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Abstract

Fourier transform is the data processing naturally associated to most NMR experi-
ments. Notable exceptions are Pulse Field Gradient and relaxation analysis, the structure
of which is only partially suitable for FT.
With the revamp of NMR of complex mixtures, fueled by analytical challenges such as
metabolomics, alternative and more apt mathematical methods for data processing have
been sought, with the aim of decomposing the NMR signal into simpler bits. Blind
Source Separation is a very broad definition regrouping several classes of mathematical
methods for complex signal decomposition that use no hypothesis on the form of the data.
Developed outside NMR , these algorithms have been increasingly tested on spectra of
mixtures. In this review, we shall provide an historical overview of the application of
Blind Source Separation methodologies to NMR , including methods specifically designed
for the specificity of this spectroscopy.

Keywords: NMR Spectroscopy, BSS, Non Negative Matrix Factorization,
Independent Component Analysis, sparsity.
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1. Introduction

This review concerns the application to NMR of a specific class of algo-

rithms, collectively known as the Blind Source Separation (BSS ) approach,

which has been used in areas as different as multichannel audio signal sep-

aration, speech recognition, multispectral image processing or bio-medical

signal processing to quote only a few (see [1, 2, 3] and references therein).

Indeed, the very high resolution of solution-state NMR spectroscopy has

led towards its application in cases of very high spectral complexity, such as

proteins or liquid crystals, both of which can present hundreds of resonances.

However, one obvious and widespread alternative utilization of the resolving

power of NMR is analytical, the identification and quantification of the

components of a mixture.

The challenge here is two-fold: either to detect selected and interesting

compounds (for instance new natural products or elusive metabolites) or

to extract cumulative spectral features descriptive of a sample properties,

such as biomarkers [4]. Indeed, while an analytical application of NMR

has been in use since the earliest times, it tooks a whole new dimension

with the inception and blooming of multivariate analysis studies of the kind

that became common in metabolomics or food science, among others. Here,

tens to hundreds of compounds of moderate molecular size are within the

detection limit of NMR (of the order of nM to µM for classical NMR ).

Remarkably, the resolution of 2D NMR spectra is such that even by

visual comparison it has been possible to identify even features related to

original natural products [5, 6]. At any rate, the identification of the section

of a 2D spectrum of a mixture that belongs to a pure compound relies on

exploring the peak connectivities and the comparison with databases. Such
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an identification process would be simplified if a higher degree of “spectral

purity” can be achieved, for instance by mathematical un-mixing. This

latter may take many forms, BSS being just one of them. To illustrate

the context, we provide below a quick overview of specific but not-BSS

processing.

In some instances, a certain degree of specialized information can be

successfully extracted even from monodimensional NMR spectra with a high

degree of overlapping. Fitting to known metabolites or deconvolution using

Bayesian analysis has been demonstrated, for example in [7, 8]. Spiking with

a known molecule has been proposed as a way of identifying and removing

the specific signal of uninformative molecules [9].

Nonetheless, spreading of the resonances through classical multidimen-

sional experiments, albeit time-consuming, is one of the typical solutions to

the lack of resolution of simple 1D spectra. Thus, COSY, TOCSY, HSQC,

HMQC and more rarely HMBC are common spectral tools employed to

unravel the composition of complex mixtures via NMR , particularly for

assignment [10]. For unlabeled molecules, the use of the simplified spec-

tra associated to multiple-quantum transitions has also allowed a very high

discrimination [11, 12, 13, 14, 15, 16].

First attempts at introducing 2D experiments directly as metabolomics

tools have been performed, as reviewed in [17].

As the number of mixture components increase, some degree of overlap

of the signals even in the 2D experiments becomes inevitable, so that it is all

natural to try to further improve their resolution by data processing, covari-

ance analysis [18, 19, 20, 21, 22, 23, 24, 25, 26, 27] or pure-shift spectroscopy

[28, 29, 30, 31, 32, 33, 34, 35] being notable examples.

Identification of signals or of group of signals can be recognized, by spe-
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cialized statistics, according to their variations along a series of spectra,

for instance due to changes in the molecular concentration of the sample

constituents. Thus, the peak intensity constitutes an additional dimension,

thanks to which the spectra are partially decomposed as seen in the Sta-

tistical Total Correlation Spectroscopy (STOCSY) [36]. This approach has

been explored in some depth, with a number of published variants, reviewed

recently [37].

The variation in the intensity of single molecular components in pseudo-

2D NMR experiments correlating a molecular spectrum and the molecular

diffusion can also provide sufficient variance to be analyzed according a

similar scheme [38].

Indeed, NMR diffusometry has attracted considerable attention for mixture

analysis. Specifically, the DOSY layout of the PFG-NMR experiment, with

its conceptual proximity to chromatography, has been a favorite method for

mixture analysis since its inception [39, 40, 41].

However, besides some attempts to add this technique to the metabolomics

toolset, DOSY performs best so far with less than ten components. Indeed,

DOSY suffers from limitations in the achievable resolution linked to the

instability of common algorithms for inverting sum of exponential decaying

functions, which limits the resolution along the molecular mobility dimen-

sion. While differences in mobility in a multicomponent sample can be am-

plified by interaction with a suitable matrix with selective affinity towards

some of the mixture compounds [11, 39, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,

52] or by simplifying the NMR dimension [50], significant efforts have been

invested in developing better performing DOSY processing.

These experiments provide the ideal playground for testing data processing

aimed at demixing the NMR spectrum. Indeed, the amplitude variations
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expected for a DOSY experiment follow regular laws and all stem from a

unique dataset, so that spurious source of signal variations are minimal and

the mathematical treatment facilitated [53, 54, 55, 56, 57, 58, 59].

Finally, it should be noted that linewidth and relaxation differences have

found a limited number of applications to resolve the spectra of mixtures

[60, 61].

This short overview provides the context that justifies the introduction

of alternative mathematical analysis to better describe the NMR spectra of

mixtures compared to the classical FT approach.

The underlying problems illustrated above for decomposing NMR spec-

tra echo those encountered in the processing of other families of multichan-

nel signals (for example acoustic, or biomedical), and methods developed in

this context can be borrowed and adapted. Some of the classical approaches

here are parametric with respect to the sources, namely they rely on a model

for the experimental data and set the separation problem as a parameter

identification problem, that is to say the sum spectrum is decomposed with

respect to those of known samples. This solution is only partially viable for

typical NMR of mixtures, as often the relevant compounds are unknown.

Thus, BSS appears to be a sound place to start.

In the following we shall cover the definition and underlying principles

of the declinations of the BSS approach that have been applied so far in

NMR spectroscopy, along with a discussion of the original examples and a

comparative discussion of the possible limitations. As this is a very active

domain of research in applied mathematics and signal processing, the re-

ported literature deals sometimes with tests of established methods but also

with algorithms designed for the specificity of NMR . At any rate, the review

is organized according to grand classes of algorithms, as they share similar
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computational setups (and thus problems), in order to provide the most

consistent view to date of the experimentation that has been performed in

the field.

2. The BSS Paradigm

2.1. Introduction to BSS

Blind Source Separation aims at recovering a set of pure signals start-

ing from linear mixtures of these latter without prior information about the

source signals, whence the use of the word blind. This concept is so broad

that under BSS one may include a large variety of approaches and algo-

rithms, adapted to various application domains. We are interested here in

the so-called instantaneous BSS problem, in which no extra transformation

is performed on the sources prior to mixing.

More precisely, the instantaneous BSS model supposes the existence of r

unobserved source signals S(t), . . . Sr(t) giving rise to n observations (i.e.

mixtures) X1(t), . . . Xn(t), written as linear combinations of the source sig-

nals in the form:

Xi(t) ≈
r∑

k=1

Aik Sk(t), i = 1, . . . n, t = 1, . . . p (1)

The numbers Aik are called the mixing coefficients, and form a matrix

A called mixing matrix. In matrix form, this brings us to the general BSS

equation:

X = AS +N ≈ AS , (2)

where X,N ∈ Rn×p, A ∈ Rn×r, S ∈ Rr×p. N represents additive noise.

The rows of X represent the observations, and the rows of S are the source

signals. Both the sources and mixing matrix are assumed to be unknown,
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and the goal of BSS is precisely to identify them from the observations. A

BSS problem is called determined if the number of observations n is greater

than or equal to the number of sources r and undetermined otherwise.

Based on equation (2) and given a matrix of measurements X, the objec-

tive of the BSS approach is to estimate the matrices A and S. Existence

and uniqueness of the solutions are often not guaranteed, and additional

assumptions and/or constraints are generally necessary. In particular, two

types of indeterminacies have to be taken into account:

• Sources are defined up to a normalization factor : multiplying a row

of S by a nonzero value, and dividing the corresponding column of A

by the same does not modify X.

• Sources are defined up to permutation: exchanging two rows of S and

the corresponding two columns column of A does not change X.

As a consequence of the normalization indeterminacy, the independent

sources can be assumed to have unit variance, without loss of generality.

The consequence of the permutation indeterminacy is the fact that BSS

does not allow one to order sources, without any additional assumption.
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whitening: Assuming as above that the sources are white (i.e. have unit variance)

simplifies the estimation problem. First, notice that the observations can also be whitened

as follows. Starting from an estimate CX of the covariance matrix of X, assume that CX

is non-degenerate and denote by W = C
− 1

2
X the inverse square root of CX (which can be

well defined, as CX is an Hermitian matrix). Then X ′ = W X is white, and the model

X = AS can be written in the form X ′ = W AS = A′ S. It can be shown that the

matrix A′ = W A is now a unitary matrix, so that the search of A′ amounts to a change

of (orthonormal) basis. Once A′ has been estimated, A = W−1A′ is readily obtained. In

practice, the covariance matrix CX has to be estimated from data, and is not the true

covariance.

2.2. Mathematical overview of the approach and application domains

Blind source separation and more generally blind signal processing, have

attracted significant attention during the last twenty years, because of the

numerous potential applications in many areas of signal and image process-

ing.

