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a b s t r a c t

Micropitting is a form of surface fatigue damage that occurs in the gear teeth. It is due to the effect of

variation in the mechanical loading in the contact zone between the two teeth, induced especially by

flank roughness. In this study, generic roughness profiles were built with geometrical parameters to

simulate the contact between two rough surfaces. Using elastohydrodynamic lubrication code and

Crossland’s fatigue criteria, the influence on fatigue lifetime was analysed for changes in each

parameter. The relevant parameters were determined that influence (i) the conventional pitting, (ii)

the extent to which the von Mises equivalent stress exceeds the material yield stress in the zone where

micropitting occurs, and (iii) the fatigue lifetime for steel teeth. With nitriding benefits, the same trends

were shown with weaker effects.

1. Introduction

Micropitting is a form of fatigue damage. It occurs in the
contact zone of a mechanism where changes in mechanical
loading on the surfaces of the two bodies are induced [1,2]. It is
a form of failure in gear contacts and has characteristic pitting of
the surfaces at the scale of the surface roughness features. These
pits can grow and through crack branching can eventually lead to
tooth breakage. In gears, it was demonstrated [3–5] that the
location of this damage is close to the surface near the root of the
teeth and occurs where the slide/roll ratio x is higher [6].

A global analysis of the causes of micropitting can be separated
into three different factors, the boundary conditions, the change
of the surface under load at the operation conditions, and the
capability of material to resist the mechanical loading. The first
factor is directly linked to the boundary conditions in the contact
zone when meshing of teeth occurs, which are generally subject
to elastohydrodynamic lubrication (EHL) or mixed EHL/boundary
lubrication conditions. Some studies have been conducted to
examine the lubricant effect on the micropitting features. These
experimental analyses investigated the influence of additives on
the thermo-physical properties [7]. The boundary conditions in
the contact zone are mainly dependant on the thermo-physical
and mechanical properties of lubrication, and on the interaction
between the roughness and the lubricant film [8].

The second factor is due to the response of the material in the
contact zone to the mechanical loading during the few first cycles
of operating system. Some rolling experimental studies [9,10]
investigated this effect in terms of microgeometry changes due to
the scission of some asperities and plastic strain phenomenon on
asperities. Some modelling has been carried out to analyse this
effect in the case of sliding and rolling contact [11]. Nevertheless,
no study has treated the full effect of running-in taking into
account the changes in material behaviour, the cumulated
damage, and at the same time the changes of geometry.

The third factor is the response of the material in terms of
limited fatigue or infinite lifetime. Because the fatigue lifetime
depends on the mechanical properties of the material in terms of
resistance to failure under variable transient loading, some
studies have been conducted based on the analysis of real
roughness profiles [6] under EHL conditions where the influence
of the slide/roll ratio was demonstrated. In other studies, predic-
tions of behaviour were developed taking into account the
pressure distributions attributable to sinusoidal roughness
[12,13]. However, in all these analyses the mechanical loading
was the applied loading but the residual stresses induced by the
machining process was not taken into account.

The originality of the current study is in the generation of
roughness profiles in order to produce a parametric study of
predicted micropitting behaviour. In the contact zone, damage can
occur due to wear or to fatigue mechanisms. The work is focused on
determination of the fatigue damage that occurs in the first 50
micrometres beneath the surface. This study deals with a simulation
of the effect of EHL loading on the contact zone taking actual
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conditions and materials into account. In this approach, the semi-
analytical modelling of the history of loading is treated for the case
of elastic strain. Moreover, in the case of nitriding, residual stresses
are introduced in the global loading taking the changes due to deep
gradient of properties into the calculation. Because of the small size
of the micropits, general plasticity is not occurring in the contact
zone during the micropitting process. This form of damage can occur
locally after several cycles of loading corresponding to tooth mesh-
ing (when the teeth are in contact) due to a local plasticity of grains
of material. However, it is not possible to know precisely the
arrangement of the microstructure and to determine the position
and the orientation of the local grains directly linked with the
position of the specific asperities close to the surface for this study
which is based on parameterised roughness profiles without con-
sideration of sub asperity grain structures. The approach developed
in this work could not use specific microscopic fatigue criteria
without any information or knowledge of position and orientation
of grains, slip planes and local defects of the material. Such features
would be more appropriate for study of real measured surface
profiles where metallurgical examination of the grain structure is
possible. For the current study mechanical calculations are con-
ducted considering small volumes based on the assumption of a
homogeneous and isotropic material. The Crossland criterion [14] is
used to predict fatigue and was developed to consider the effects of
large hydrostatic pressures on fatigue which is a feature of the
loading experienced by the asperities. It is based on two invariants
of the stress tensor. The first factor is the alternate von Mises stress,
in order to take into account the changes in time in the mechanical
loading that induces local plasticity, and the second is the maximal
hydrostatic pressure. This is a multiaxial fatigue criterion, based on a
macroscopic approach to damage, taking into account the capability
of the material to resist to the failure. Failure of a material is defined
when the damage parameter is equal to 1. Because this phenom-
enon can occur after a long service time for gears, the assumption of
linear accumulation of damage can be made and is consistent with
the elasticity loading hypothesis. With these hypotheses, fatigue
lifetime was quantified and the most relevant parameters of the
roughness profiles were identified.

