N
N

N

HAL

open science

Cauchy Tetrahedron Argument applied to Higher
Contact Interactions

Francesco Dell’'Isola, Angela Madeo, Pierre Seppecher

» To cite this version:

Francesco Dell’lIsola, Angela Madeo, Pierre Seppecher. Cauchy Tetrahedron Argument applied to
Higher Contact Interactions. 2014. hal-01060548v1

HAL Id: hal-01060548
https://hal.science/hal-01060548v1

Preprint submitted on 3 Sep 2014 (v1), last revised 14 Sep 2015 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01060548v1
https://hal.archives-ouvertes.fr

F. dell’Isola, A. Madeo and P. Seppecher

Cauchy Tetrahedron Argument applied
to Higher Contact Interactions

January 18th, 2014

Abstract Second gradient theories are nowadays used in many studies in
order to describe in detail the layers in the materials where physical properties
are sharply varying. Sometimes higher order theories are also evoked. Up to
now these models are not based on a construction of stresses similar to the
one due to Cauchy, which has been applied only for simple materials. It has
been widely recognized that the fundamental assumption by Cauchy that
the traction depends only on the normal of the dividing surface cannot be
maintained for higher gradient theories. However, this observation did not
urge any author, to our knowledge, to revisit the Cauchy construction in
order to adapt it to a more general conceptual framework. This is what
we do in this paper for a continuum of grade N also called N-th gradient
continua. Our construction is very similar to the one due to Cauchy : based on
the tetrahedron argument, it does not introduce any argument of a different
nature. In particular,, we avoid invoking the principle of virtual work. As one
should expect, the balance assumption and the regularity hypotheses have to
be adapted to the new framework and tensorial computations become more
complex.
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1 Introduction

At the beginning of the 19th century A. L. Cauchy founded Continuum
Mechanics by assuming that two parts of a continuum interact by means
of surface densities of contact forces concentrated on their dividing surface.
Then, assuming that these contact forces depend only on the normal to the
dividing surface and that they are balanced by some volume density of force
(including inertia), he played with tetrahedrons and proved the existence of
the so-called Cauchy stress tensor.

Many authors consider this point of view as the untouchable basis of
Continuum Mechanics (see e.g. [48], [25], and the criticism raised in [5] and
in [15]). In 1959, W. Noll [33] crystallized this faith by proving that the so-
called Cauchy Postulate', that is the dependence of contact forces only on the
normal of dividing surfaces, is indeed equivalent to the apparently weaker
assumption of uniform boundedness of contact forces for all dividing surfaces.
The merit of Noll’s results consists in pointing out the relationship between
tetrahedron argument and measure theory (see e.g. [16]): the drawback is in
camouflaging behind a technical hypothesis the physical assumption that the
contact forces depend only on the normal.

Many other authors (see e.g. [1], [8], [46], [41], [40], [49], [20], [32], [4], [6],
[21], [38], [26]) are accustomed to use the second gradient theory to describe
various phenomena in which strong variations of material properties occur.
They thus use a theory based on the principle of virtual work and, at least
since Toupin [44] [45], they are aware of the fact that the Cauchy Postulate
is not valid in this context. Indeed, for instance in [24], it is stated that
“A central consequence of Toupin’s work is the observation that Cauchy’s
hypothesis that the surface traction at a point x on a surface S depend on S
through its normal field at x is not valid in a theory involving second gradients
of the deformation, because in Toupin’s theory the traction depends also on
the curvature of S at x”. However, and remarkably enough, almost no effort
(except, to our knowledge, the work [11]) has been attempted to adapt that
Postulate and the tetrahedron construction in order to encompass theories
of higher gradient continua.

