the re-

trieval of RH with profiles considered as reference profiles.

Vertical profiles of mean biases, SD and R between the ob-

served RH and the estimated RH are presented on Fig. 3. At

first sight, the analysis of one layer at a time clearly shows

that the overall quality of the retrieval is layer-dependent,

meaning that it is strongly constrained by the physical limits

of the inverse problem. Thus, the layers covering the free tro-

posphere (layers 2 to 6) are quite well modeled, with small

SD reaching values between 2.6 %RH and 7.8 %RH, and are

characterized by a small scatter, with R lying in the 0.85–

0.97 interval. The combined use of SAPHIR and MADRAS

BTs is enough to explain more than 70 % of the variability

of the RH at these layers. The retrieval of the RH of the ex-

treme layers (layer 1 for the top of the atmosphere, layer 7 for

the surface) seems more delicate and is clearly limited by the

inputs at hand: as illustrated on Fig. 1a, the six channels of

SAPHIR observe the emitted radiation grossly between 150

and 850 hPa, and although MADRAS brings some additional

relevant measurements, other information such as the surface

emissivity might contribute significantly to better constrain

the retrieval near the surface.

The LS-SVM technique provides overall the best re-

sults, with the highest correlation coefficients and the low-

est variance for five layers over the seven considered in this

study. In fact, theoretically, these three learning methods are

equivalent, but the conditions of their implementation are
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Table 2. Mean bias (in %RH), standard deviation (SD, in %RH) and correlation coefficient (R) for the seven layers, and defined between

the observed RH and the estimated RH. The estimated RH is obtained using the GAM approach from the two configurations: SAPHIR-

MADRAS joint measurements and SAPHIR-only measurements. For the SAPHIR-MADRAS configuration, the relevant channels selected

using the GSO procedure are listed using the labels Si and Mj indicated in Table 1.

SAPHIR &

Layer # Scores MADRAS SAPHIR

Relevant channels All channels

# 1

(85–100 hPa)

bias (%) S1, S2, S3, S5 1.98 2.36

SD (%) M1, M2, M3, M4, M5, 8.92 9.91

R M6, M7, M8, M9 0.67 0.57

# 2

(130–250 hPa)

bias (%) S1, S2, S3 −0.01 −0.09

SD (%) M1, M2, M3, M4 5.96 6.02

R M5, M6, M7 0.92 0.91

# 3

(275–380 hPa)

bias (%) S1, S2, S3, S4, S5, S6 0.48 0.48

SD (%) M1, M2, M3, M5, M6 3.67 3.79

R 0.95 0.94

# 4

(425–650 hPa)

bias (%) S1, S3, S4 0.45 0.08

SD (%) M1, M3, M5, M7 3.56 4.72

R 0.97 0.95

# 5

(725–850 hPa)

bias (%) S1, S3, S5, S6 0.95 2.69

SD (%) M3, M4, M7, M9 8.55 11.68

R 0.91 0.83

# 6

(900–955 hPa)

bias (%) S1, S3, S4, S5, S6 0.11 −1.53

SD (%) M1, M3, M4, M5, M6, 6.72 11.65

R M7, M8, M9 0.91 0.70

# 7

(1013 hPa)

bias (%) S1, S2, S3, S4, S5, S6 0.36 −0.02

SD (%) M1, M2, M3, M4, M5, 8.69 9.67

R M6, M7, M8, M9 0.54 0.34
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Figure 3. Vertical profiles of R (left), biases (center, in %RH) and

SD (right, in %RH) for the MLP (solid line), the GAM (dashed

line) and the LS-SVM (dotted line) models, trained on noise-free

SAPHIR and MADRAS data.

somewhat different. First, since the LS-SVM are linear-in-

their-parameters models, an exact validation method was im-

plemented. The resulting procedure of selection of the rel-

evant inputs is quite efficient. In addition, MLP models are

nonlinear with respect to the adjusted parameters, and their

training amounts to a nonlinear optimization. Several train-

ings with different initializations must be performed with no

guarantee to achieve the best generalization capability given

a network architecture. From this point of view, the LS-SVM

approach is thus more successful. Finally, concerning the

GAM approach, the smoothing splines used guarantee a non-

linear behavior, continuity and smoothness which are impor-

tant characteristics in a learning algorithm. Another conve-

nient characteristic for splines is that they are monotonic:

the back-propagation algorithm can estimate parametric and

non-parametric components of the model simultaneously.

The three methods perform equivalently: R and SD are

very close to each other. The MLP approach provides slightly

more biased estimations of the RH throughout the tropo-

sphere while the GAM and LS-SVM methods are centered.