2. Hypothesis and method

2.1. Geometry

The roughness of the pinion and the wheel contacting surfaces
are defined using generic profiles specified in terms of a set of
parameters. The goal is to be able to represent the real micro-
geometry of the surfaces obtained on ground, or superfinished gear
teeth. In order to reproduce the typical large bearing area of this
finished surface, the profile is built on a carrier specified with four
parameters illustrated in Fig. 1(a): HP, the height of the carrier; LP,
the length of the carrier land; PP, the total length or the carrier
cycle; and Pat, the (equal) engagement and exit slopes. This work is
aimed at examining surfaces finished by an abrasive machining
process. The surface then presents a specific geometry with broken
grains or sheared grains on the boundaries. In order to take the
geometry induced by the grains of material into account, a noise
defined by three parameters illustrated in Fig. 1(b), is added to the
previous carrier. The noise parameters are: HB, the height of the
noise; T2, the period of the noise; and NBP, the numbers of peaks.
An example of the resulting generated profile is shown in Fig. 1(c).
Analysis of the microstructure of the material has led to choice of a
minimal periodicity of the noise consistent with the grain size of
over 10 mm. However a spatial resolution of at least a set of
3 grains is considered necessary to be sufficient for effective
calculations using the hypothesis of isotropic and homogeneous

material in the EHL simulations. Real profiles of roughness were
analysed and the results of examination allowed the minimal, and
maximal values for all the other profile parameters involved in the
study to be defined. Fig. 2 shows an example of a real rough profile
with different values of local measurements of height and length.
A mean profile was defined using the mean profile values specified
in Table 1. In order to investigate the effect of parameter variations
about forty profiles were generated for the study. Each of these
profiles had a variation in one of the seven parameters with the
others taking the mean profile values. Table 1 also gives the
minimal and maximal values used for each parameter’s variation.

For all these profiles the values of the standard roughness
parameters are very close to the range of those obtained for real
ground or superfinished surfaces [15]. The extreme values of the
arithmetic roughness, Ra, the skewness, Rsk, and the kurtosis,
Rku, obtained for the profiles considered are given in Table 2, [16].

2.2. Materials

2.2.1. Base material

The material used as a basis for this study for the wheel and
the pinion is the 32CrMoV13 steel grade quenched and tempered
in order to obtain a yield point of about 1 GPa (tempered
martensite). The grain size is about 10 mm and the chemical
composition is given in Table 3. Residual stresses of the base

Fig. 1. (a) Carrier component, (b) noise component, (c) resulting profile.



material are neglected because of their low values and because no
significant changes in these values can be detected with depth.

2.2.2. Nitrided material

With thermo-chemical treatment such as gaseous nitriding
this grade of steel can be modified by the precipitation of alloyed
nitrides beneath the surface to a depth of about 1 mm [17]. Due to
the nitriding, changes occur in the microstructure that induce
mechanical benefits of two kinds. First there is an increase in the
hardness value and also in the yield strength of the material close
to the surface [18], and the fatigue lifetime [19] is increased as a
result of these changes due to nitriding. The second effect is

generation of compressive residual stresses beneath the surface
[20,21]. This induces a new mechanical loading to be added to the
surface loading applied to the part in the contact zone which can
also have beneficial consequences.