As alluded to above, the BSS problem can be tackled using various

approaches that exploit different assumptions. The interested reader can

find thorough descriptions of general principles and the main approaches in

textbooks [1, 2]. Early works on BSS relied on statistical modelling, and as-

sumed the sources to consist in i.i.d. (independent, identically distributed,

i.e. white) realizations of independent random variables. It was shown

that in such situations identifiability implies that all (but one) sources must

have non-Gaussian distributions. Such approaches led to algorithms (the so-

called ICA, Independent Component Analysis) aiming at optimizing some

specific independence criteria: find an un-mixing matrix B such that the

corresponding estimated sources Ŝ = BX are maximally independent, with
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respect to the chosen criterion. Criteria include mutual information, negen-

tropy, specific properties of cumulants of order larger than 2, and several

contrast functions, which are often connected to non-Gaussianity measures

[62]. The case of coloured (i.e. correlated) sources also attracted significant

attention; in this case, it was shown that when the source spectra are differ-

ent enough, the separation can be performed using only order two statistics,

for example auto-covariance matrices, while most approaches rely on joint

diagonalization of these latter [63, 64].

Besides statistics based approaches, paradigms have been developed that

lead to BSS approaches exploiting different basic principles. Among these,

sparsity has recently emerged as a powerful generic principle: the rationale

is the fact that in a suitable representation space, sources are sparse, i.e.

characterized by a very small set of nonzero (or non-negligible) coefficient

values. Such relevant coefficients being mostly different for all sources, a

given coefficient can be assumed to belong to a single source (or a very

small number of sources), which leads to simpler estimation procedures.

This approach, which originates in the seminal paper [65], has stimulated an

important activity since then, and many BSS algorithms exploiting sparsity

in a way or another have been proposed in the literature.

Without trying to be exhaustive, let us conclude this short overview

by mentioning a third road to blind signal separation that has gradually

emerged during the last 10 years, namely the variational approaches which

involvs a fidelity term and try to minimize an objective function exploiting

a number of constraints like non-negativity. Two methods are distinguished

in this group: PARAFAC (parallel factor analysis) approaches which are

three mode factor analytic methods and NMF (Non-negative matrix fac-

torization) approaches which are often based upon simple and efficient opti-
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mization algorithms, and easy to implement. We notice that in the context

we are interested in here, non-negativity is quite a natural requirement (1D

and 2D NMR spectra, as well as concentrations are non-negative), which

makes the variational based methods very appealing. Finally, let us point

out that we have only mentioned here three main generic approaches to BSS

. Obviously, the latter can be combined to yield still other algorithms, which

can prove efficient in various contexts. For instance, we shall be discussing

in some details a combination of NMF and sparsity constrained method.

3. Application of BSS to NMR Spectroscopy

In the mixture case, the NMR spectrum is a linear combination of the

spectra of the underlying individual components, which is the appropriate

situation for using instantaneous BSS .

One of the main problems in 1HNMR spectroscopy of mixtures is sig-

nal overlapping, which tends to increase with the number of components,

their complexity, and/or similarity. Spreading the spectrum to a second di-

mension can significantly overcome this shortcoming. 2D NMR techniques

have been used for mixture analysis, the most popular being: DQF-COSY,

J-RES, TOCSY, HSQC and DOSY . Particularly, because of the notorious

instabilities of the Inverse Laplace Transform (ILT) originally proposed for

the popular DOSY processing of Pulse Field Gradient NMR [39], this exper-

iment has been the focus of many alternative processing schemes, including

BSS ones [66, 67, 68, 57, 53]. Since this experiment (and more precisely the

analysis of PFG-NMR decays) will be the object of a number of examples

in the following, we summarize briefly the underlying mathematics. For a

mixture, a PFG-NMR dataset acquired using a series of n variable gradients,
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Gi, produces a signal rationalized by the Stejskal-Tanner equation [69]:

Xi =
∑
k

Sk exp(−Dkγ
2G2

i δ
2(∆− δ/3)) , (3)

where Sk is a source NMR spectrum, Dk is the corresponding diffusion co-

efficient, γ is the gyromagnetic ratio, δ is the duration of the pulse gradient

field and ∆ is the time in which diffusion is allowed to take place. Trans-

porting equation (3) to BSS , the mixing coefficients Aik are therefore all

positive and represent the scaling factor of the signals from molecules when

submitted to gradient Gi. The spectra of the individual compounds that

define the matrix S are also positive-valued functions. The linear mixing

model described by (2) is guaranteed and therefore satisfies the BSS con-

dition.

As it will become clear in the following, BSS applications to NMR have

been mostly evaluated qualitatively. A clear assessment of the conditions

for which one can expect a good separation have not been established. Par-

ticularly, in the case of PFG-NMR, the limitations in terms of number of

overalapping species and the required intensity variations along the series

of experiments remains to be determined. However, this is hardly an issue

confined to BSS , but rather a general one for un-mixing problems. At

any rate, the examples discussed below will rely on visual appreciation of

the separation performance in some test cases. Attempt at predicting the

resolving power of a few selected algorithms will also be illustrated later on.

3.1. BSS Methods in NMR Spectroscopy

In this section we will review the BSS approaches proposed in the liter-

ature for unmixing of 1D/2D NMR spectra. We will also detail the methods

that we have selected and more systematically tested. As stressed before,
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the main differences between the various methods mentioned in the liter-

ature lie in the assumptions that were made to perform the separation.

We can divide the methods in two different groups: those which are based

on explicit statistical assumptions and those which rely on the minimisa-

tion of some specific criterion, involving a data fidelity term and sometimes

some regularization term, incorporating prior knowledge. Methods involv-

ing statistics can be further subdivided into two families, those for which a

statistical independence assumption between the rows of matrix S (spectra

of components) is made and those for which the assumption is applied for

the columns of matrix S (acquisition variable: time, frequency, etc.)

3.1.1. Methods based on statistical modelling

In these approaches, the observation and source matrices are modelled

in such a way that their columns are realizations of identically distributed

random vectors. When BSS is tackled from a statistical point of view,

the sources are assumed to be mutually decorrelated. Two main families of

approaches have been proposed, developed and studied thoroughly. The first

one assumes that sources are indeed mutually decorrelated, but that each

individual source is correlated, in such a way that the individual correlation

matrices differ significantly. The separation thus rests on these differences.

The second one assumes that the source decorrelation is replaced with the

(stronger) assumption of source independence.

Second Order methods . The second-order BSS methods are based on cal-

culating a second order criterion of independence between the sources to be

separated. The criterion is usually characterized by the covariance function.

We can mention as example the SOBI (Second Order Blind Identifica-

tion) algorithm, which Nuzillard et al. [64] applied to NMR spectroscopy.
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SOBI exploits the time coherence of the source signals, in the case of 13C

NMR spectra since there the resonance lines are generally narrow enough to

limit the probability of peak superimposition, which fulfill the orthogonality

constraint, so that the sources are pairwise decorrelated. Moreover, model-

ing of NMR time-domain signals as sums of decaying exponential functions

provides a time-correlation property required for SOBI .

The proposed approach relies only on stationary second-order statistics,

and is based on a joint diagonalization of a set of covariance matrices [63].

We outline below the basic principles. The method supposes that the sources

are mutually decorrelated, each individual source being correlated.

Assumption (SOBI). The rows of the source matrix are decorrelated real-

izations of correlated random sequences.

This can be expressed mathematically by introducing the families of

fixed lag covariance matrices RX(τ) and RS(τ), defined as follows. For each

pair of rows x and x′ of X, introduce the corresponding sample covariances,

defined by:

Rxx′(τ) =
∑
j

x(j) x′ (j + τ) (4)

For each value of the lag τ this generates a square matrix RX(τ), which can

be seen as a sample estimate of the true covariance matrix. The fixed lag

covariance matrices of the sources RS(τ) will be defined likewise. According

to the above assumption, the source covariance matrices are expected to be

diagonal. The basic principle of the corresponding approaches is to search

for a linear transformation X → Y = BX such that a suitably chosen set

of matrices RY (τ) becomes (at least approximately) diagonal. The corre-

sponding Y will be the estimate for the source matrix S, and B will be

the estimate for the un-mixing matrix. Notice that RY (τ)=BRX(τ)BT , so
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that finding Y amounts to simultaneously diagonalize the fixed lag sample

covariance matrices. Let us recall that a set of matrices M1,M2, . . . can

be diagonalized simultaneously if and only if all matrices commute, i.e. if

MiMj = MjMi for all i, j. Otherwise, an approximate joint diagonaliza-

tion can be performed numerically, by optimizing a suitable criterion, for

example minimizing the sum of squares of off-diagonal elements, i.e. the

quantity:

Off(M) =
∑
k 6=l

Mkl . (5)

Joint diagonalization thus amounts in this case to searching for a unitary

matrix U that solves the problem:

Û = min
U

∑
i

Off(UMiU
−1) (6)

The first proposed algorithm following these principles, named AMUSE,

exploits joint diagonalization of two fixed covariance matrices, namely RS(0)

and a suitably chosen RS(τ). In the context of NMR spectroscopy, A.M.

Tomé and al. [70] developed a new version of AMUSE called dAMUSE

which offers a fast and efficient way of removing the water artifact from the

spectra and allows a denoising of a reconstructed artifact-free protein spectra

to achieve noise levels comparable to those of the experimental spectra. The

tool was tested on the 2D NOESY 1H NMR spectra of aqueous solutions

of proteins.

SOBI exploits approximate joint diagonalization of a larger set of co-

variance matrices, according to the above criterion. The approximate joint

diagonalization is performed numerically, using Jacobi transformations.

An application of this BSS method was done in 1D and 2D NMR Spec-

troscopy, as we briefly discuss below.
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A first demonstration of SOBI NMR un-mixing followed the isomeriza-

tion of α−glucose into β−Glucose inD2O. The spectra of mixtures consisted

in five 1D 13C NMR spectra, shown in Figure 1 (left plot) along with the

estimated 13C NMR spectra of the sources (right plot). Some cross-talk

artifacts are visible, especially for the β−Glucose spectrum, which were in-

terpreted as arising from small frequency misalignment due to concentration

effect.[64].

Typically, HSQC is presented as a frequency correlation plot while SOBI

was designed to deal with 1D time domain signals, therefore some pre- and

post-processing steps were required. First, rectangular zones were defined

around the cross peaks volumes to locate signals from all the sources. These

regions were extracted and subjected to an inverse Fourier Transformation to

produce time correlated data. The SOBI algorithm was then applied to ob-

tain the mixing matrix and therefore the pseudo FIDs of the sources, which

served to reconstruct a 2D frequency-domain presentation, from HSQC spec-

tra of three mixtures of three components: sorbitol, mannitol and xylitol in

D2O (Figure 2 (left panels)). Some spurious residues can be noticed, in

Figure 2 (right panels), in the sorbitol spectrum. The authors tentatively

justified the imperfect demixing as a consequence of variations in the posi-

tion of overlapping peaks caused by temperature fluctuations.