All modern mechanicians admit that the introduction of surface con-
tact interactions is the result of some underlying asymptotic process: from
discrete atomic networks to continuum models, from microscopically non-
homogeneous continua to macroscopic homogenized effective ones, or from
thin three-dimensional structures to their lower dimensional limits ( i.e.
shells, plates, beams). Contact mechanical interactions, i.e. physical entities
which act on the kinematics, need not to be forces. They can be for instance
couples. It is well known that a distribution of forces, through an asymptotic
process, can be transformed into an interaction of a different type, for in-
stance a couple. Remark that the need of considering more general contact
interactions is universally accepted in the theory of beams, plates and shells,

! We quote here that calling Postulate this hypothesis has been greatly mislead-
ing. Actually it is not a fundamental Principle of Mechanics as sometimes believed
but a constitutive assumption: nothing comparable, for what concerns generality,
for instance to the balance of force, energy or to the principle of virtual work.



where the macro-model has a lower dimension when compared to the corre-
sponding micro-model, whereas it has been regarded as controversial when
considering continuum three-dimensional models whose microscopic counter-
parts are discrete systems of particles moving in a three-dimensional space
or again three-dimensional continuum models.

The best way for describing a mechanical interaction, may it be either a
force or another type of more complex interaction, is to introduce its power
expended on all admissible kinematic fields U. This is a linear form called
virtual power. The fact of describing the interactions through their expended
virtual power should not be confused with so-called virtual power method.
This method popularized by Germain [23] consists in making assumptions on
the internal virtual power and deducing properties of contact interactions, in
a logical order which reverses the one used by Cauchy [14]. It is remarkable
that already Gabrio Piola, in his pioneering works [35], [36], [37] raises several
and important theoretical questions about this subject. He understood, by
means of a micro-macro identification procedure based on the Principle of
Virtual Work, that in general one cannot assume that macroscopic contact
interactions reduce simply to contact forces and he introduced continuum
models which are much more general than the one studied by Cauchy. Such
models have been considered for engineering applications only in the first
decade of the 21st century (see [15]).

Many results are available by now (see e.g. [34], [3], [42], [1], [46] or [2])
indicating that it is physically needed and mathematically consistent to con-
sider macroscopic continuum models where contact interactions arise which
expend power on high order velocity gradients calculated on dividing surfaces
(see also [13]). An essential common ingredient of all systems which, after
an homogenization procedure, were found out to present non-Cauchy con-
tact interactions is that they all show highly contrasted physical properties
at micro-level (see also [8], [9] ). On the purely macroscopic point of view,
the necessity of considering such interactions has been proven in some ele-
gant papers [27], [28], [29], [22], [23] when one wants to consider continuum
models in which deformation energy may consistently depend on second or
higher gradients of displacement. The conceptual framework introduced e.g.
by Truesdell and Noll [47] is not suitable for encompassing such models (see
e.g. the difficulties arising in [17] and clarified in [11]), [14]. Moreover, the
misunderstood range of validity of Noll’s theorem persuaded many authors
that the dependence of the deformation energy on higher gradients was for-
bidden by the second principle of thermodynamics (see e.g. [25] and [10]) or
that the principles of thermodynamics needed to be modified [17], [31].

The present paper adapts the tetrahedron argument to include a class of
continuum models which is much wider than the one originally considered
by Cauchy.

To our purposes it is needed to reconsider the assumptions on which
Cauchy based his analysis. We explicitly discuss them here because (as it
is always true for any theory and model), in order to generalize Cauchy
analysis, one has to have a clear understanding of its limits and to be aware
of the fact that often its results are used outside of the correct context. In
his paper De la pression ou tension dans un corps solide, Cauchy wrote ([7]



p. 61 lines 3, 15) : a small element experiences on its different faces and at
each point of them a determined pressure or tension ... which can depend on
the orientation of the surface. This being set, . ... Therefore he was clearly
aware that he was accepting the two assumptions:

(H1) Contact interactions reduce to surface forces on the boundary,

(H2) Contact interactions depend on the normal of the boundary.

Later he added (p. 63 lines 16) : Equilibrium should hold between inertial
force and the forces to which are reduced all pressures and tensions exerted
on the surfaces, ... Therefore he accepted the third assumption

(H3) Contact interactions are balanced by volume forces.