In the current study analyses are conducted for the standard
base material and also for the material when it has been nitrided.
Comparison of these results allows the effect of nitriding to be
assessed. The changes of yield strength and residual stresses with
depth beneath the surface were specified using formulae fitted to
experimental data obtained in previous work at the MécaSurf
Laboratory [22,23]. Because of the brittle nature of the white layer
essentially constituted with iron nitrides, due to the grinding
operation, a removal of about 100 mm of the surface material was
assumed. Changes in yielding point were taken a value of 2 GPa at
the surface of the parts. The residual stresses were assumed to be
biaxial taking the geometry of the tooth into account with a large
radius of relative curvature of about 38 mm in the contact zone
far from the fillet [24,25] in the specific case of the straight spur
gears studied. As shown in Table 4, the Young’s modulus and
Poisson’s ratio were assumed to be the same with and without
treatment, disregarding the weak effects of nitriding on these
mechanical properties of the steel.

2.3. Mechanical effects

2.3.1. Surface loading

The study deals with a pinion and wheel under realistic
operating conditions focusing on the main damage zone. Surface
loading is obtained using simulation under fixed conditions in
terms of radius of curvature, slide-roll ratio, contact load and
velocity. The different values of load and velocity assumed in the
analyses are given in Table 4. The properties of OEP-89 oil grade
were used in calculations as this naval gear oil is the test oil used
in a test program associated with this work. The specification
includes non-Newtonian behaviour of the oil as this is a relevant
factor in determining surface shear loading in sliding contacts
[26]. The relative radius of curvature corresponds to that of the
gear pair considered when contact occurs at the specified slide-
roll ratio, x. The surface studied corresponds to the pinion, which
is the slower moving surface relative to the contact point as
discussed in Section 2.3.2. The value of x was chosen taking into
account the geometry of the gear and the location where micro-
pitting was first observed in experimental analysis [2,5].

The current study deals with spur gears and the investigation
was carried out with a two-dimensional transient line contact
approach. In the contact zone, the surface loading was calculated
using a transient line contact elastohydrodynamic (EHL) code that
takes into account the roughness of the pinion and the wheel. The
EHL code is based on fully coupled and simultaneous solution of

Table 1
Mean profile parameter values and Minimal & Maximal parameter values used for

the generic profiles.

Designation Mean profile

value

Minimal

value

Maximal

value

HP, land height, mm 0.8 0.3 3

LP, land length, mm 80 40 90

PP, cycle of carrier, mm 100 89 160

Pat, exit or engagement slope 0.1 0.1 1

HB, height of noise, mm 0.5 0.1 1

T2, period of noise, mm 30 30 90

NPB, peaks number 3 1 5

Table 2
Limits of the roughness parameters for the generic profiles used in the study.

Standard roughness
parameters

Minimal

value

Mean

Profile

Maximal

value

Ra, arithmetic roughness, mm 0.1 0.2 0.7

Rsk, skewness, mm �2.2 �1.6 �0.2

Rku, kurtosis, mm 1.4 5.2 8.4

Table 3
Chemical composition of the 32CrMoV13 steel (in wt%).

Material C Si Mn Cr Ni Mo V Fe

0.305 0.33 0.47 2.92 0.14 0.87 0.30 Balance
Table 4
Operating conditions of the gear simulated used for EHL calculations and

mechanical and physical properties for steel and oil.

Operating

conditions

Radius of relative curvature, mm 38,1

Line contact loading (L), kN/m 387.1

Relative velocity between the teeth (S), m/s 5.8

Slide/roll Ratio x 0.655

Mechanical and

physical

Properties

Young’s Modulus (E), GPa 206.9

Poisson’ ratio (n) 0.3

Yielding point, 32CrMoV13 quenched &

tempered, MPa

1000

Yielding point, 32CrMoV13 nitrided on the

surface, MPa

2000

Viscosity at ambient pressure (Z), Pa s 0.0842

Viscosity pressure coefficient, GPa-1 13.5

Eyring shear stress, MPa 10

Fig. 2. Example of a real roughness profile.



Reynolds equation and elastic deflection of the contacting bodies
[27–30]. The output data corresponds to the surface loading given
at different time steps within the transient analysis in terms of
normal loading, p(x,t), and tangential loading, q(x,t). The time step
for the analysis is specified such that the positional change per
timestep for the faster moving surface is ½ the spatial mesh
spacing for the EHL analysis [29,30]. The loading is given for all
the meshing points defined in the window of the contact zone
studied, i.e. the EHL solution space which is fixed relative to the
contact point. The assumed input data are given in Table 5. These
values were chosen in agreement with the optimal timestep
magnitude established by Holmes et al. to produce optimal and
consistent solutions to the transient micro-EHL problem [31]. In

the current study, the EHL calculations have been conducted for
contact between two rough surfaces having the same roughness
profile. The results are compared with the results obtained in a
previous study dealing with smooth on rough surfaces [32].