Independent component analysis (JADE, fastICA and variants). In generic

ICA approaches, no correlation structure is assumed on the individual sources,

but compared to SOBI assumption, the decorrelation hypothesis is replaced

with the (stronger) hypothesis of mutual independence of the sources. Sta-

tistical independence in such models is a way of describing the differences
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Figure 1: Demonstration of the SOBI algorithm. (a) Five 13C spectra recorded during the

isomerization of α-glucose to β-glucose in D2O. (b) The separated spectra of α-glucose

(upper trace) and β-glucose (lower trace). Reprinted from Journal of magnetic resonance,

vol 133, D. Nuzillard, S. Bourg and J.-M. Nuzillard, Model-Free Analysis of Mixtures by

NMR Using Blind Source Separation, p 358-363.Copyright 1998, with permission from

Elsevier

between source spectra: the stronger the independence, the less similar the

component spectra.

Assumption (ICA). The rows of the source matrix are independent real-

izations of independent identically distributed random sequences.
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Figure 2: Demonstration of the SOBI algorithm. (a) The HSQC spectra of three mix-

tures of sorbitol, mannitol, and xylitol in D2O. (b) The separated HSQC spectra of the

components of the mixtures. Reprinted from Journal of magnetic resonance, vol 133, D.

Nuzillard, S. Bourg and J.-M. Nuzillard, Model-Free Analysis of Mixtures by NMR Using

Blind Source Separation, p 358-363.Copyright 1998, with permission from Elsevier

The ICA BSS problem is thus formulated as follows: find a (un-mixing)

matrix B such that the rows of the corresponding un-mixed source matrix

Y = BX (7)

are maximally independent, according to a given criterion. In general, one
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obtains an estimate for the the un-mixing matrix B, from which an esti-

mate for the mixing matrix is obtained (using pseudo-inverse, or some more

sophisticated inversion procedure).

Let us briefly recall some basic probabilistic principles. Given two ran-

dom variables y1 and y2, denote by p(y1, y2) their joint probability den-

sity function (pdf for short), and by p1(y1) =
∫
p(y1, y2)dy2 and p2(y2) =∫

p(y1, y2)dy1 the marginal pdf s. The two random variables are independent

if p(y1, y2) = p1(y1)p2(y2). This definition can be extended to any number

n of random variables, in which case independence means that the joint pdf

equals the product of the n marginal pdf s.

As it is well known, independence implies decorrelation (which only involves first and

second order moments). In many ICA methods, mixture data are first decorrelated (using

standard techniques, based upon principal component analysis) prior to BSS . This gener-

ally simplifies the independent sources estimation, as already alluded to in the whitening

remark.

To solve the ICA problem and estimate the independent sources and the

mixing matrix, one generally relies on optimization procedures, and search

for an un-mixing matrix that minimizes the dependence of corresponding un-

mixed signals. Given some generic dependence criterion (also called contrast

function Y → DepCrit(Y ), the optimization problem is formulated as

B̂ = arg minB DepCrit(BX) , (8)

and solved numerically.

A classical and often advocated dependence criterion is the so-called

mutual information, which measures the divergence between the pdf of a
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random vector and the product of marginal pdf s of its components:

I(Y )=

∫
p(y1, . . . yn) log

(
p(y1, . . . yn)

p1(y1) . . . pn(yn)

)
dy1 . . . dyn . (9)

The mutual information is always non-negative, and vanishes if and only if

the components of the random vector are mutually independent.

In practice, the mutual information cannot be computed explicitly, as

the pdf s are not available (only sample estimates for pdf s can be available).

Many algorithms have been proposed, based upon the optimization of

substitutes for the mutual information. The latter can indeed be based upon

sample estimates (defined as in (9)), but also more general contrast func-

tions, that measure some specific types of departures from independence.

Among these, the FastICA family of algorithms, described in the review

paper of Hyvarinen, [71] [72] is among the simplest, and has been used

for many applications like audio signal processing, genomics, EEG/MEG

data analysis and DOSY NMR Spectroscopy [73]. FastICA relies on an

approximation of the mutual information by a contrast function which can

be regarded as a measure of non-gaussianity, and is optimized through a

simple projected gradient method. The method proposes several choices for

the contrast function, and two different optimization strategies: a global

optimization, and an iterative method (called deflation and introduced in

[74]) in which the sources are estimated one after the nother.

Among variants, let us quote the Efica algorithm which is an improved

version of FastICA presented by Koldovsky and Tichavsky in [75], the

MILCA (Mutual Information based Least dependent Component Analysis)

which estimates the mutual information based on a nearest neighbors algo-

rithm [76] and SNICA [77] (stochastic non-negative independent component

analysis), a method dedicated to the analysis of non-negative signals that
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performs best on signals with intensity distributions peaked at zero (like in

spectroscopy) ; those algorithms have been used in [78] for the quantitative

and qualitative analysis of UV absorption spectra of complex mixtures.

An example of application of these algorithms to NMR spectroscopy

was made by J. Zhong et al in [73]. They proposed a new method called

”DIFFICA”’ which combines the Fast ICA algorithm and ”DOSY ” (1D

& 2D) to perform the separation. According to the authors, based on the

expression of intensity for DOSY eq. (3), the unmixing matrix B = A−1 is

initialized and the independence is ensured by the difference of the diffusion

coefficients of the sources, which has to be large, to ensure a good separation.

JADE. Fourth-order cumulants can be more robust than the (MI) criterion

for measuring the independence between the sources. The algorithm related

to this named JADE , which stands for Joint Approximate Diagonaliza-

tion of Eigen-matrices algorithm and we account for it in some details below.

As most ICA algorithms, JADE consists to an estimate of the optimal un-

mixing matrix B that restitutes an un-mixed signal matrix Y whose rows are

the most statistically independent. JADE exploits higher-order statistics

to perform the identification of the un-mixing matrix. As mentioned above,

the covariance matrix is used to whiten the observations. After whitening,

the covariance matrix of the observed mixtures is diagonal (and even equal

to the identity). Independence, which is a stronger assumption than decor-

relation, implies that all cumulants tensors are diagonal. Without going

into the abstract definition of cumulants, let us simply mention that the

cumulants tensors are higher order generalization of covariance matrices.

For example, the n-th order joint cumulant of random variables x1, . . . xn

is obtained from the corresponding joint moment (the expectation of the
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product x1 . . . xn) by substracting some corrective terms (mainly symmetric

products of moments of lower order). Given a random 1 × n vector, the

second order joint cumulants form an n × n matrix, and the fourth order

joint cumulants form an n × n × n × n tensor (i.e. a 4 entries hypercubic

table).

JADE rests on the fact that given a random vector with independent

components, all the corresponding cumulants tensors are diagonal. After

whitening (that diagonalizes the second order cumulants tensor, i.e. the co-

variance matrix), JADE therefore seeks numerically a change of basis that

(approximately) diagonalizes the fourth order cumulant tensor, by optimiz-

ing some contrast function. The latter is chosen to be the sum of the values

of the Off(Mi) (sum of squares of off-diagonal elements, see the section on

SOBI above) of the order two slices Mi of the order four cumulant ten-

sor. Again, it is worth mentioning that the actual cumulant tensors are not

available, only sample estimates can be used. We refer to chapter 5 of [1]

for details.

Fig. 3, Fig. 4 and Fig. 5 illustrate the separation results by JADE

for PFG-NMR experiments of three mixtures: SM (Sucrose, Maltotriose),

QGC (Quinine, Geraniol and camphene) and DENET (Dextran, Ethanol,

Nicotinic acid, Ephedrine and Tartrazine) datasets respectively [79].

In Fig. 6, Fig. 7 and Fig. 8, we show a DOSY reconstructed figures from

the obtained matrices A and S. In fact, this analysis allowed the construc-

tion of a DOSY chart, by fitting matrix A to Stejskal-Tanner equation [69]

to obtain the diffusion coefficients and subsequently locating the sources S

on the chart at their corresponding values, broadened by a gaussian uncer-

tainty as indicated by the error of the fit.

22



Figure 3: The ground truth sources (a) and the recovered sources by JADE (b) for a

mixsture of Maltotriose and Sucrose, based on the analysis of a series of PFG-NMR

experiments. Reprinted with permission from Anal. Chem, Vol 85, Toumi. I, Torrésani.B

and Caldarelli.S, Effective Processing of Pulse Field Gradient NMR of Mixtures by Blind

Source Separation,p 11344-11351. Copyright 2013 American Chemical Society

3.1.2. Methods based on sparsity

It has been noticed by several authors that the estimated sources pro-

vided by ICA often satisfy some sparsity property: they are characterized

by probability distributions that are often sharply peaked at the origin.

During the last ten years, sparsity has emerged as a new generic paradigm

for signal processing (see for example the book [80]), and has found many

applications in various areas. Sparsity can be understood in various ways,

including peakyness of pdf, or in a stricter sense as follows:

Sparsity: A vector y in n-dimensional space is k-sparse (k ≤ n) in a transformed

domain if its corresponding transform Tx involves no more than k non-zero coefficients.

The rationale for the application of the sparsity concept to BSS is

the following: suppose that one is given several mixtures x1(t), . . . xn(t) of
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Figure 4: The recovered sources by JADE (a) and the ground truth sources (b) for a mix-

ture of Quinine, Camphene and Geraniol, based on the analysis of a series of PFG-NMR

experiments. Reprinted with permission from Anal. Chem, Vol 85, Toumi. I, Torrésani.B

and Caldarelli.S, Effective Processing of Pulse Field Gradient NMR of Mixtures by Blind

Source Separation, p 11344-11351. Copyright c©2013 American Chemical Society

sparse source signals s1(t), . . . sm(t), and assume that the sources are differ-

ent enough. If for some value of t = t0 a given source si(t) takes a significant

value, it is very likely that the other sources sj(t) will take negligible values

at t = t0.