In his proof he applied the balance of forces to domains with a volume very
small, so that every dimension is an infinitesimal quantity of first order the
mass being an infinitesimal quantity of the third order (p. 62 line 9 and p.
64 line 4) and finally he stated that pressure and tension on a small face
experience, by moving from one point to another one on a face, infinitesimal
variations of the first order (p. 62 line 14). Therefore he implicitly accepted
the regularity assumptions

(H4) Contact interactions depend continuously on the position.

The key conceptual advancement performed in the present paper consists
in the acceptance of a wider class of contact interactions by weakening as-
sumption (H1) (and this cannot be done without getting rid also of (H2)).
We show, by following as closely as possible the spirit of Cauchy works, how
one can indeed consider continuum models in which contact distributions of
order larger than one can arise or can concentrate on the geometrical singu-
larities of the dividing surfaces (edges and wedges). We assume that, for a
rich enough class of sub-bodies, the contact interactions exerted on a sub-
body B is a distribution concentrated on the dividing surface d;B and on
its singularities of dimension one 9y B and of dimension zero dyB. We also
assume (and this is an actual restriction on the range of applicability of our
theory) that the order of these distributions is uniformly bounded for all
possible sub-bodies.

Taking advantage of the fundamental theorem in the theory of distribu-
tions due to Laurent Schwartz which states that every distribution having
support included in a regular embedded sub-manifold M can be uniquely
decomposed as a finite sum of transverse derivatives of extensions of distri-
butions defined on M (see [39]), we write the power of contact interactions
by means of the unique representation?

N-1 N—2 N-3
G(B,U):Z/ F§|v’iU+Z/ F,ﬁ|v’1U+Z/ FO|VEU.
k=0 /028 k=0 /OB k=0 /B

(1)
2 Tn the formula (1) the chosen summation bounds may seem restrictive. This is

not the case, as one can easily add some extra terms with vanishing densities. We
will see later on in this paper the reason for writing the distribution in this form.




The function & characterizes the stress state of the continuum which
is then said to be in a stress state of order N. The fields (F%,F},F%) which
depend on B and on the position, are dual quantities to the normal gradients
V’j_U of the virtual velocity field and are called the contact k+1 -forces. These
quantities are, by definition, orthogonal to the shape where they are applied.
Thus F¢ | VAU = Fi | VU and in the sequel it will not be necessary to
precise that only the orthogonal part of V*U is involved.

The kinematics of considered continua may here be very general (e.g. the
one specified in [18]). The configuration field may take values in a manifold
and the velocity field in its tangent bundle, which can be of any tensorial
nature. This tensorial nature is irrelevant in our developments and therefore,
for the sake of efficiency, we operate as if the kinematics were described
by a real valued function U. Therefore the tensor V’ij is considered to be
of order k, as well as its dual quantities and F} | V4 U denotes the scalar
product of the indicated tensors. It is straightforward, by applying our results
component-wise, to extend them to the case where U is a tensor, and in
particular to the classical case where U is a vector.

The class of sub-bodies we consider must contain tetrahedrons if we want
to follow the trail of Cauchy. Therefore it cannot be limited to domains with
smooth boundaries. We thus admit sub-bodies with boundaries (or Cauchy
dividing surface) which are piece-wise regular, with normal fields subjected
to jumps on a finite set of regular curves eventually concurring into wedges.

One of the points of Cauchy approach which are more often discussed
(see e.g. [33] or [19]) is about the assumptions which are needed concerning
the dependence of the fields ch upon the sub-body B. We assume that the
densities Fj, depend in a sufficiently regular way on the position and depend
on the considered sub-body only in a local way through the shape of the
sub-body, a notion which is precisely defined in the following section.

The theory by Cauchy is a particular case of the one we present here:
indeed, if we make the extra assumptions that the stress state is of order
one and that the contact surface 1—forces depend on the shape of dividing
surfaces only through their normal then we are back to the framework used
by Cauchy and our demonstrations and results are identical.

Assuming that the stress state is of order one is indeed a constitutive
assumption so deeply rooted in the mind of many authors that it has been
very often accepted unconsciously and we emphasize that Noll’s theorem [33]
cannot be proven without this assumption.