2.3.2. Sub-surface stress

Sub surface loading was calculated in a fatigue analysis soft-
ware tool developed using the Cþþ language. This calculates the
stress component values for each sub-surface point considered as
illustrated in Fig. 3 using the method described in [32,33]
assuming elastic plane-strain conditions. For each timestep of
the EHL calculation, as shown in Fig. 3, the normal loading p(s)
and tangential loading q(s) are given as boundary conditions on
the rough deflected surface leading to the stress tensor at points
beneath the surface such as A(x,z).

With the hypothesis of an elastic half-space, the mechanical
effects of all these loadings are summed by superposition using an
analytical approach [34]. With this second stage of calculation, the
history of stress components is obtained in the coordinate system
fixed in the pinion for each point A(x,z). Typical variation in the
stress components with time are given for the same point beneath
the rough surfaces in Fig. 4 which compare the case where the point
considered is part of the slower moving surface with the case where
it is part of the faster moving surface. This comparison shows that
the slower moving surface is subject to more stress variation, in
terms of oscillations, during its passage through the contact zone
and it is the focus of the current study on analysis of stress history
and fatigue life. The conditions thus correspond to those of the area
of a pinion tooth where meshing first occurs which is the area where
micropitting occurs in gear contacts.

The stress tensor was determined for different material points
beneath the surface. The material volume considered was 1.5 mm
long and the stress was determined at points separated by a
lateral step of 10 mm. This value was chosen in order to conduct
an analysis in agreement with the grain size of the material which
is of the order of 10 mm. Perpendicular to the surface the meshing
step was equal to 1 mm for the near-surface material with coarser
resolution away from the surface according to the results
obtained in each case. The fineness of mesh was continued to
the depth of the last point where the value of equivalent von
Mises stress, seqvM was found to exceed the yield stress, sy. For
cases based on non-nitrided material a larger meshing step of
10 mm, was taken for material from the position of the last point
with seqvM4sy to a depth of 200 mm. This value was chosen in
accordance with the position of the Hertz point, i.e. the point with
maximum seqvM in the case of smooth contact with normal

Table 5
Input data for EHL calculations.

Designation value unit

a, half contact width 235 mm

Window width (solution space) �2.5a to 1.5a mm

Spatial mesh spacing 1.18 mm

Time step advance of the slow surface 0.30 mm

Time step advance of the fast surface 0.59 mm

Number of timesteps 15,000 timesteps

Storage of the data Every 10 timesteps

Length of rough profile 10 mm

Step for roughness profile definition 0.25 mm

Fig. 3. Surface loadings contribution on the stress tensor on the point A, with

lateral position x and in-depth position z.

Fig. 4. Stress history for (a) the slow surface, and (b) the fast surface at the point with lateral position x¼3000 mm and depth at z¼20 mm beneath the surface.



loading expected to be at a depth of approximately 180 mm for
the load case considered.

2.3.3. Equivalent stress evaluations

For the stress histories obtained for all the points in the material
considered, the results were evaluated according to three criteria.
The first was based on the maximal value of seqvM obtained in the
vicinity of the location of the maximum seqvM for the equivalent
Hertzian contact. The maximum was found in terms of all space
positions in the material with depth greater than 100 mm from the
surface for all the time values considered. All the points with
seqvM4sy were closer to the surface and therefore eliminated in
this analysis. This criterion allows finding the equivalent Hertz
point, where pitting can occur. With this criterion, the influence of
the profile parameter on pitting can be detected.

The second criterion was defined as the count of the number of
points within the material with seqvM4sy during the time
history. The value of this criterion is of interest as it gives a
measure of the influence of the profile parameters on the severity
of the loading. It also identifies the points seqvM4sy which are
excluded from the fatigue analysis that is the third criterion.
These points are excluded in order to be consistent with the
assumption of elastic loading that is embedded in the fatigue
lifetime analysis carried out as described in Section 2.3.4.