This distinction is more pronounced for the surface layer

with retrievals of RH characterized with a 6.9 %RH bias
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when using the MLP, whereas the bias is 0.06–0.07 %RH

with GAM and LS-SVM. A sample of layer-averaged pro-

files is presented on Fig. 4, with the observed relative hu-

midity and the three estimations using the three approaches.

As discussed above the top layer is the less well retrieved

from the set of BTs, whatever the approach, while the mid-

tropospheric layers (3 to 6, i.e., 350 down to 950 hPa) are

pretty well estimated.

The errors obtained from the GAM estimation are pro-

jected on the 10× 10 Kohonen maps that were obtained

during the stage of clustering of the atmospheric layers

(Sect. 2.2.2) and give a structural view of the errors. The pro-

jections are shown on Fig. 5. This allows to analyze the re-

trieval errors with respect to the clusters of RH revealed by

the maps, and allow for a deeper analysis related to mete-

orological situations than the global biases and SD. A pat-

tern of a large bias (∼ 44 %RH) clearly stands out of the

map of layer 1 (near tropopause), and this bias is associated

to the neurons related to a moist structure at this top layer.

This suggests that GAM has difficulties when dealing with

a moist upper troposphere, that could be due to an under-

representation in the training set. A similar statement can be

made for the 6th layer, with the neurons associated to the

largest bias in the upper left corner (negative in this case)

being this associated to the more dry neurons of this layer.

There is no clear pattern standing out of the remaining lay-

ers, even for the surface layer, meaning that the errors are

uniformly distributed.

4.3 Performance for the two instrumental schemes

In the following, noisy BTs are used in order to discuss the

results over the realistic instrumental configurations. Two

GAMs are optimized for each atmospheric layer, one for

each instrumental scheme: a SAPHIR-MADRAS scheme

and a SAPHIR-only scheme. The evaluations over the vali-

dation set are summarized on Table 2, with biases, SD and

R. An illustration of the scatter is given with Fig. 6 for

two atmospheric layers: layer 4 (∼ 425–650 hPa) and layer 6

(∼ 900–955 hPa). These statistics allow for a discussion on

the influence of MADRAS BTs on the quality of retrieval of

the RH. MADRAS channels are an asset for the estimation

of the RH profile since their use reduce the scatter (improve-

ment of R and reduction of SD). The pattern of scatter fol-

lows the distribution of the weighting functions of SAPHIR:

the best estimations are obtained for the mid-tropospheric

layers (R = 0.83 to 0.97, over layers 2 to 5) where the func-

tions strongly overlap, and the quality of the estimations de-

crease towards the edges. One can also note that the retrieval

model of the 7th layer uses all 15 BTs of the microwave pay-

load, but this does not allow for a robust estimation of the RH

(R = 0.54, corresponding to a R2 value of 0.29). An estima-

tion of the RH profile down to 955 hPa seems reasonable if

no other constraint is added to the model.

When the SAPHIR-only scheme is used, such a statement

can be extended to the top layer (R = 0.57, R2
= 32), thus

limiting the estimation of RH from layer 2 to layer 6. For

these atmospheric layers, the biases are small and range be-

tween 2.69 and −1.53 %RH. The impact of MADRAS BTs

on the retrieval of RH is important to keep in mind when

specific analysis of temporal and spatial variations of the RH

field will be performed over the MT (Megha-Tropiques) life-

time.

5 Application to Megha-Tropiques measurements

5.1 Some considerations on the Megha-Tropiques

observations

As other similar radiometers with varying viewing geome-

tries, SAPHIR observations are subject to the so-called “limb

effect”, described for instance in Goldberg et al. (2000). This

means that, at SAPHIR frequencies, the pixels on the edge of

the swath have BTs artificially lower than the pixels located

in the center, the atmosphere of the former having a larger op-

tical depth than the latter. For the same thermodynamical pro-

file, this limb effect yields to shift upward the sounding alti-

tude of the outermost pixels. Of course this needs to be taken

into account in any retrieval processes (e.g., Karbou et al.,

2005; Buehler et al., 2004). Possibilities are (i) to have one

dedicated model per viewing angle (as done by Buehler and

John, 2004), (ii) to include explicitly the viewing angle in the

retrieval method traditionally done in iterative schemes (see

Soden and Bretherton, 1993; Liu and Weng, 2005), or (iii) to

apply a correction that brings all the viewing angles to an

equivalent nadir position, before the retrieval itself (Brogniez

and Pierrehumbert, 2006). Here, the GAMs have been opti-

mized using the nominal viewing angle of MADRAS (53.5◦)

and limited to the nadir geometry of SAPHIR. In fact, the

observed relationship between the BT and the viewing an-

gle can be accurately approximated by a multi-variate linear

function, as noticed by Goldberg et al. (2000) and Buehler

et al. (2004). Knowing the means and variances of this re-

lationship for each angle is enough to assimilate this func-

tion in the normalization method, which is based on standard

scores. These have been computed every 2◦ from nadir to 52◦

(the maximum viewing angle of SAPHIR is 50.7◦) using the

training database.