The generalized contact interactions we previously described are not usu-
ally considered in the literature. One can find two different reasons for this
circumstance. First this is due to the fact that the virtual work is not always
the preferred tool for some mechanicians while it gives the conceptual frame-
work in which generalized contact interactions arise naturally. Secondly, it is
a fact that many usual materials cannot sustain stress states of order larger
than one.

Cauchy’s proof of the existence of stress tensor is based on the equilibrium
of contact forces with a force which is assumed to be diffuse in the volume.
We also need a similar assumption. We assume that quasi-balance of power



holds: for every virtual velocity field U, there exists a constant Ky such that,
|6(B,U)| < Ku |B]. (2)

Here |B| denotes the Lebesgue measure of B.

When considering only rigid virtual velocity fields U, one reduces inequal-
ity (2) to the quasi-balance of forces which is a weak form of the equilibrium
condition used by Cauchy. As remarked in [12], quasi-balance of forces is not
sufficient to obtain a description of a stress state of order two or more.

While inequality (2) could seem a very weak assumption, we emphasize
that it rules out some possible stress states as for instance those occurring
in continua including material surfaces or continua including interfaces with
Laplace surface tension.

This paper is organized as follows. In Section 2, we define precisely what
we call shape of a body, we precise some technical regularity assumptions,
we fix the notation and recall some useful results from differential geometry
and tensorial calculus. We also define the boundary operators which will be
proven to describe how the shape of the boundary influences the contact
interactions.

Section 3 is devoted to the statement of the main result. As this result
is based on the tetrahedron argument, we first fix some notation concerning
the tetrahedron then we prove the main representation theorem. Due to the
complexity of the considered interactions, the proof is much more technical
than the original one by Cauchy. The technicalities come also from the fact
that we use a non-orthogonal tetrahedron in order to represent not only the
surface terms but also the edge and wedge terms. The first version of the
theorem is limited to a partial representation result (Theorem 1) which is
then extended to a complete one in Theorem 2 owing to a topological lemma
and two tensorial lemmas which are postponed to Appendices 8 and 9. It
is remarkable that the aforementioned purely topological lemma avoids any
need of proving Cauchy action-reaction lemma.

The theorems established in section 3 are only valid for the highest order
terms of the stress state and for tetrahedral shapes. We extend the results to
more general shapes in section 4 by generalizing Noll’s theorem. Finally, in
section 5 we show how, using integration by parts on the different elements
of the boundary, the previous results can be used to obtain a representation
of all terms is the stress state.

2 Notation
2.1 Domains and shapes

In this paper we consider a class of domains D which we call admissible
domains. These domains have a topological boundary 9D (contact surface)
which is piece-wise regular in the following sense : (i) dD is a finite union
Uker,(p)Fk of two-dimensional C°° compact manifolds with border called
the faces of Dj (ii) the union of the borders of these faces is a finite union
Ujer, (p)£; of one-dimensional €' compact manifolds with boundary called



the edges of D; (iii) the edges are concurring in wedges and the set 9pD :=
Ugery(pytwe} of wedges is finite. Therefore I;(D) denotes the set of labels of
the elements of dimension ¢ which are parts of the boundary of D.

All internal points of the faces (i.e. those points which do not belong to
the border of the faces) are called regular points of the faces. Their set is
denoted by 02 D. The set of all internal (or regular) points of the edges is
denoted by 01 D.

On an edge £; two faces Fi : k € [£;] concur. Hence [£;] denotes the
pair of subscripts of the faces concurring there. We denote e; a unit vector
tangent to the edge £; and v, the unit vector orthogonal to the line £,
tangent to the face Fj and external to it.

On a wedge {z¢}, a finite number of edges £, : j € [x] concur. Hence
[z¢] denotes the set of subscripts of the edges concurring there.

As we are interested in the dependence of contact interactions on the
shape of the domain, we need to define precisely what we mean by shape. We
first say that the shape of a domain D at the point x is the same as the shape
of the domain D’ at the point z’ if and only if there exists a neighborhood
O, of z and a translation t,_,/ such that

te_w (@) =z, and t,_(D)NO,=DNO, (3)
This makes an equivalence relation. Thus we can set :

Definition 1 We call shape of D at the point z the equivalence class with
respect to the above defined equivalence relation. We denote this equivalence

class by means of the symbol (D, ).