2.3.4. Fatigue analysis

Fatigue analysis was conducted using the Crossland criterion
[14]. This hypothesis is based on invariants of the stress tensor
and is relatively straightforward to apply to the case of gears for
the screening purposes of the current study. The Crossland
approach allows conditions for infinite life to be established and
also allows finite life calculations to be carried out provided the
loading remains elastic [35]. It is unsophisticated in comparison
with critical plane models such as the Dang Van model [36] for
example but is a solid basis to highlight the needs in terms of
screening and future evaluation developments for this multiaxial
fatigue study. During the meshing cycle all the stress components
are simplified and assumed to have a sinusoidal cycle of loading.
For each component, the mean stress, sm, and the amplitude salt,
are then sufficient to quantify the changes in the stress compo-
nent history. The amplitude is defined as half the difference
between the maximum and minimum values of the stress
component. However as illustrated in Fig. 5, the shear stress
may be out-of-phase with all the three normal components and
this warrants special attention when changes in the history of
stress components are to be analysed [37–39]. Fig. 6 shows the
changes in seqvM during the meshing. The out-of-phase phenom-
enon induces more than one local maximum. In this case of non-
proportional loading, mechanical loading is assumed to be the
sum of two separate loadings. The normal loading and the shear
loading, each of these loadings induces damage during the
meshing of teeth.

The cumulative damage, D is defined in order to take out of
phase loading into account. With the hypothesis of a cumulative
linear damage such as defined by Miner [40], the value of this
damage for each cycle of loading is equal to N�1 where N is the
number of cycles to failure. Then, with the hypothesis that failure
occurs when D is equal to unity [35], D can be calculated by
summing the different damage contributions in order to take into
account the maximal changes for stress components that do not
occur simultaneously. Equivalent damages Deq1 and Deq2 are
defined such as that damage Deq1 is induced by the normal
loading and the damage Deq2 is induced by the shear stress
loading. With the linear cumulative hypothesis, these damages
Deq1, Deq2 are equal to Neq1

�1 and Neq2
�1 respectively for each

cycle of loading. The values of Neq1,Neq2 are the numbers of cycles
to failure for the normal loading alone and the shear stress
loading alone, respectively.

In the Crossland method, for each material point, the stress
history is reduced to two items: the maximal hydrostatic pressure,
PhMax, and the maximum of the equivalent alternate von Mises
stress, salt

eqvM . The definition of equivalent alternate von Mises stress
is the value associated with the alternating stress tensor consisting
of half the difference between each maximal and minimal compo-
nent of stress in time. The Crossland diagram plots these variables
against each other so that the position of the loading point, M, is
given by the coordinates (PhMax,salt

eqvM) in the Crossland diagram.
By fitting at least two experimental Wölher fatigue curves

with a Palmgren model [41], the capability of material can be
described in the Crossland diagram as the straight line following
Eq. (1). The Wölher fatigue curves with different stress ratios are
useful in a specific domain in terms of numbers of cycles to
failure. This domain is limited by the minimum and maximum
numbers of cycles when failure occurred in the experimental
characterisation of the material. Shown in Figs. 7(a) and (b),
coefficients a(N) and b(N) are the two characteristic parameters of
the material for the number of cycles N to failure, with an
associated risk of 50%. For a loading point M (PhMax, salt

eqvM), if
the Eq. (1) is true, then the failure occurs with a probability of
50%. If salt

eqvM is larger than a(N)� PhMaxþb(N), then the failure
will occur (with 50% probability) in less than N cycles. Likewise, if
salt

eqvM is smaller than a(N)� PhMaxþb(N), the material is able to
sustain more than N cycles with 50% probability of failure.

salt
eqvM ¼ a Nð Þ � PhMaxþb Nð Þ ð1Þ

Consequently, for each of the profiles considered in this
current study, the number of points where fatigue failure can
occur for a number of cycles No107 with a risk of 10�3 are
counted based on a manipulation of the Crossland method. To
determine the precise values of N, this number of cycles to failure

Fig. 5. Stress component history for a point beneath the surface.

Fig. 6. Stress equivalent von Mises history for a point beneath the surface.



must belong the specific domain restricted to 2�104 to 107. This
is the domain of the experimental data, in terms of number of
cycles to failure, that is used to define the fitted Wöhler fatigues
curves. The 50% risk of failure associated with the Crossland line
fitted to these curves is too large to give a useful parameter
comparison. In order to reduce the failure risk to 10�3 for at N

cycles, a shift that reduces the Crossland domain was implemen-
ted taking into account the assumption of a normal distribution of
the experimental fatigue results and the known value of standard
deviation on the fitting process. This method was summarised in
[32] and is fully described in [42]. These results take into account
all the points regardless of the predicted number N of cycles to
rupture, for points with 2�104oNr107 cycles. The points with
seqvM4sy were discarded from this assessment.