5.2 Comparison to radiosonde measurements: the

CINDY/DYNAMO/AMIE data set

Observed RH profiles gathered from the

CINDY/DYNAMO/AMIE international field experiment

are used to evaluate the estimated RH profiles. With the 1st

orbit of Megha-Tropiques executed on 13 October 2011, this

large scale campaign is ideal to perform such an exercise.

It took place over the October 2011–March 2012 period in

the Indian Ocean and was dedicated to better understand the
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Figure 4. Examples of three estimations of RH profiles (in %RH) extracted from the database using the SAPHIR-MADRAS configuration.

The observed profile is the thick gray line and the three estimations (plain, dashed, dots, respectively, for MLP, GAM and LS-SVM) are in

black.
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Figure 5. RH and the associated errors (both in %RH) projected on the 10× 10-neuron self-organizing maps obtained from the step of

clustering of the original RH profiles (see Sect. 2.1): the upper row shows the mean RH for the seven layers, and the lower row shows the

errors of estimation using GAMs. Note that the color scales of the maps representing the 1013 hPa layer and the error estimated for layer 1

are adjusted.

processes involved in the initiation of the Madden–Julian

Oscillation and to improve its simulation and prediction

(Cooperative Indian Ocean Experiment on Intraseasonal

Variability in the Year 2011/Dynamics of the Madden–Julian

Oscillation/ARM Madden–Julian Oscillation Investigation

Experiment, hereafter C/D/A). Measurements related to the

atmospheric and oceanic states have been collected from

radars, microphysics probes, a mooring network and an

upper air sounding network. One can refer to Clain et al.

(2015) for a discussion on the quality of the RH profiles

and their use in the context of the evaluation of SAPHIR

measurements. Here we focus on the oceanic sites and on

the October–December 2011 period to evaluate the RH esti-

mations; over that period, MADRAS performed optimally.

Clain et al. (2015) found a systematic bias in the BT space

that increases with the distance of the observing channel

from the central frequency. Such biases are eliminated by

the normalization procedure of the retrieval scheme. Overall,

among the 10 000 high-resolution soundings collected

during the campaign (Ciesielski et al., 2015), only about 50

profiles match to our collocation criteria: a 1t ≤±45 min

and a 1x ≤ 50 km.

The restriction of the training of the GAMs to clear-sky

conditions requires a cloud mask. Therefore, cloud-free cases

are detected from the radiosounding record itself (RH limited

to 100 %RH) and are associated to the Hong et al. (2005)

www.atmos-meas-tech.net/8/1055/2015/ Atmos. Meas. Tech., 8, 1055–1071, 2015
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Figure 6. Scatter-plots of the observed RH versus the estimated RH (in %RH) for layer 4 (top row) and layer 6 (bottom row). The estimations

are done using GAMs trained from SAPHIR-only BTs (left-hand side column) and from SAPHIR and MADRAS BTs (right-hand side

column). The dashed line is y = x line and the solid line represents the linear regression. The correlation coefficient (R) and the standard

deviation of the error (SD) are provided within each panel.

method to detect the precipitating scene (i.e., the convective

overshootings: it is a threshold method based on the depres-

sion induced by the scattering of the microwave radiation by

the precipitating particles) from the SAPHIR observations.

One point of concern here is the availability of the Megha-

Tropiques archive over this period which is not 100 %, with

a lower availability for MADRAS. The completion of this

archive until the date of launch is still a major point of con-

cern for the two space agencies CNES and ISRO, in order to

maximize the size of the MADRAS record.

For each of the seven layers, the observed RH is defined

by the mean of the measurements that fit into the pres-

sure boundaries, assuming that this mean will be represen-

tative of the layer. This assumption is very simple, espe-

cially since the tropospheric RH is characterized by strong

vertical gradients induced by complex transport and thermo-

dynamic processes (e.g., Pierrehumbert et al., 2007; Sher-

wood et al., 2010). However, a comparison (not shown) be-

tween such a smooth mean and a discrete mean as defined

from the training profiles show no systematic differences.

Figure 7 shows the comparison between the observed and

estimated RH using profiles of R and biases, for the two in-

strumental configurations. Figure 7 summarizes the results.