Note that this notion of shape is local. Note also that, according to the
definition, when a surface is rotated its shape changes.

2.2 Regularity assumptions

The shape at « of the domain D N {y, (y — x) - u < 0} depends only on the

shape at « of the domain D and on u. We denote it cut((D, ), u).

In all our proofs we will work with shapes belonging to a prescribed set
of shapes E. This notion is a slight generalization of polyhedral shapes and
essentially used in 4. By prescribed set of shapes we mean that there exists a
finite sequence (D;) of admissible domains and a finite sequence (u;) of unit

—_~—

vectors such that any shape f in F satisfies f = (D;, x) or f = cut((D;, x), u;)

or f = cut(cut((D;,x),u;),uy) for some point z and some i, j, k.3

3 Examples: The shapes of the family of cubes C; := [0, ¢]?, for t € (0, 1] constitute
a prescribed set of shapes while the shapes of the family of cubes C} image of [0, 1]*
under a rotation of angle ¢ , for ¢t € (0,1] around an axis u do not constitute a
prescribed set of shapes. Analogously, the shapes of the family of spheres S; of
center 0 and radius ¢t do not constitute a prescribed set of shapes.



A priori, the densities Ffz in &(D,U) depend on the position z and on
the domain D. We assume that/t\lﬁy depend on the domain only through its
shape at point  : Fl = F(x, (D, z)).

In the same way as the Cauchy’s construction of stress tensor needs the
continuity with respect to = of contact forces, our study needs some regularity
hypotheses. For any domain D and any unit vectors u, v, we assume the
continuity : Ve > 0, VZ € 0;D, Idn > 0 such that Va € 9;D satisfying
lz—z|[<n

| Fé(xv (D,z)) — Ff;(j’ (D, 7)) lI<e,
I Fé(x,C’ut((D,x),u) — Ffl(i,Cut((D,a_c),u) l|< e, (4)

| Fi, Cut(Cut(D, ), w),v) = Fy (@, Cut(Cut((D.z),u),v) ||< &,

and the equicontinuity on a prescribed set of shapes E: Ve > 0, VZ, In > 0
such that Va, Vf € E,

2=z ||<n=|F(z, )~ F(z,f) lI<e (5)

where i = 2, 1 or 0 depending if f is a regular shape, a edge or a wedge
shape.

Unlike Noll [33], we do not assume the uniform boundedness of the densi-
ties with respect to all possible shapes. Such a strong assumption would kill
all possibilities of describing stress states of order larger than one. Instead,
our assumptions only imply the uniform boundedness of these densities for
shapes in a prescribed set of shapes.

2.3 Differential geometry

When M is a smooth p-dimensional embedded compact manifold in the Eu-
clidean space, we denote |M| the Hausdorff measure of M : if M is a volume,
a surface, a line or a discrete system of points |M| denotes respectively its
volume, area, length or cardinal number. Integrals over M are integrals with
respect to the corresponding Hausdorff measure without explicitly mention-
ing it.

We denote I1); the orthogonal projector on the tangent subspace of M
and Ay; = Id — [T, the projector on its orthogonal subspace.

For any tensor X of order p defined on M, we call completely orthogonal

part of X the tensor (Xinr);, ,; = Xj ..., (Anr)]s oo (AM)Z and we say
that X is completely orthogonal to M if X = X 5.

We will make use of the following divergence theorem on manifolds with
boundary: for any differentiable tensors X and Y (X having an order greater

than Y') defined on M we have

/M(X~HM)VY:—/M(divM(X~HM))|Y+/ (X-0) | Y

oM



where divyy (X) stands for the standard divergence operator * on the manifold
M and v denotes the unit vector orthogonal to M, tangent to M and
external to it. The tensorial notation used here is precised in the next section.