For the nitrided material, as shown in Fig. 7(c), a(N) is assumed
to be constant in the nitrided layer in accordance with experi-
mental results obtained with and without treatment [42]. These
experimental results also show that b(N) changes significantly
with depth for nitrided material in comparison with material
without nitriding. In the current study, these changes with depth
were assumed to be linear from the top of the surface to the bulk
material [42]. If the nitrided layer has depth dn and the b(N)

coefficient has values b0(N) at the surface and bdn
Nð Þ at depth dn

respectively, bd(N), the value of b(N) at depth d is given by Eq. (2).

bd Nð Þ ¼ 1�
d

dn

� �
� b0 Nð Þþ

d

dn
� bdn

Nð Þ ð2Þ

In the case of nitriding, the mechanical loading is a super-
position of the applied surface loading, given by the EHL calcula-
tions and the residual stress loading induced by the material
treatment. For each point beneath the surface, the residual stresses
were added to the normal load induced by EHL in accordance with
the hypothesis of superposition. The residual stress component szz

was assumed to be equal to zero and components sxx and syy were
assumed to be compressive in the lateral and transverse directions
with sxx¼syy. As shown in Fig. 8, the changes of these components
in depth are given by a polynomial fitted curve with input data
obtained using X-ray diffraction facilities [22]. Residual stress
profiles induced by gaseous nitriding are dependant on the dura-
tion of the treatment [21]. Larger duration of treatment induces a
shift in depth for the minimal stress.

3. Results and discussion

Results are analysed from two different points of view. The
first analysis is concerned with the results obtained in the case of
a rough pinion tooth meshing with a rough wheel tooth (R/R).
In addition to a comparison of the results obtained on this current
study of the contact between the rough on rough surfaces (R/R) a
comparison with those obtained in a previous study [32] for the
contact between a rough and a smooth surface (R/S) completes
this analysis. The second analysis deals with the influence of
nitriding treatment on the main significant parameters of the
profile in the case of rough on rough meshing surfaces without
nitriding (R/R) and with nitriding (R/R N).

3.1. Results on rough/rough profiles (R/R) without nitriding

The first analysis deals with the trends caused by variation of each
parameter in the case of rough/rough profiles meshing. This is in
order to detect the main mechanical influence of parameters using
the three mechanical criteria described in Sections 2.3.3 and 2.3.4.

3.1.1. Maximal value of seqvM analysis

Results of the maximum value of seqvM, in time and in position
of from 100 mm to 200 mm beneath the surface, obtained in the
case of contact of two rough surfaces are shown in Fig. 9. This
value is denoted seqvM,max. The same scale is used for the seven
graphs to clarify the main trends, and trends are discussed below
in terms of the effects caused by increase of the parameter values.
It can be seen, in Fig. 9(a), that HP, the land height of the carrier, is
the most influential parameter. A strong increase is induced by
this parameter. In Fig. 9(c), the same effect can be observed for

Fig. 7. Crossland parameters versus numbers of cycles to failure for quenched and

tempered material, respectively, a(N) in 7(a) and b (N) in 7(b). In 7(c), changes in

Crossland line.

Fig. 8. Residual stress induced by nitriding as a function of depth.



the PP, the period of the carrier, with a smaller trend. In Fig. 9(b),
LP, the land length of the carrier, induces a decrease in the stress.
In Fig. 9(d), Pat, the engagement slope, and, in Fig. 9(e), HB, the
height of the noise, generate an increase in the stress value but
with a smaller effect over the parameter range considered. With
these results, it is observed that roughness parameters T2 and
NPB, respectively in Figs. 9(f) and (g), have little influence on the
value of the seqvM,max.

The changes can be explained by differences in terms of the
surface boundary conditions. Coupling of two phenomena influ-
ences these conditions and these effects can be seen in the single
timestep EHL results for R/R contacts given in Fig. 10. The first is
due to the EHL response as the film thickness and pressure
distribution changes in response to the geometry changes. It is
logical that HP and HB, the heights of the carrier and noise cause
changes to the pressure distributions. Figs. 10(a) and (b) gives the

Fig. 9. Changes in the value of s¼seqvM,max for parameter variation of the rough profiles.

Fig. 10. Example timestep results from the EHL analysis for corresponding R/R cases for two different HB values (a) Film thickness, (b) Pressure. Figures (e) and (f) give

corresponding results for Pat values of 0.1 and 1.0 with the resulting profiles illustrated in Figures (c) and (d).



film thickness and pressure response for different values of HB
and shows that the pressure is greatly influenced by this para-
meter. The other significant effect is of change in loading

intensity. Parameter Pat, the engagement and exit slope, causes
an increase in the volume of the deep valley features as it is
increased, as shown in Figs. 10(c) and (d). The effect on the film
thickness and pressure are shown in Figs. 10(e) and (f).