Since the sample size is quite small (N − 2= 48 degrees

of freedom), a Student t test (Student, 1908) is performed

to test the independence of the samples, assuming that they

follow Gaussian distributions. The 99.9 % level of confi-

dence is indicated on Fig. 7 and t values below this level

are not given. Box-and-whiskers diagrams are used to repre-

sent the distributions of the differences and show the similar-

ity/differences of the estimations when using both SAPHIR

and MADRAS or only SAPHIR. As expected from the syn-

thetic data analysis, the mid-tropospheric layers 2 to 5 are

very well retrieved, with quite good correlations (0.6–0.92)

when SAPHIR and MADRAS are combined. Additional

analyses show that the SD of the differences reach a maxi-

mum of 10 %RH (layer 4). The removal of MADRAS clearly

affects the estimation of RH for most layers, while for layer 3

there is no significant effect. This is expected from the dis-

tribution of the weighting functions that present a large over-

lap around 300 hPa (see also Fig. 1). Our results are consis-

tent with the findings of Venkat Ratnam et al. (2013) dedi-

cated to the evaluation of the RH profile retrieval designed

by the Indian team involved in the Megha-Tropiques mis-

sion. The layer-averaged relative humidity (LARH) retrieval

technique (Gohil et al., 2013) differs from the present ap-

proach by its dependence on outputs from the National Cen-

ter for Environmental Prediction/National Center for Atmo-

spheric Research (NCEP/NCAR) re-analyses. This explains

the relatively closer pattern of the LARH estimated from

SAPHIR to the NCEP/NCAR RH profiles than to other mod-

els (e.g., ERA-Interim), as found by Venkat Ratnam et al.

(2013).

5.3 Land surfaces

The approach has been adapted to continental cases, where

the influence of the surface emissivity on the measured

brightness temperature at the top of the atmosphere needs

to be taken into account (Karbou et al., 2005), even for

SAPHIR channels. Moradi et al. (2013) have shown that

for relatively humid columns, defined with a proper filter

on the precipitable water vapor (PWV) given by radiosound-

ings, AMSU-B water vapor channels (similar to channels S2,

S3 and S5 of SAPHIR) are barely sensitive to the surface.
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Figure 7. Vertical profiles of R (left) and differences (right, in

%RH) for the SAPHIR-only (red) and the SAPHIR-MADRAS

(blue) retrievals, computed over the subset of 50 radiosonde RH

profiles from the CINDY/DYNAMO/AMIE campaign. For the pro-

files of the differences between the observed and estimated RH, the

box and whiskers diagram indicates for each layer the median (the

central vertical line) and the lower and upper quartiles (left and right

edges of the box). The whiskers indicate the lower and upper limits

of the distribution within 1.5 times the interquartile range from the

lower and upper quartiles, respectively.

The emission by the surface affects the measured BT in the

183.31±7.0 GHz (equivalent to channel S5) when the PWV

is lower than 30 kgm−2. The Moradi et al. (2013) study

focuses on polar atmospheres, and AMSU-B channels are

much less affected by the surface when observing tropical

situations (Aires et al., 2011). However, to limit the errors in-

troduced by a possible contribution of the surface emissivity,

the consideration of realistic surface emissivity is an asset for

the definition of a realistic training set. In the current study,

we use the emissivity atlas of Prigent et al. (2006) as an addi-

tional input of the radiative transfer model for the simulation

of the BTs. A GAM is trained for each layer following the

same method than for the oceanic conditions.

Comparisons (not shown) to radiosoundings launched

from a continental site in Ouagadougou, Burkina Faso (a

dedicated field campaign during the summer 2012) reveal

similar performance in the mid-tropospheric layers, the sur-

face layers being slightly better estimated.

5.4 Insight of large scale structures

Figure 8 shows an example of RH estimation using the

SAPHIR-only scheme, for the 4th atmospheric layer (425–

650 hPa) observed on 14 November 2011 (observing time

17:00–18:55 UT). The RH of ERA-Interim of the same date

at 18:00 UT is also presented. The large-scale patterns are

clearly identical in the two maps, such as the large dry area

over West Africa, the moist and thin filamentary structure

Figure 8. Relative humidity (in %) of the layer 400–600 hPa as esti-

mated from Megha-Tropiques/SAPHIR measurements (top) and by

the ERA-Interim reanalysis (bottom) for 14 November 2011. For

the map of ERA-Interim RH, the black contour delineates the clear

sky and the grey contour delineates the areas with low-level clouds,

while the dotted areas are covered with high or mid-level clouds.

northwest of it, or the moist area over Central America. The

amplitude of the two fields present some discrepancies, but

is important to focus specifically on the cloud-free zones.