2.4 Tensorial analysis

The Einstein convention of summation of repeated indices is used throughout
this paper. The subscripts are relative to a three-dimensional basis. They vary
in {1,2,3} and we adopt the following convention : for j € {1,2,3}, j +1
denotes the index following j in a circular permutation of {1,2,3}, similarly
7 + 2 denotes the next one. ..

We use the standard notation ® for the tensorial product : X ® Y is the
p + ¢ tensor defined by

(XoY) =X; Y;

11,02,..-0ptq * 158250000p L lpq 1, iptq

while the product x stands for the cross product of two three dimensional
vectors. When n is a vector, we also use the less standard notation n®? for
denoting the tensor of order p defined by induction by setting n®! := n and
n®P = n®—1 g n.

If X and Y are two tensors of order p and ¢ with p > ¢, we denote by
X | Y the p — ¢ tensor defined by

(X 1Y) X

i1yi2smrip—g T Kz, guit i Y i1sdzseesda -

In particular, when p = g, this product coincides with the scalar product of
tensors of order p.
We also denote X - Y the p+ g — 2 tensor defined by

(X : Y)il’i2,~~-7;p+q—2 = Xil,iz,...ip71,ijj,ip,...ip+q72-

Note that, when ¢ = 1, i.e when Y is a vector, the product X | Y coincides
with X - Y.
Given a permutation o in the symmetric group ¥, of permutations of
{1,...,p}, the tensor o X is defined by
(O—X)ilai27”-vip =X

(1) b0 (2) 5l (p)

We say that X is completely symmetric if 0 X = X for every permutation
o € Y. The application which, to any X, associates

K7 (X) ::% 3 ox (6)

oceX,

is the orthogonal projection onto the space of completely symmetric tensors
and we call completely symmetric part of X its image under this projec-
tion. Note that, as the context always prevents any ambiguity, we drop the
superscript p in the sequel.

4 A quick way for defining divas(X) is to use any smooth extension of X in the
vicinity of the manifold and set divy (X) := VX | Il and to remark thereafter
that the result of this operation depends only on the values of X on the manifold.



10

When M is a smooth p-dimensional embedded compact manifold, we also
denote KCps(T) the completely symmetric part of T 5 :

K:M(T) = IC(TJ_]V[). (7)

2.5 Boundary tensors

For 1 < ¢ < p, we define the tensors Py, , and Py, of order 2p by 5

(PR iz, = 00O (g )0 (Apg) L (Aar) 277 (A

tq—1 p iq+1 ip—1
and
P
PJICI = ZPJZCI,(; 9)
q=1
Now we define the boundary operators in three different ways depending
on the shape of the boundary.

Definition 2 At a regular point of a face with external normal n, the bound-
ary operator OF is the tensor of order 2p — 1 :

OP .— p®2p-1)

At a regular point of an edge £; where concur the faces Fi (k € [£;]) and

whose shape f; is determined by the vectors e;, ny, v, the boundary operator
(’)?j is the tensor of order 2p — 2 defined by

()= 2 ()P, (),
7/, iap 2 relZ,] L 015esip—2,0yip—1,...,02p 3 i2p—2

On a wedge & of shape w where concur the edges £; (j € [2]) with tangent
unit vectors e; pointing outward of Z, the boundary operator O,, is the tensor
of order 2p — 3 defined by

2
@ B0 () 1)
I P j c, ) , .
Wty t2p—3 et VAN S S S APA S £/ S S S S

Some useful properties of these tensors are, for sake of clarity of our
presentation, postponed to Appendix 9.

® Note the subtle but important transposition of subscripts i, and 4, in this
formula. Note also that this formula simply reads

i iop— i
(PXI,q)ilv-<~i2p = 6if+1 YA I(HM)Z;F

*Yip_1 i

when ¢ = p while when ¢ = p — 1 it reads

(P&,q)ilv-uzép = 5:f+1 . _5?21)—2 (HM)Z:ipfl (AM)’L:2P

ip—2 i ip—1
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3 Cauchy Tetrahedron Argument
3.1 Tetrahedrons

A tetrahedron is the central tool for proving Cauchy representation theorem
of contact interactions. This is still true in our case. Thus we fix here some
useful notation for geometrical quantities associated to a tetrahedron.