LP, the land length and PP, the period of the carrier are two
parameters that influence the load distribution as they are
directly linked with the bearing area of the surface. The effect of
changes in LP can be observed in the single timestep results
shown in Fig. 11. The boundary loading conditions strongly
influence the value of seqvM,max and they are influenced by these
parameters. Some changes in the location of seqvM,max were
observed for the different profiles. These positions were found
to be between 110 and 170 mm beneath the surface. For some
parameter cases values of seqvM close to the recorded seqvM,max

value occurred at different depth positions so that the location
of the maximum value was not necessarily unique within the
100–170 mm depth range.

3.1.2. Analysis of points with stress exceeding the yield point

Results for the number of points with seqvM4sy for variation
of each of the seven parameters are shown in Fig. 12. The ordinate
values are the ratio of the number of points with seqvM4sy to the
total number of points. The total number of points is taken with
the same discretisation for all the cases of calculation. In the zone
of analysis, discretisation steps are taken equal to 10 mm for the
width and to 1 mm in the depth.

The largest increase observed is due to PP, the period of the
carrier in the Fig. 12(b). In Fig. 12(e), HB, the height of the noise
also causes a significant increase. In Fig. 12(b), increasing the land
length, LP, generates a decrease of the numbers of points with
seqvM4sy and this change is of the order of that seen for

Fig. 11. Example timestep results from the EHL analysis for corresponding R/R

cases for different LP values (a) Film thickness, (b) Pressure.

Fig. 12. Changes in ratio of points with seqvM4sy for parameter variation of the rough profiles.



parameter PP, in Fig. 12(d). No significant changes can be observed
in the number of points due to changes in the others parameters.

The most significant effects observed are those due to changes
in PP and LP, the period and land length of the carrier. Their
influences are logical as the ratio of these two parameters gives
the bearing ratio of the surface. The bearing ratio increases with
an increase in the value of LP, and decreases with an increase in
the value of PP. When the surface bearing ratio is larger, this
results in lower surface stresses, and consequently smaller seqvM

for the points beneath the surface.
The influence of the height of the noise, HB, can be explained

by considering the ratio of the height amplitude to the period.
According to the literature [12,13], the bearing surface can be
characterised by this ratio for a sinusoidal surface.

3.1.3. Fatigue analysis

In Fig. 13, the failure ratio is equal to the number of points to
failure divided by the total number of points. In these last cases,
the points considered are only those with seqvMosy. The total
number of points is taken with the same discretisation for all the
cases of calculation, and the points with seqvM4sy were discarded
from this assessment. In the zone of analysis, discretisation steps
are taken equal to 10 mm for the width and to 1 mm in the depth.

LP, the land length of the carrier appears in Fig. 13(b) to be the
main parameter influencing the number of points. This effect can
be described as a non-linear decay curve. The number of points
experiencing failure increases almost linearly when PP, the period
of the carrier, in Fig. 13(c) and HB, the height of the noise increase
in Fig. 13(e). In this case again, the main parameters influencing
fatigue appear to be those related to the bearing ratio of the

surface. The dependence on HB shows that no points or only very
few points, experience fatigue until the value of HB is greater than
0.4 mm. This change in behaviour maybe explained by a scale
effect and the interaction of the two height parameters HB and HP
as 0.4 mm is the half the value of the fixed value of HP, which was
equal to 0.8 mm for the range of HB values, considered.

3.1.4. Comparison between rough/rough and rough/smooth contact

results

The current results were compared with those obtained pre-
viously [32] for the case of rough on smooth surface contacts
using the same roughness profile parameters and similar
operating conditions. Overall, the influence of all pertinent para-
meters detected in the case of rough on smooth surfaces was
confirmed in the case of rough on rough surfaces meshing. Only
three differences are detected between these two different con-
ditions of contact. For the rough on rough case, the engagement
and exit slope of the carrier Pat, was found to be influential on the
value of seqvM,max. It was found that an increase of the number of
yielding points is induced by an increase of the height of the noise
HB. Only the height of the carrier HP, was found not to be a
relevant parameter for the fatigue analysis.