The high and mid-level clouds in ERA-Interim are shaded in

black while the low clouds are delimited by the grey contour.

Over these areas the amplitudes are similar, with minima of

RH around 10 %RH. Note that no cloud-mask is yet available

for the Megha-Tropiques observations and a current effort is

on the use of the cloud mask and cloud classification devel-

oped by the SAFNWC (Satellite Application Facility of EU-

METSAT) and applied to the belt of geostationary satellites,

adjusted to Megha-Tropiques.

6 Conclusions

Microwave observations from the SAPHIR and MADRAS

microwave radiometers of the Megha-Tropiques satellite are

used to retrieve seven-layer RH profiles. For this purpose,

optimized GAMs were trained for each atmospheric layer

over a realistic set of synthetic observations. This set is com-

posed of 18 years of radiosonde profiles covering the tropi-

cal belt (±30◦), sampled from the ARSA database, used in

www.atmos-meas-tech.net/8/1055/2015/ Atmos. Meas. Tech., 8, 1055–1071, 2015
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combination with a radiative transfer model (RTTOV v9.3)

to get the associated synthetic BTs. Our approach consists

of using only the satellite measurements as inputs of the re-

trieval method. The training phase of the model considers

implicitly the role of temperature, humidity and surface char-

acteristics of the tropical atmosphere.

To assess the performance of GAM, two other algorithms

based on supervised learning, namely a MLP and a LS-

SVM, have been also trained and optimized using adapted

validation methods. To our knowledge, the LS-SVM mod-

eling technique has never been applied for remote sensing

retrievals, whereas it solves the major problem of local min-

ima, a common pitfall when using neural networks (such as

the MLP). While the three modeling methods come from

different theoretical backgrounds, they achieve roughly the

same performance, even though the LS-SVM approach pro-

vides roughly slightly better results. We assume that these

improvements come from their built-in regularization mech-

anisms, but they are associated to a heavy computational bur-

den that compromises their implementation when consider-

ing large data sets (such as satellite measurements).

The intercomparison of the three models points towards

the definition of the problem given the inputs at hand.

The combination of SAPHIR and MADRAS or the use of

SAPHIR-only makes it possible to perform a robust estima-

tion of RH in the 150–950 hPa part of the troposphere with a

small error (absolute maximum bias of 1.53 %RH) and scat-

ter (min correlation of 0.49). Near the tropopause and at the

surface, the retrieval capacity is clearly constrained by the in-

formation content brought by the inputs, whatever the config-

uration. Of course, the use of a retrieval technique (e.g., neu-

ral network or 1-D-variational) using prior physical infor-

mation should further improve the estimation: for instance,

the surface layer should clearly benefit from prior knowledge

of the surface temperature and total water vapor content. In

fact, a comparison with existing works based on methods

combining physical constraints with statistical tools (Kuo

et al., 1994; Cabrera-Mercadier and Staelin, 1995; Rieder

and Kirchengast, 1999; Liu and Weng, 2005; Aires et al.,

2013) applied to on similar radiometers with less channels in

the 183.31 GHz line, such as AMSU-B or MHS, shows that

the current approach gives similar performance (root mean

square errors of about 10 %RH in the mid-troposphere). It is

also consistent with the layer-averaged RH profiles estimated

by the Indian team involved in the Megha-Tropiques mission,

although further constraining the retrieval by NCEP/NCAR

outputs (Venkat Ratnam et al., 2013; Gohil et al., 2013). A 1-

D-variational technique exploring SAPHIR data should fur-

ther improve the estimation of RH.

Following this work, our current efforts focus on the es-

timation of the conditional error associated to the retrieval

itself. Indeed, because the widths and altitudes of the weight-

ing functions of SAPHIR are strongly dependent on the

thermodynamical state of the atmosphere (the drier the at-

mosphere, the wider the layer; the maximum of sensitiv-

ity shifting from the upper troposphere towards the mid-

troposphere), it is clearly expected that the robustness of the

RH estimation will be conditioned by the state of the at-

mosphere. The aim will be to provide the probability den-

sity function of the relative humidity on given BTs (a given

state of the atmosphere) and thus address the issue of non-

Gaussian distribution of the relative humidity at a given

height. The knowledge of such information fits into the cur-

rent work done within the Global Energy and Water Cycle

Experiment (GEWEX) Water Vapor Assessment (G-VAP:

http://www.gewex-vap.org) to better characterize the obser-

vational records, together with their uncertainties.
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