Definition 3 For any point &, any unit independent vectors ny, na, ng (with
negative determinant), any unit vector n satisfying for all j € {1, 2,3}

n-n; <0 (10)

and for any positive real number i we consider the non degenerated tetrahe-
dron

A(Z,n1,n9,n3,n,h) :={z: (x—2&)-n; >0,(x —2) -n < h}.

We denote F and F; the faces of the tetrahedron having respectively for

unit outward normals n and n;. We introduce the vectors e; := miziz\l
J J

which are unit tangent vectors to three edges denoted respectively £;. The

point Z is the vertex of the tetrahedron where these three edges concur.

On each edge £;, the unit vectors orthogonal to the line £;, tangent
respectively to the faces F;41 and F;_; and external to them are 1/5 1=
e; X njyr and vy 1= —e; X nj_q.

The height of the tetrahedron corresponding to the face F has length h.
By projecting each edge vector |£;] e; onto the direction n we get |L;]e;-n =
h. By projecting |£;| e; onto the normal n; of F;, we obtain h; = — |L;]e;-n;
for the height of the tetrahedron corresponding to the face F; . The volume
of the tetrahedron is

d

6(e1-n)(ex-n) (eg-n)h

1
Al = gdet(|£1|€17 |L2| €2, |L3] e3) =

where d := det (e1, e, e3). The areas |F;| and |F| of the faces can then be
computed by noticing that 3|A| = |F|h = |F;|h;. We get

d

_ 2
7= 2(e1-n)(ez-n) (63~n)h
L dh? _ (e;-m)
1Fil = 2h; (e1-n) (ea-n)(e3-n) 1] (e;-mg)

Finally we remark that, for any Z such that (Z — &) -n = h,

12 2 ) (e
/ﬁi($—$)~n:_|ﬁ22| (ei.n):_z((:'n):_( +1 )d( +2 )|}_‘

We need to consider domains which do not change shape under homothety
transformations. Among all such domains, the tetrahedron has the primordial
advantage of exhibiting the smallest number of shapes. Indeed, it exhibits
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fourteen different shapes on its boundary divided in three categories: on
the internal points of its four faces the shape is plane and characterized by
the normal to the face; on the internal points of its six edges the shape is
dihedral and is characterized by the two normals concurring there and the
tangent to the edge, for instance the shape f; at any internal point of £
is characterized by (ns,ns,e1). Finally at any vertex of the tetrahedron the
shape is characterized by the triple of normals to the faces concurring in it.
For instance the shape w at & depends on (n1,n9,n3).

3.2 A Representation Theorem for highest order contact interactions
generalizing the Cauchy tetrahedron Theorem.

Let us consider a body occupying the domain D. We assume that it is sub-
mitted to a physically admissible stress state & of grade N. We prove the
following consequence of quasi balance of power.

Theorem 1 At any point T and for any triplet of unit independent vectors
(n1,n2,n3) (with negative determinant) there exists a continuous tensor field

Cn of order N such that, for any plane shape n satisfying the inequalities

(10),

F%_ . (Z,n) = Oiv | Cy = (C~'N (7) | n®N) @ n®N-1, (11)
Moreover
F}V72 (‘(Z.a fl) = K:£1 (O}\i | CN) (12)
and
F_s(@,w) =K (0} | Cw). (13)

Proof For any positive real number ¢, we consider the one-parameter family
of non degenerated homothetic tetrahedrons A® = A(Z — en, n1,ng, ng, n, €)
following Definition 3 and add a superscript € to all quantities associated to
A¢ according to the notation stated in section 3.1 We apply the quasi-balance
of contact power for this family and for the fixed test field

Uiz — (z—2)-n)" U,

where Up is generic in the space £ which describes the kinematics of the
continuum. We recall that in whole sequel, the tensorial nature of Uy is
overlooked : without loss of generality Uy is considered as a scalar quantity.
Quasi-balance |&(A%,U)| < Ky |A®| reads