Therefore, finding values of t where only a single source is active can

yield simple estimates of the mixing matrices, and thus the sources. This is

the basic idea of the so-called sparse component analysis (SCA, see [81]),

which has been exploited successfully in various domains. Sparsity is gener-

ally searched for in a transformed domain (for example, short time Fourier

transform for audio source separation, wavelet transform for applications to
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Figure 5: The recovered sources by JADE (a) and the ground truth sources (b) for a mix-

ture of Dextran, Tartrazine, Ephedrine, Nicotinic Acid and Ethanol, based on the analysis

of a series of PFG-NMR experiments.Reprinted with permission from Anal. Chem, Vol

85, Toumi. I, Torrésani.B and Caldarelli.S, Effective Processing of Pulse Field Gradient

NMR of Mixtures by Blind Source Separation, p 11344-11351. Copyright c©2013 American

Chemical Society

image processing). We give below a short account of various implementa-

tions of these ideas to NMR . Note that for all presented methods, the mixing

matrix A was estimated at first in different ways then the sources matrix S

was estimated using sparsity, pseudo-inverse of A or some post-processing

steps.

Sparsity Based Robust Multicomponent Analysis. A recent work was pre-

sented by Kopriva and Jeric in [82, 81] very much in the spirit of SCA .
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Figure 6: The reconstructed DOSY from JADE separation (a) and the from a monexpo-

nential fitting of the peaks in the PFG NMR experiment (b) for the SM mixture

Figure 7: The reconstructed DOSY from JADE separation (a) and the from a monexpo-

nential fitting of the peaks in the PFG NMR experiment (b) for the QGC mixture

In addition to BSS , the method also features a simple rule for estimating

the number k of analytes, no matter if k is less than, equal to, or greater

than the number of mixture spectra. To cope with the problem of signal
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Figure 8: The reconstructed DOSY from JADE separation (a) and the from a monexpo-

nential fitting of the peaks in the PFG NMR experiment (b) of the DETENET mixture

overlapping, notoriously difficult in NMR spectroscopy, the method relies

on the assumption that a specific set of points exists in the representation

domain where components to be estimated are mutually sparse.

According to this assumption the authors suggested to rewrite eq. (1) in

a new representation domain using a linear transform T so that it becomes:

T (X) = A T (S) , (10)

For example, the linear transform T could be wavelet or Fourier transforms

and is applied row-rise to the observation matrix X. The method is then

based on three steps:

1. Sparse Representation and Single-Component-Analysis (SAPs):

After a suitable transformation, determine the points involving only

one active analyte (i.e. sample points where analytes are 1-sparse): the

so-called Single Analyte Points, SAPs for short. The detection can be

based upon various techniques, and the authors of [81, 82] focus on a
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specific approach suitable for NMR spectra.

The SAPs should verify a common assumption which was firstly in-

troduced in NMR spectroscopy by Nuzillard [83]: For each source,

there is at least one value of the acquisition variable for which only

this source presents a non-zero response. More formally, this could be

written as:

Assumption (SAP). For each source Si where i ∈ {1, . . . , r}, there

exists an ji ∈ {1, . . . , p} such that si,ji > 0 and sk,ji = 0 for k =

1, . . . , i− 1, i+ 1, . . . , r.

Single Analyte Peak (SAP)

 

 

Source 1
Source 2

SAP 1

SAP 2

Figure 9: Schematic representation of two sources satisfying the SAP condition

The approach relies on the geometric concept of direction to detect

points where single analytes are present. The detection criterion re-

quires complex representation of signals and in the case of NMR signals

it is applied in the Fourier basis.

2. Data clustering based on estimation of k and mixing matrix A:

Once the set of the SAPs is identified, an accurate estimation of the

number of analytes k and the mixing matrix A is possible. Seeing that

the set of points are 1-sparse, this guarantees that the estimation of A
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is unique (if there is no noise) up to permutation and scale. In order to

estimate the number of analytes, a clustering function was proposed

in [82]:

f(a) =

P∑
i=1

exp

(
−d

2(xi, a)

2σ2

)
, (11)

where

d is a distance function, defined by d(xi, a) = [1 − (xi · a)2]1/2, σ is a

scale parameter that defines the resolving power of the function f(a)

and xi · a denotes the inner product and a is the mixing vector in a

two-dimensional subspace parameterized as:

a = [cos (φ) sin (φ)]T where φ ∈ [0, π2 ] is the mixing angle.

The number of peaks of the function f(a) in the interval [0, π2 ] provides

the desired estimate of the number of analytes k present in the mixture.

Once this is done, a mixing matrix Â is estimated on the same set SAPs

using data clustering methods.

3. Estimation of Analytes (source matrix S):

To estimate the analytes two cases are considered:

Determined case: k ≤ n. In this case the matrix of analytes S can

be estimated through a simple matrix pseudo inverse: Ŝ = Â]X.

Undetermined case: k > n. In this case there are more sources

than mixtures, and some regularization is needed. In the proposed

approach, sparsity assumptions are made again, and the estimation of

S is performed via a `1-regularized least-squares problem, or by linear

programming.

The separation method was tested first on 1H and 13C NMR spectroscopy

by extracting three pure components from two mixtures.[82] The method
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was further validated on more complex cases of study: 2D COSY exper-

iments to decompose three mixture of four analytes (glycopeptides) and

on mass spectrometry by separating two analytes from the spectra of five

mixtures.

In Figure 10, the plots of the COSY NMR spectra of pure analytes

are shown, to be compared to the estimated ones in Figure 11 [82]. Visual

analysis of these spectra reveals that the sources were indeed well sparse and

that the estimate correct. In order to show the complexity of the considered

case, the authors measured the likeness between the different pure analytes

by calculating the correlation between their spectra. The same measure

was used to compare the spectra of pure analytes and the spectra of the

estimated ones. This indicator proved the effectiveness of the method which

turned out to give better results compared to the JADE ICA algorithm.

This was justified by the author by the fact that the ICA model is not really

appropriate to these data since the significant correlation between spectra of

the pure analytes violates the statistical independence assumption required

by ICA.

LPBSS Algorithm. The LPBSS (Linear Programming BSS) method, also

known as the ”NN” (for Naanaa and Nuzillard) method, and introduced in

[83], exploits non-negativity constraints and the local orthogonality principle

(SAP), introduced above, to better cope with real life problems. In fact,

statistical independence requires uncorrelated source signals, which is not

the case all the time seen that is exists molecules whose spectra are known

to be correlated in NMR Spectroscopy. Therefore, there was a need to

use a blind separation methods which integrate more flexible and adequate

constraints depending on the physical and chemical origin of the signals.
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Figure 10: Sparse-based blind source separation. COSY NMR spectra of four glycopep-

tides, for comparison with the estimated sources in figure 11. Reprinted with permission

from Anal. Chem, Vol 82, I. Kopriva and I. Jeric, Blind Separation of Analytes in Nu-

clear Magnetic Resonance Spectroscopy and Mass Spectrometry: Sparseness-Based Ro-

bust Multicomponent Analysis, p 1911-1920. Copyright 2010 American Chemical Society

The non-negativity constraint applied to the matrix of source signals

S and the local orthogonality constraint is provided through the (SAP)

assumption. In this work, only the determined case was considered.

To describe the method and give details on the mathematical steps, it is

necessary to use some notations. Given a matrix A, we denote by Aj its jth

column, and by A\j the submatrix of A consisting of all columns, but Aj .

With these notations, equation (2) reads:

Xj =

r∑
k=1

sk,jA
k, j = 1, . . . p . (12)

For the particular subscripts ji ∈ (1 . . . r), and based on the (SAP)

assumption, the equation collapses to:
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Figure 11: Demonstration of the Sparsity Based Robust Multicomponent Analysis. COSY

NMR spectra of the estimated analytes, the spectra of which are shown in figure 10 .

Reprinted with permission from Anal. Chem, Vol 82, I. Kopriva and I. Jeric, Blind Sepa-

ration of Analytes in Nuclear Magnetic Resonance Spectroscopy and Mass Spectrometry:

Sparseness-Based Robust Multicomponent Analysis, p 1911-1920. Copyright 2010 Amer-

ican Chemical Society

Xji = si,jiA
i, i = 1, . . . r (13)

That means that every column of A is colinear to a column of X locally,

as one source only is present in this frequency range. By replacing each Ak

in (12) from (13) one obtains:

Xj =
r∑
i=1

si,j
si,ji

Xji , (1 6 i 6 r, 1 6 j 6 p) . (14)

Assume that X̂ consists of all the mutually non-colinear columns of X

then we note Â, the submatrix of X̂ consisting of r columns each of them is

colinear to a particular column of A.
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According to one property, a column of X̂ is selected to form Â if it is

not a non negative linear combination of the other columns of X̂. This iden-

tification may be achieved by considering the following equations system:

X\jα(j) = X̂j , α(j) ≥ 0 , (15)

where α(j) denotes an unknown column vector. The algorithm consists

in solving the following optimization problem by using a linear programming

technique:

X̂ = arg minαi(j)

∥∥∥X̂\jα(j)− X̂j
∥∥∥ , i = 1, . . . n, j = 1, . . . p . (16)

where αi(j) denotes one of the components of the vector α(j).

Hence, a score is computed for each X̂j in order to find the columns from

X̂ that will form Â:

scorej =
∥∥∥X̂\jα∗(j)− X̂j

∥∥∥ (17)

If the score is low, it is unlikely that the considered column is a non-

negative linear combination of the other columns forming the X\j and there-

fore it is unlikely a column of Â. The inverse means that the involved column

may be a column of Â. The Â is formed from the n columns of X̂ associated

to high calculated scores.

Once the matrix Â is formed, each column of it is replaced by the average

of all columns in X that are approximately colinear to it.

Finally an estimate Ŝ of S is obtained as before using the Moore-Penrose

pseudo-inverse Â] of Â, via Ŝ = Â#X.

The method was tested on two different datasets. The first a PFG-NMR
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experiment realized on a mixture of two organic compounds, menthol and

β-sitosterol.

As illustrated in Figure 12, the separation was achieved but with the

persistence of some small artifacts that can be singled out by comparison

with the reference spectra of the two pure components.

Figure 12: Demonstration of LPBSS. (a): Diffusion-modulated spectra of a menthol-β-

sitosterol mixture obtained for two magnetic field gradient strengths; (b): Calculated

source spectra: menthol (left),β-sitosterol (right); (c): Reference spectra. Left: men-

thol,right: β-sitosterol. Adapted from Signal Processing, vol. 85, W. Naanaa and J.-M.

Nuzillard, Blind source separation of positive and partially correlated data, p 1711-1722.