3.2. Results for rough on rough surfaces with and without nitriding

With the previous results for the R/R case, the main significant
parameters were LP, PP, and HB, the land length, the period of the
carrier and the height of noise, respectively. The analysis of the
nitriding effect was conducted by considering the results for these
three parameters with and without including the effect of

Fig. 13. Change in the ratio of points to failure for parameter variation of the rough profiles.



nitriding on yield strength and residual stress. Since the elastic
modulus is assumed to be unaltered by the nitriding process the
EHL pressure distributions remain the same and there is no
change in seqvM,max. The investigation was therefore based on
the number of points with seqvM4sy, and the number of points
experiencing calculated fatigue failure.

3.2.1. Analysis of points with stress exceeding the yield point

Fig. 14 shows the results for the ratio of points with seqvM4sy

for the two cases with the nitrided results shown in the left hand
figures. Note that as the effect of nitriding is significant the
ordinate scales are different for the two cases.

The nitriding benefits can be observed with the significant
reduction of the number of points with seqvM4sy. The trend
apparent for each parameter is unchanged by nitriding but the
highest number of points identified is reduced by a factor of
between 14 and 30 according to the parameter considered.

3.2.2. Fatigue analysis

In Fig. 15, the results for the ratio of points experiencing
calculated fatigue failure are compared for the two cases. Again
nitriding causes a significant reduction in the number of points
counted and the ordinate scales are different to facilitate compar-
ison of trends. The same trends are observed for each parameter
with and without nitriding with the maximum failure ratio value
reduced by a factor of about 3 when nitriding is included. In
Figs. 15(a) and (d), a marked decrease of the number of points to
failure is shown when LP, the land length increases. Increased
values of both PP, the period of the carrier, in Figs. 15(b) and (e),
and HB, the height of the noise, in Figs. 15(c) and (f), cause
increased numbers of points experiencing fatigue.

3.3. Summary of results

It was found that five of the profile parameters have a
significant influence on the pitting effect in terms of their effect
on changes of the maximal equivalent von Mises stress developed
in the contacting material. The most significant parameters were
the height, HP, the period, PP, and the land length, LP, of the
carrier component of the roughness profile.

In terms of the capability of the material to sustain the
mechanical loadings the effects of the seven parameters of the
rough profile were analysed to determine the numbers of points
subject to yielding at a specified yield stress of 1 GPa for the basis
material. It was found that two carrier parameters; the land
length LP, and the period PP, and one noise parameter, the noise
height HB, induce significant changes in the number of yielding
points.

A fatigue analysis was carried out using the Crossland criterion
with the material properties of the basis material. Again the three
parameters LP, PP and HB were found to have the greatest effect
on the level of fatigue experienced by the material in these
calculations.

Table 6 shows that most of the parameters determined to be
influential are from the carrier component of the rough profile.
This can be explained by the fact that LP and PP (the land length
and the period of the carrier) influence directly the bearing area in
the contact zone. For the noise, only the height HB, is demon-
strated as playing a role in the changes of seqvM,max, the number of
points with seqvM4sy and the number of points to failure. This
can be explained because this parameter is very influential in
determining the local variation in lubricant pressure and EHL film
thickness.

To complete this current study, an analysis of the effect of
nitriding on the material was investigated for the main pertinent
parameters for fatigue. Taking into account the material changes
and residual stresses induced by the nitriding process, calculations

Fig. 14. Results for the ratio of points with seqvM4sy for the nitrided steel on the left, and for the basis steel on the right.



show the same trend effects for the land length LP, and the period of
the carrier PP. The height of the noise HB, is confirmed as a pertinent
parameter. The number of points experiencing yield was reduced by
at least an order of magnitude as a result of the increased yield
strength in the nitrided layer. A large reduction of the number of
points experiencing fatigue failure was also observed, in agreement
with the experimental knowledge of the benefit of nitriding.

4. Conclusion

In conclusion, an investigation was conducted to find the most
relevant parameters in roughness profiles that can be used to
control surface damage in the form of micropitting of and
involute steel gear pair. The originality of this approach was to
build generic roughness profiles with only seven parameters
taking in account the specific morphology of the ground and
superfinished surfaces of rough gear teeth. In the study, EHL code
was used to define the surface loading for the case of contact
between two rough surfaces. A semi-analytical method was used
to calculate the sub-surface stress tensor history and it was found
that the severity of the sub-surface loading is dependent on five of
the roughness parameters specified. Three parameters play a

major role controlling the number of points exceeding the
elasticity limit, and the number experiencing fatigue in accor-
dance with the Crossland fatigue criterion.
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