Copyright 2005, with permission from Elsevier

Further tests were performed on four synthetic mixtures obtained from

the spectra of menthol, β-sitosterol, mannitol and β-cyclodextrine with ad-

dition of white Gaussian noise with SNR = 15 dB (see figure 13). To gain

insight into the separating power of BSS , a comparison was done between

LPBSS , SOBI , Fast ICA and JADE , on the basis of two performance

measures: Comon’s [84] and Choi ’s [3] indexes, showing a predominance of

the LPBSS algorithm. The definition of these indexes, along with their use

for an estimation of the performance of the methods and their comparison

34



will be discussed more in details later on.

Figure 13: Demonstration of LPBSS. (a): Four simulated mixtures obtained by combining

the spectra of menthol, β-sitosterol,mannitol,and β-cyclodextrine and adding noise for a

SNR = 15dB; (b): Source spectra computed by the LPBSS algorithm; (c): Reference

spectra: mannitol, β-cyclodextrine, β-sitosterol,and menthol. Adapted from Signal Pro-

cessing, vol. 85, W. Naanaa and J.-M. Nuzillard, Blind source separation of positive and

partially correlated data, p 1711-1722. Copyright 2005, with permission from Elsevier

An improvement of this method was developed later by Y.Sun et al in

[85], who introduced a relaxed SAP condition which basically assumed the

existence of points where a given source dominates all the others:

Assumption (rSAP). For each Source Si where i ∈ {1, . . . , r} there exists

an ji ∈ {1, . . . , p} such that si,ji > 0 and for k = {1, . . . , r} and k 6= i,
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sk,ji � si,ji.

relaxed Single Analyte Peak (rSAP)

 

 

Source 1
Source 2

rSAP 2

rSAP 1

Figure 14: Schematic representation of two sources satisfying the rSAP condition

In a nutshell, each source signal has a dominant peak at one acquisition

position where the other sources are small (instead of zero as in the SAP

condition).

Hence, it is considered as a generalization of the LPBSS method for

more complicated cases where the SAP condition does not hold. The method

consists of applying the LPBSS algorithm first and then post processing

the output to reduce its errors. The post processing is done by using:

• Random error detection method to perform the output source matrix

S by discarding the incoherent components [85],

• Peak-based correction step which aims to extract a better estimation of

the mixing matrix A by imposing a pairwise overlap condition (POC )

on the source signals as follows:

Assumption (POC). Each source signal has a dominant peak at some ac-

quisition location where other source signals are allowed to be nonzero. Fur-
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thermore, there exist different acquisition regions where the source signals

overlap each other pairwise.

In order to test the effectiveness of the proposed enhancements, two

synthetic NMR datasets and one real mixture were used. For both synthetic

mixtures, the source spectra were mixed according to the model X = AS.

The first dataset included two mixtures issued from two sources and the

second included three mixtures issued from three sources. The used real

world-data was a mixture of Camphor and Quinine analysed in the PFG-

NMR.

The results for the real NMR data are shown in Fig. 15 where Fig. 15.a is

corresponding to the mixtures, the reference spectra of camphor and quinine

are shown in 15.d and the recovered source spectra by LPBSS method

(referred here as NN) and PBC (Peak-based correction) method are exposed

respectively in Fig. 15.b and Fig. 15.c.

The LPBSS separation results were rather good, especially the spec-

trum of Quinine (Fig. 15.b), but one could notice the presence of remarkable

residues in both spectra. The presence of these residues is due, according to

the authors, to the large peaks of Camphor. However, in the figure ( 15.c)

we can see that with the peak-based correction (PBC) the artifact is reduced

considerably.

rBSS method. In many NMR spectra, most particularly biologically relevant

samples such as biofluids, broad signals from macromolecules are typically

coexisting and overlapping with narrow resonances from smaller metabolites.

In this condition, the dominance of a source in a frequency interval must be

characterized in a more subtle fashion. Hence, Sun and Xin addressed this

issue [86] by relaxing further the assumption of SAP to take care of these
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Figure 15: Demonstration of LPBSS (a): Mixtures of Camphor and Quinine, (b): Cam-

phor and Quinine spectra recovered by LPBSS method; (c): Camphor and Quinine spectra

recovered by PBC, (d): Reference spectra of camphor and quinine. Adapted from Signal

Processing, vol.91, Y. Sun, C. Ridge, F. del Rio, A. J. Shaka and J. Xin, Postprocessing

and sparse blind source separation of positive and partially overlapped data, p 1838-1851.

Copyright 2011, with permission from Elsevier

specific sets of problems.

This is formulated by the following assumption called the Dominant

Interval condition (DI ) which basically states that each source Si where

i = 2, 3, . . . , n, is allowed to have dominant interval(s) over Si−1, . . . , S2, S1,

while other part of Si may overlap with Si−1, . . . , S2, S1 :

Assumption (DI). For each k ∈ 1, . . . , r there is a set Lk ⊂ 2, 3, . . . , p such

that for each l ∈ Lksil � sjl for (i = k, k + 1, . . . , r, j = 1, . . . , k − 1).

A schematic representation of a two sources example is given in Figure 16

where we notice that source 1 has a dominant region R1 while source 2

dominates in region R2.
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Figure 16: Schematic representation of two sources satisfying the DI condition

The method consists of two major steps: a the backward step in order to

reduce the separation problem to a series of sub-BSS problems and a forward

step to recover the sources. The number of mixtures is supposed to be equal

to the number of sources to estimate. More explicitly in the backward step,

the columns of X were written based on the the DI assumption as:

Xk = sr,kA
r +

r−1∑
i=1

oi,kA
i , (18)

where sr,k � oi,k for i = 1, . . . r − 1.

From this equation, it was noticed that Ar is equivalent to finding a

cluster formed by these Xk’s in Rr. So to estimate Ar, it was obvious

to determine the set of vector columns Xk that cannot be written as linear

combinations of the other vectors, containing in = X1, X2, . . . , XP . The set

of the Xk vectors are contained in a frame and among all the elements of the

frame, Ar is the one attracting a cluster. To solve this, linear programming

can be used. Once the Ar is obtained, eliminating Sr from X reduces the

model so that a new mixture matrix is formed as:
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X1,2,...,r−1 =


X1 − A1r

Arr
Xr

X2 − A2r
Arr

Xr

...

Xr−1 − Ar−1,r

Arr
Xr

 ∈ R(r−1)×p (19)

The reduced BSS model could be written as:

X1,2,...,r−1 = Ã(1,2,...,r−1)S(1,2,...,r−1) (20)

In this new set of mixtures X(1,2...r−1), source Sr−1 has dominant in-

tervals over other sources. Therefore, the data clustering and linear pro-

gramming could be used to recover the mixing coefficients of Sr−1 from

X(1,2...r−1).

Then for k 6 r− 1, this procedure combined with mixtures reduction is

repeated in a recursive manner until source S1 is obtained.

In summary, the backward step allows the extraction the source signal

S1 as well as a series of reduced mixtures X1,2, X1,2,3, . . . X1,2...k, X1,2...r−1.

The forward step comes at a second moment to recover the rest of sources

from S2 to Sr. In order to simplify the problem, the source signals are

supposed to be sparse in some transformed domain. Therefore the NMR

spectrum is considered as a linear convolution of a Lorentzian kernel with

some sparse function consisting in a few peaks. The source signal could be

written as follows:

S = Ŝ ∗ Lω , (21)

where Ŝ is the sparse function and Lω is the Lorentzian function with width

ω.
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According to this, to recover Sk sources for k = 2 . . . r − 1, the authors

proposed to resolve the following l1 minimization problem:

min
06A∈Rk×(k−1)

Ŝ∈Rk×p,Ŝ>0

[
µ
∥∥∥Ŝ∥∥∥

1
+

1

2

∥∥∥X(1,2,...,k) −A(1,2,...,k−1) S(1,2,...,k−1) − Ŝ ∗ Lωk

∥∥∥2
2

]
,

(22)

where the rows of Ŝ ∗Lωk
are the multiples of source Sk in X(1,2,...,k) and ωk

is the peak width of Sk.

The equation is solved by using a projected gradient descent approach

for its simplicity and then sources Sk for k = 1 . . . r−1 are retrieved. Finally

the last source Sr is separated by minimizing the same equation problem

but with replacing ’k’ by ’r’.

The method was tested on three datasets: two synthetic and one real

world NMR spectroscopy. The first example includes the separation of three

sources from three mixtures. knowing that the shape of the peaks differs

between the different sources (narrow, wide, very wide), we can see from

the illustration in Fig.17 that the spectra of the three sources were well

separated. However, the linewidth for the sources was estimated directly on

the spectra.

More examples were produced on simple mixtures. Recently, the same

authors expanded the method [87] to separate non-negative and correlated

data in mixtures. The motivation was the separation of NMR spectra of

biofluids such as urine and blood for metabolic fingerprinting and disease

diagnosis. They considered the following assumption:

Assumption. Consider the over-determined case where n sources are to be

separated from m ≥ n mixtures. Among the n source signals, there are n−1
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Figure 17: Demonstraiton of the forward step of rBSS on an artificail mixture (a): the re-

covered sources by `1minimization. (b): is the reference spectra. Reprinted from Journal

of Scientific Computing, vol. 51, Y. Sun and J. Xin, A Recursive Sparse Blind Source Sep-

aration Method and its Application to Correlated Data in NMR Spectroscopy of Biofluids,

p 733-753. Copyright 2012 Springer-Verlag Berlin Heidelberg

partially overlapping (PO) sources assumed to satisfy (SAP) and one posi-

tive everywhere (Pe) source which is required to have dominant interval(s)

(DI). Consider the over-determined case where n sources are to be separated

from m ≥ n mixtures. Among the n source signals, there are n − 1 par-

tially overlapping (PO) sources assumed to satisfy (SAP) and one positive

everywhere (Pe) source which is required to have dominant interval(s) (DI).

The mathematical challenge of the problem here is that the ideal stand-

alone peak (SAP) [83] is again not satisfied since the NMR spectra of

biofluids contain both wide-peak (e.g. proteins) and narrow-peak sources

and that the latter ones could dominate the wide-peak signal in intensity.

The method consists on three steps:

• Identifying the mixing coefficients of the (Pe) source (the broad one)

by exploiting geometry in data clustering so that the (Pe) sources is
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eliminated for the next step.

• New mixtures containing only the (PO) sources (the narrow ones) are

constructed from the previous step, for which the convex cone method

and related linear programming are applied.

• Solving a convex `1 minimization problem to extract the (Pe) source

signals.

The method was applied to three synthetic datasets and to real-world

data produced by DOSY , a mixture of quinine, geraniol and camphor. The

separation was satisfactory especially on the three synthetic datasets but on

the real-world dataset.

3.1.3. Variational approaches

The last family of approaches we shall account for here relies on the

joint numerical optimization of some objective function (i.e. with respect

to both source and mixing matrices), that generally involves both a data

fidelity term D(X\AS) and a regularization term Ψ(A,S), implementing

some prior information about the sources:

Φ(A,S) = D(X\AS) + Ψ(A,S) , (23)

complemented by additional constraints (such as non-negativity).

Several approaches have been proposed in the literature, that involve

various choices for the data fidelity term D and the prior term Ψ, as well

as different numerical optimization strategies. We note in passing that,

in the context of chemometrics, the specific approach called Multivariate

Curve Resolution (MCR) has essentially the same goals as BSS . Indeed,
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its version based on ALS (MCR-ALS) [88] or on gradient descents (MCR-

NLR) [89, 90, 91] have been tested as an alternative DOSY processing.

Non-Negative Matrix Factorization (NMF). NMF refers to a category of

approaches for decomposing a matrix with non-negative coefficients as a

product of two matrices with non negative coefficients. NMF has been

proved to be a useful multivariate data decomposition technique in various

contexts where one has to deal with nonnegative data. It is therefore a

relevant approach for instantaneous BSS when observations, sources and

mixing matrices are non-negative, which is the case for NMR spectroscopy.

Mathematically speaking, the NMF problem can be written as follows:

Given a non negative m × n matrix X as in model (2), compute a non

negative m× r matrix A and a nn negative r× n matrix S where r � m,n

such that: X ≈ A S.

NMF is generally formulated as a minimization problem with bound

constraints since it attempts to minimize an objective function representing

the difference between the original data X and the approximation AS:

(Â, Ŝ) = arg minA≥0,S≥0D(X\AS) , (24)

where D(X\AS) is a separable measure of fit (often called a divergence)

of the form:

D(X\AS) =
m∑
i=1

n∑
j=1

d([X]ij\[AS]ij) (25)

and d(x\y) is a scalar cost function.

The most frequently used divergence measure is the so-called quadratic

loss:
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D(X\AS) =
1

2
‖X −AS‖2F =

1

2

∑
i

∑
j

(Xij − [AS]ij)
2 , (26)

but several other choices have been proposed in the literature, which we will

also discuss below.

It is important to stress that criteria such as the criterion in (26) are

generally non-convex (even though they are can be convex with respect to

A and S separately, they are not convex with respect to the pair (A,S)).

Therefore, most optimization techniques cannot guarantee to yield a global

optimum, and care is needed with initialization.

Most approaches rely on alternate optimization with respect toA and S, that

therefore update alternatively the mixing and the source matrices. There are

several possible approaches, that exploit different updates rules. A simple

example is the so-called ALS (alternating least square) method proposed by

Paatero in [92] for the quadratic loss function in (26). The optimization

with respect to both A and S has a closed form solution, which is used

in an iterative algorithm, together with a projection step to enforce non-

negativity. ALS-type approaches are considered computationally expensive

but seem to be quite robust. They are also limited to situations where a

closed form expression for the updates of A and S are available.

A second class of NMF algorithms exploit classical gradient descent

techniques, as discussed and used by Chih in [93], still in the case of the

quadratic loss. Gradient-based methods are perhaps the simplest techniques

to implement but the convergence is often somewhat slow compared to the

other methods. A standard shortcoming of gradient based methods is their

sensitivity to the choice of stepsize. Adaptive stepsize techniques can be de-

veloped, but these can be hard to tune. For these reasons, other approaches
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are often preferred.

An application of these algorithms to a TOCSY spectrum of a mixture of

seven common metabolites was done by Snyder et al in [94]. They proposed

to use the (PCA) Principal Component Analysis method to estimate an ap-

proximate number of components and then NMF algorithm is applied with

variations of this number. According to the paper, if the estimated number

of components was less than the real one, the peaks coming from different

components and that overlapped partially in the spectrum are represented

by a single component and if it was the inverse then duplicate components

occur with closely related peak patterns representing the same source.

The so-called multiplicative algorithms have enjoyed significant popu-

larity since their introduction in the seminal paper of Lee and Seung [95].

They are a very good compromise between speed and ease of implemen-

tation, and have the advantage of automatically satisfying the constraint.

Also, they have recently been shown to rely on particular cases of the so-

called majoration-minimization (MM) algorithms, a fairly classical family of

methods in non-convex optimization. Still, multiplicative algorithms exploit

alternate MM-type optimizations with respect to A and S, and there is no

proof showing that any limit point is a stationary point of the objective

function.

Modifications of the original NMF algorithm have been proposed, for ex-

ample by Lin in [96] and Sajda et al in [97] who introduced the ”cNMF” al-

gorithm to deal with negative observations by assuming that they arise from

the noise distribution. A quadratic cost function was used and a threshold

constraint is added by forcing the negative values of S to be approximately

zero and such the mixing matrix A will be treated symmetrically in the same
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manner.

The NMF algorithms discussed above can be generalized also to involve

different choices of the cost functions Φ and Ψ in eq. (23), that may be

better suited for real world data. In the standard approach, Ψ = 0 and

Φ is a quadratic function, which implicitely assumes white Gaussian noise.

To account for other noise models, the function d(x\y) in eq. (25) can be

replaced with other divergence functions.

Prior information on the sources S and the mixing matrix A can also be

introduced in the regularization term Ψ. We shall describe in some details

a variant (sparse NMF ) enforcing sparsity on the sources by taking for Ψ

some `1 norm of the sources. Non-negativity condtrains introduced in MCR

DOSY processing did produce somewhat better separations [89, 90, 91].

Sparse NMF To enhance the decomposition of multivariate data,

prior information about the sources and mixing matrix can be exploited.

We have seen already that sparsity seems to be a relevant paradigm for

NMR spectra. Sparsity can be introduced in different ways into the NMF

approach, corresponding algorithms are generically termed sparse-NMF .

The sparse NMF was introduced by P. Hoyer in [98], where the sparsity

is enforced by taking for Ψ in (23) an `1 prior term:

Ψ(A,S) =
∑
r

‖Sr‖1 .

The algorithm therefore looks for a minimizer of an objective function com-

posed by a quadratic data fidelity term, and an `1 prior:

Φ(A,S) = ‖X −AS‖2F + λ
∑
r

‖Sr‖1 , (27)
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where λ is a positive regularization constant which allows controlling the

sparsity rate for the components to be estimated. The proposed algorithm,

termed NNSC ”Non-Negative Sparse Coding”, combines a projected gradi-

ent step for updating A with a MM -based multiplicative step for updating

the sources S.

As an alternative, sparsity can also be introduced as a strict constraint.

The sparse NMF introduced by P. Hoyer in [99] introduces a sparsity mea-

sure defined by:

sparsity(a) =

√
n− (

∑ |ai|)/√∑ a2i )√
n− 1

, (28)

where n is the dimensionality of a. The sparsity constraint can be im-

posed on either A or S, or both. The optimization algorithm goes along the

same lines as NNSC .

Since the use of this approach requires some specific knowledge about the

sparsity of the sources, it is probably more complex for NMR applications,

and was never applied to this problem.

We applied recently NNSC to the unmixing of mixtures, using PFG-NMR

datasets described in [79]. The results are shown in figures: 18 for SM ,

figure 19 for QGC and figure 20 for DENET , using the Matlab code

published in [100]:

The reconstructed DOSY (following the procedure described before in

the JADE section) made from estimated matrices S and A by NNSC for

all datasets are presented in figures 21, 22 and 23.

3.2. Tensor based methods (PARAFAC)

Introduction to PARAFAC model:. PARAFAC (parallel factor analysis) is

considered as a generalization of PCA to higher order arrays. In the case of
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Figure 18: The sources recovered by NNSC with gradient stepsize δ = 510 − 06 and

λ = 30 (a) and the ground truth sources (b) forthe mixture of Maltotriose and Sucrose,

analyzed with a PFG-NMR series. Reprinted with permission from Anal. Chem, Vol

85, Toumi. I, Torrésani.B and Caldarelli.S, Effective Processing of Pulse Field Gradient

NMR of Mixtures by Blind Source Separation, p 11344-11351. Copyright 2013 American

Chemical Society

an three-way data analysis, a decomposition of the data is made into triads

or trilinear components, but instead of one score and one loading vector as

in bilinear PCA, each component consists of one score and two loading vec-

tors [101] [102]. According to the nature of data, additional restrictions,

such as non negativity and orthogonality can be applied for all/some of the

modes.

The model was proposed earlier by Harshman [103] and Carroll & Chang

[104] who named the model CANDECOMP (canonical decomposition) which

is a generalization of the matrix singular value decomposition (SVD) to ten-

sors [1]. Mathematically, it is a straighforward generalization of the bilinear

model of factor (or component) analysis to a trilinear one following this ex-

pression:
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Figure 19: The recovered sources by NNSC with gradient stepsize δ = 5.e−05 and λ = 40

(a) and the ground truth sources (b) for for Quinine, Camphene and Geraniol. Reprinted

with permission from Anal. Chem, Vol 85, Toumi. I, Torrésani.B and Caldarelli.S, Effec-

tive Processing of Pulse Field Gradient NMR of Mixtures by Blind Source Separation, p

11344-11351. Copyright 2013 American Chemical Society

xijk =

R∑
r=1

airbjrckr + eijk , (29)

with an associated sum-of-squares loss:

min
A,B,C

∑
ijk

[
xijk −

R∑
r

airbjrckr

]2
. (30)

Here, xijk is an entry of a three-way array X with modes A, B and C.

the air gives the weight or loading of factor r on level i of mode A; bir and

ckr give the weight or loading of the same factor on level j of mode B and
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Figure 20: The sources recovered by NNSC with gradient stepsize δ = 510−05 and λ = 20

(for the regions between 1 and 6 ppm) and λ = 40 (for the regions between 6 and 10 ppm)

(a) and the ground truth sources (b) for the mixture of Dextran, Tartrazine, Ephedrine,

Nicotinic Acid and Ethanol, recorded as a series of PFG-NMR spectra. Reprinted with

permission from Anal. Chem, Vol 85, Toumi. I, Torrésani.B and Caldarelli.S, Effective

Processing of Pulse Field Gradient NMR of Mixtures by Blind Source Separation, p 11344-

11351. Copyright 2013 American Chemical Society

level k of mode C, respectively; eijk is the residual or error term.

The model can be directly fitted to a three-way array of observations with

factorial structure, or it can be indirectly fit to the original observations

by using a set of covariance matrices computed from the observations, with

each matrix corresponding to a two-way subset of the data [105].

The fitting method used for PARAFAC is again the Alternating Least
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Figure 21: The DOSY reconstructed from NNSC separation (left) and the equivalent

monoexponential fitting (right) of sugars mixtures (gradient stepsize δ = 5.e − 06 and

λ = 30)

Figure 22: The reconstructed DOSY from NNSC separation (left) and the equivalent

monoexponential fitting (right) of the QGC mixture (gradient stepsize δ = 5.e − 05 and

λ = 40)

52



Figure 23: The DOSY reconstructed from NNSC separation (left) and the one obtained

with a monoexponential fitting (right) ofthe DENET mixture (gradient stepsize δ = 5.e−

05 and λ = 20 (for the region between 1 and 6 ppm) and λ = 40 (for the region between

6 and 10 ppm))

Squares. The trilinear model is broken up into three sets of parameters,

such that it is linear in each set given fixed values for the other two sets.

An obvious advantage of the PARAFAC model is the uniqueness of the

solution for the reasons explained in [105].

The general PARAFAC ALS algorithm follows these steps:

Figure 24: A graphical representation of a two-component PARAFAC model of the data

array X (R=2). Reprinted from Analytica Chimica Acta, vol.531, M. Dyrby et al, Analysis

of lipoproteins using 2D diffusion-edited NMR spectroscopy and multi-way chemometrics,

p 209-216. Copyright 2005, with permission from Elsevier
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1. Decide on the number of components, R

2. Initialize B and C

3. Estimate A from X, B and C by least squares regression

4. Estimate B likewise

5. Estimate C likewise

6. Continue from 3 until convergence (little change in fit or loadings).

More details of the algorithm can be found in [101].

Application of PARAFAC to NMR spectrosopy:. The first application of

multi-way calibration by N-PLS (N-way partial least squares) and multi-

way curve resolution by PARAFAC to 2D diffusion-edited 1H NMR spectra

was presented in the paper of Dyrby et al [106]. The aim of the analysis was

to evaluate the potential for quantification of lipoprotein in human plasma

samples using these methods since the lipoprotein spectrum presents many

overlapping signals and very small differences in diffusion coefficients, which

make the full separation with 2D diffusion-edited NMR spectroscopy almost

impossible.

PARAFAC was used on 2D diffusion-edited NMR data of a plasma sample

containing 24 spectra. PARAFAC models using two to four components

were generally informative and provided a good fit to the data. Non neg-

ativity constraints were considered for the anaysis on all modes. The next

figure shows the best result obtained in this work, which was based on the

methylene signal (1.31-1.20 ppm) only and using four PARAFAC compo-

nents:

The figure 25 (A) shows four smooth spectral loadings that are very

similar NMR spectra but have different diffusion coefficients, corresponding

tentatively to lipoproteins of four different sizes. The four diffusion loadings

54



showed in Fig. 25 (B) correspond to the diffusion curves of the four spectral

loadings in the 25 (A). Although the separation looked correct, the corre-

sponding concentrations of the four PARAFAC components did not match

the reference concentrations as determined by ultracentrifugation, which was

tentatively ascribed to the continous density profiles of lipoproteins.

Forshed et al [107] came later to present a method to enhance the

multivariate data interpretation of metabolic profiles which was done by

correlation scaling of 1H NMR data by the time pattern of drug metabolite

peaks identified by LC/MS, followed by PARAFAC. A different appli-

cation of PARAFAC in order to do the metabolic profiling based on the

two-Dimensional J-resolved 1H NMR was presented in [108].

Montoliu et al [109] applied unsupervised chemometrics for integrat-

ing 1H NMR metabolic profiles from mouse plasma, liver, pancreas, adrenal

gland and kidney cortex matrices in order to infer intercompartments func-

tional links. Since (PCA) and multiway PCA do not offer enough informa-

tion on intercompartment metabolic relationships, integration of metabolic

Figure 25: Result of a PARAFAC model with four components on the 2D diffusion-edited

NMR spectrum of the methylene peak of lipoprotein lipids: (A) spectral loadings and

(B) diffusion loadings. Reprinted from Analytica Chimica Acta, vol.531, M. Dyrby et

al., Analysis of lipoproteins using 2D diffusion-edited NMR spectroscopy and multi-way

chemometrics, p 209-216. Copyright 2005, with permission from Elsevier
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profiles using (MCR) and (PARAFAC) enabled the characterization of

compartment-specific metabolite signatures. This was the first application

of these methods in a metabonomic description of intercompartmental func-

tional relationships.

Trilinear analysis was applied in the case of diffusion NMR spectroscopy

by Mathias Nilsson et al in [110], by using concentration variations in a on-

going reaction as the third dimension, which allowed to describe the reaction

kinetics. In fact, DOSY / timecourse spectra are bilinear data where the

signal intensity I is measured as a function of two variables, frequency and

gradient amplitude, and frequency and time, respectively. So, in case of spec-

tral overlap, it is common to use multivariate method to help to resolve the

component spectra (diffusion/ kinetics). For bilinear analysis, it was neces-

sary to apply constraints such as non negativity and/or known/hypothesised

kinetic models, in order to avoid the problem of rotational analysis and al-

low the true solutions to be selected out from the infinite range of linear

combinations. According to the authors, this problem can be avoided by

using PARAFAC and therefore the experimental data to be used should

be represented according to the model in Eq. (29):

I =
N∑
i=1

SiAiCi + E (31)

Where S are spectra as a function of frequency f , A are diffusional

attenuations as a function of gradient g, C are the concentrations profile as

a function of time t and E is the noise. Here, the only requirement is that

Si(f), Ai(g) and Ci(t) of each species be independent of each other.

PARAFAC fitting was carried out for a spectral region of a reacting

mixture well known as acid hydrolysis of maltose to glucose, with one as-
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sumption, that there were two components.

According to the obtained results, the decomposition proved to be robust

and efficient when it was used for experimental timecourse combined with

diffusion information.

A second application to DOSY (diffusion-ordered spectroscopy) was

done by the same authors in [111] but this time relaxation was incorpo-

rated as the third dimension. The experiment was named T1-DOSY .

In order to combine relaxation encoding with diffusion encoding, three se-

quences were investigated, all which are based on the standard diffusion en-

coding DOSY oneshot sequence. The first two sequences were constructed

by concatenating a relaxation encoding segment with the DOSY sequence

and the third by incorporating relaxation encoding whithin the existing

diffusion delay. The T1-DOSY experiments were tested on a mixture of

1-propanol and 3-methyl-pentanol for each of the three pulse sequences.

The figure 26 shows good separation for the three different pulse se-

quences which proved that adding a third dimension based on relaxation to

diffusion experiments can help in decomposing the overlapping spectrum of

a discrete mixture into the spectra of its individual components when com-

bined with appropriate multiway data processing methods like PARAFAC.

Recently, Bjorneras. J et al. published a successful application of T1-

DOSY to a mixture of 5 components (quinine, camphene, geraniol, residual

OH signals from methanol and water) [112].

Rasmus Bro et al [113] continued to exploit the PARAFAC model

for 2D spectra in order to resolve the signals from a signal analyte in a

complex mixture with diffusion, NMR spectrum and analyte concentration

being the three factors in eq.(31). The approach was named ”mathematical

chromatography”. As an example, it was applied to a series of diffusion-
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edited 2D NMR spectra of mixtures of glucose, maltose and maltotriose.

The figure 27 shows the PARAFAC solution which includes three parts:

estimated relative concentrations (scores) together with estimated spectra

(loadings) and estimated diffusion profiles (loadings)for each of the three

compounds.

Despite that the diffusion coefficients of the three compounds were close

(around 7, 5 and 4.10−6cm2/s for glucose, maltose and maltotriose respec-

tively) and that their individual spectra have highly overlapping regions,

Figure 26: 1H spectra obtained by PARAFAC decomposition of the results of differ-

ent T1-DOSY experiments on the mixture of 3-methyl-3-pentanol and 1-propanol. The

component spectra (top) constructed from the results of PARAFAC processing using the

specified number of components for the four spectral segments indicated, and (bottom)

the DOSY spectrum constructed from the component spectra and diffusion coefficients

obtained for the individual spectral segments: A, B and C refered to the three consid-

ered pulse sequences. Reprinted with permission from Analytical Chemistry, Vol. 81, M.

Nilsson et al., T1-Diffusion-Ordered Spectroscopy: Nuclear Magnetic Resonance Mixture

Analysis Using Parallel Factor Analysis, p 8119-8125. Copyright 2009, American Chemical

Society
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PARAFAC provided a good separation which confirmed that it may pro-

vide a successful method of identification of individual components in highly

overlapping 2D NMR spectra.

4. Validation process:

Although all BSS methods discussed above have successfully been demon-

strated in selected cases, a proper assessment of their general applicability

Figure 27: The three-component PARAFAC solution for the NMR data from mixtures of

glucose, maltose and maltotriose using diffusion-edited 2D NMR data. The PARAFAC

solution (above with color codes) provides the estimated relative concentrations (scores)

of each component, which are to be scaled only to provide the true concentrations of

each of the three compounds (inserted table). Furthermore, the resolved diffusion profiles

related to each of the three compounds and the resolved pure NMR spectra of each of the

three different compounds are estimated. Reprinted from Trends in Analytical Chemistry,

Vol. 29, R. Bro et al., Mathematical chromatography solves the cocktail party effect in

mixtures using 2D spectra and PARAFAC, p 281-284 .Copyright 2010, with permission

from Elsevier
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remains elusive. This point is a general one and not only restricted to NMR

applications. Not all methods presented in the literature have been accom-

panied by an attempt at estimating their limits in terms of resolving power.

Nuzillard proposed first to estimate the quality of separation of SOBI ,

Fast-ICA and JADE declinations of ICA and LPBSS , using two fi-

delity indexes, both of which focused on a measure of the distance between

the estimated and real mixing matrix, A. This kind of analysis is possible

only on data in which the mixing matrix is constructed artificially , so that

the sources and mixing matrices, as well as the noise are known in advance.

In the following we illustrate an original similar performance test, which

includes additional comparison of the estimated and real spectral source.

Indeed, while a faithful reproduction of the mixing matrix is important for

quantitative analysis, it is rather on the aspect of the estimated spectra that

the attention of the spectroscopist focuses first, since it allows the assignment

of the spectral features to a given compounds precisely.

While these tests provide useful insight on the intrinsic separation power

of a given method, one must bare in mind that any experimental aspect

that should induce variations of a signal shape or position (e.g. phase,

baseline correction etc.) would have an additional impact on the quality of

the separation.

Various BSS algorithms were tested on the SM dataset but considering

two cases:

• Artificial SM mixtures which were generated from the real 1H NMR

spectra of pure components are 0.06(mol/l) and 0.04(mol/l) respec-

tively. The mixture is arranged in a pseudo PFG-NMR experiment

corresponding to diffusion constants of 4.10−10m.s−1 for the sucrose
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and 3.10−10m.s−1 for the maltotriose. To test the robustness of the

methods under study in the presence of the noise, a matrix N with

random values of maximum fixed amplitude was added to mixture sig-

nals, with various values of Peak Signal-to-Noise Ratio (PSNR).

The standard SNR was also computed. We used the following defini-

tions for SNR and PSNR:

SNR = 20 log10

(
std(signal)

std(noise)

)
(32)

PSNR = 20 log10

(
max(signal)

std(noise)

)
(33)

where ”std” stands for standard deviation.

• Real-world noised SM DOSY dataset.

A systematic comparison between JADE , NNSC , LPBSS and SOBI

was achieved on the basis of three performance indices:

The Comon index and the Choi index: which evaluate some specific distance

measures between the estimated mixing matrix Â and the real mixing matrix

A [83, 85]:

εChoi(A, Â) =
1

2(n− 1)

n∑
i=1

(
n∑
k=1

|gik|2

(maxj |gij|2)
− 1 +

n∑
k=1

|gki|2

maxj |gji|2
− 1

)
(34)

εComon(A, Â) =
∑
i

∣∣∣∣∣∣
∑
j

|dij | − 1

∣∣∣∣∣∣
2

+
∑
j

∣∣∣∣∣∑
i

|dij | − 1

∣∣∣∣∣
2

+
∑
i

∣∣∣∣∣∣
∑
j

|dij |2 − 1

∣∣∣∣∣∣+
∑
j

∣∣∣∣∣∑
i

|dij |2 − 1

∣∣∣∣∣
(35)
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where dij are the elements of D = A−1Â where the notation A designates

the matrix obtained from A by multiplying each column Aj by
∥∥Aj∥∥−1 .

gij are the elements of G = Â−1A.

We developed furthermore an error on the sources index, which estimates

the similarity degree between the estimated spectra of components Ŝ and

the real ones Ŝ. the expression of the error is illustrated below:

εS(S, Ŝ) = log

∥∥∥S − Ŝ∥∥∥
p

‖S‖ (36)

with p = 4,in order to get more interest in the regions where there is more

information (peaks).

4.1. Impact of noise: artificial mixtures and additional artificial noise

The following Fig. 28, Fig. 29 and Fig. 30 show the behavior of algorithms

JADE , SOBI , LPBSS and NNSC according to the variation of the

SNR.

The Figs 28 and 29 represent the performance accroding to Choi and

Comon fidelity indices, respectively. Although these two do not produce

totally coinciding results, some general trends can be inferred. Here, the

SOBI approach is confirmed to be the least effective one. The remaining

methods perform best for low noise content, starting from around 60dB.

The NNSC method appears to perform best overall, as it is able to pro-

duce acceptable results even for slightly lower signal-to-noise levels. On the

other hand, for little or no noise content (i.e. S/N > 64dB), LPBSS is

predicted to be the most faithful algorithm. Indeed, the regularization fac-

tor introduced in NNSC induces a toll on the similarity between real and
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Figure 28: The evolution of the Choi fidelity index on the A matrixindex according to the

SNR variation for SOBI, LPBSS, NNSC and JADE on a SM mixture. See text for details.
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Figure 29: The evolution of the Comon fidelity index on the matrix A according to the

SNR variation for SOBI, LPBSS, NNSC and JADE on a SM mixture. See text for details.
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Figure 30: The evolution of the Error on the source spectra according to the SNR variation

estimated sources, since all calculated peaks are reduced of an amount pro-

portional to this parameter. Note that the S/N ratio will vary for peaks of

different intensity in these spectra, and thus the less intense peak are the

one ones that will suffer the highest relative error. These indexes provide a

global estimate, so that visual inspection (or point by point estimation) can

reveal significant distortions in the estimated sources that can go unnoticed.

We further analysed the separation behaviour of the algorithm by dis-

playing in details two cases: SNR = 54dB and SNR = 64dB.

According to these results, the algorithm that provides the worst sepa-

ration is SOBI which is due to the absence of constraints that highlight the

nature of NMR data, such as sparsity and nonnegativity.

JADE performed badly in the low range of SNR but eventually became

more stable providing a good separation. This can be understood since the

estimated sources contain negative residuals from the other sources which

increases the values of the error on the estimation of the source matrix S
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Figure 31: Calculated sources with different methods for the demixing test performed

on artificial mixtures made of sucrose and maltotriose signal with a variable amount of

noise. The spectra were calculated for a value of S/N of 54 dB (top panels) and 64 dB

(bottom panels). Left panels correspond to LPBSS, middle ones to JADE, and right ones

to NNSC. Reprinted with permission from Anal. Chem, Vol 85, Toumi. I, Torrsani.B

and Caldarelli.S, Effective Processing of Pulse Field Gradient NMR of Mixtures by Blind

Source Separation, p 11344-11351. Copyright 2013 American Chemical Society

and on the other hand, JADE estimates a matrix B supposed to be the

pseudo-inverse of A (mixing matrix) so the recovered elements of A are not

very precise.

The performance of LPBSS (which involves nonnegativity constraints

and local sparsity) follows a sudden increase for high values of this parameter

indicating that this algorithm is rather efficient in the absence of noise.

The NNSC algorithm is the one that seems to be the most stable re-

gardless the nature of the noise. Since the algorithm is based on sparseness

and nonnegativity constraints, it was required to estimate the number of
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sources that are actually present in the mixtures without considering the

noise as a source, showing that the algorithm is less affected by noise than

others.

A weakness with the NNSC algorithm is the necessity of guessing λ, which

on one hand requires testing to find the value that provides a good separa-

tion, moreover the intensities of the signals in the estimated sources are not

the same as in the ground truth but reduced by a factor proportional to λ.

4.2. Case of real-world mixtures and real noise

The previous study was done in the case of artificial SM mixtures with

artificial additive gaussian noise. In order to get a more realistic estimate of

the separation in the case of noisy mixtures, we studied three different cases

of real-world noisy mixtures [114], corresponding to PSNR equals to 70, 72

and 74 dB.

The separation was done using JADE , LPBSS and NNSC algorithms

for all these cases (Fig. 32, Fig. 33 and Fig. 34).

We can see from Fig. 32 that JADE separated better the Sucrose

spectrum but with some negative residues in the region between 3 and 4

ppm for all cases. The Maltotriose spectrum was badly estimated with

highly significant residues which spread over the region 3-6 ppm.

This confirms that JADE only has a chance at working for very high SNR.

For instance, we proposed to use ICA (rather than PCA as in [94]) to

estimate the number of components to submit to a more accurate but slower

algorithm as NNSC .

Figure 33 shows that the separation with the LPBSS algorithm was

done only in one case (PSNR = 74 dB) with presence of few artifacts

between 3 and 4 ppm. This suggests that the method is not able to separate
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Figure 32: The sources recovered by JADE for an real-world SM mixture for different

noise levels, compared to the ground truth sources
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Figure 33: The sources recovered by LPBSS for an real-world SM mixture for different

noise levels, compared to the ground truth sources
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Figure 34: The sources recovered by NNSC for an real-world SM mixture for different

noise levels, compared to the ground truth sources

noisy mixtures and hence it requires very high quality of NMR data to

perform adequately.

Unlike JADE and LPBSS , NNSC performed well in all three cases

(Figure 34). The separation is enhanced going from the PSNR = 70 dB

and PSNR = 72 dB, where the separated spectra presented a few residues

between 3.5 and 4.5 ppm, to PSNR = 74 dB, where residues were noticed

just around 4 ppm.

These results reinforce the outcome from synthetic data and additive

noise and prove that both JADE and LPBSS have a good performance

in the case of low noise NMR spectra and that the NNSC algorithm is

the most robust algorithm for the case of NMR spectroscopy even when it

consists of high overlapped spectra from noised mixtures.
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5. Conclusion

The examples shown in this first review of Blind Source Separation al-

gorithms applied to NMR of mixtures illustrate as this concept is still in its

infancy, and is expected to develop considerably in the coming years as one

of the alternatives to plain Fourier Transform.

Thus far, most demonstrations have been dealing with PFG-NMR de-

cays, which is understandable as this experiment is still in strong need for

an effective and robust processing toolset. A main point that requires better

understanding is the prediction of the separation capabilities of a particular

BSS algorithm. However, although the superiority with respect to current

methods has been illustrated for specific datasets, a clear description of the

resolving power of BSS methods for NMR has not been provided, and the

evaluation of BSS performances remains thus far very qualitative.

Finally, in the verge of the fast expansion of NMR of complex mixtures

of small molecules, BSS is likely to be further tested in this context, for

which just a few but promising examples exist to date.
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Glossary:

BSS: Blind Source Separation, 7

DENET: Mixture of Dextran,Ethanol,Nicotinic acid,Ephedrine and Tartrazine, 22

DI: Dominant Interval, 38

DOSY: Diffusion Ordered NMR Spectroscopy, 5

ICA: independent Component Analysis, 16

JADE: Joint Approximate Diagonalization of Eigen-matrices, 21

LPBSS: Linear Programming BSS, 30

NMF: Non Negative Matrix Factorization, 10

NNSC: Non Negative Sparse Coding, 48

PARAFAC: Parallel Factor Analysis, 10

PSNR: Peak Signal-to-Noise Ratio, 61

QGC: Mixture of Quinine, Geraniol and Camphene, 22

rSAP: relaxed SAP, 35

SAP: Single Analyte Point, 28

SCA: Sparse Component Analysis, 25

SM: Mixture of Sucrose and maltotriose, 22

SNR: Signal-to-Noise Ratio, 61

SOBI: Second Order Blind Identification, 13
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