N-1 N-2 N-3
F2 | VU + / Fi | VFU + / FO | VFU| < Ky | A%
(14)

In the sequel we draw conclusions from the fact that |F<| ™" |S(A*,U)| has
a vanishing limit when ¢ tends to zero. We start by remarking that the field
U together with all its derivatives up to order N — 2 vanish on the plane
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(x — ) - n = 0 which include the face ¢ and the edges and wedges which
border it. Indeed:

(N —1)!

woiom (@D " T Uonst,

VU =
This last equation shows also that, when ¢ tends to zero, the asymptotic order
of magnitude of V¥U is O(eVN~17%). Therefore recalling that we assume that

the stress state depends regularly on the space variables (4), (5), we get the
estimates

/ Fi | VIU| = [0,4°|O(eN717F) = OV,
Oy AE

/ Fi | VEU| = [0:4%| 0N 17F) = 0(eN ),
01 Az

/ FY | VU | = O(EN175).
Do As

Thus keeping the only terms which are not plainly vanishing in the limit of
P17 16(A°,U)| we get

lim |.7-'E|_1 (/ (N — 1)!F?V_1 | (Uo ®n®N_1)

e—0
3
+ Z/ (N — 1)! F?\f—l ‘ (U() ®n®N_1)

i=1"7%;
3

+ Z/ (N—=1)! ((x—2)-n)Fk_o | (Uo ®n®N72)
=1 75

N —1)le?

+ %F?\[ﬁ(fc —en,w) | (Up @ n®N73) > =0.

Making explicit the argument of the functions F and applying the mean value
theorem, we get

lim |_7:a|71 ( | F*] F%_l(xa’n) | (Uo ®n®N—1)
e—0
3
+ Z \FS NP1 (a5, ma) | (Up @ n®N 1)
i=1

2 (F%vz (@, 1) | (Uo® n®V=2) /

=1 L5

((z —2) 'n)>

2
+ %F(J)V_S(a_: —en,w) | (Uo ® n®N3)> =0.
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for some points ¢ € F°, x5 € F; and 2 € L:. Using the geometrical

K3
identities we have established in section 3.1, we obtain

3
JL%(F?V-l(fv”)(Uo@? n) Z F?v (2, m2)] (Uo @ n®N 1)
+ Z (—d_l) (61 n) ((ij)) (es n) F}vfz (ff, ) (Uo ® n@N—Q)

+d! (61 : n) (62 : Tl) (63 : Tl) F?V_3(§C —E&n, w) | (Uo ® n®N73) ) =0.

Passing to the limit is now easy. Using further the arbitrariness of Uy, and
introducing the second order tensors E; := e;+1 ® €;42, we get

3
F?\/,1<§7,n) |7’L®N_1 _ Z (61 n) F%,l(j7ni) | n@N—l

i—1 (ei-my)

3
=D (@) (B (@) Fly 5 (@ f) [N

i=1

+ d_l (62 ’ n) (61 ’ n) (63 : n) F?V—S(‘f’ U}) | n®N_3 =0,
or equivalently,
3
F2 T n®N-1 5 g i oN

vo1(z,n) | Z; e ) o1(@Tn) ®e) | n

3

- Z (1) (Fy—2 (Z, fi) @ E;) | n®N

i=1
+d ' (FY_3(@,w) ®er ®ex ®ez) | n®N =0.

Thus, defining the tensor field Cy(Z) of order N by

3
:Z e..ln,) (FR1(@,ni) ® ) +Zd7 Fh_o (2, fi) ® E;)
=1 i=1
—d 7 (FRos(@w) @ er @ ex ®eg), (15)

we obtain F%,_,(z,n) | n®N~=1 = Oy (%) | n®V. As F%,_,(Z,n) is completely
orthogonal to F*¢, the previous equation implies

Fi_1(@n) = (Cn (z) | n®N) @ n®N 1. (16)

The first formula is thus obtained.
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Let us now compute Ky, (O}\i | (C ~)), by considering the different terms
of formula (15). The term

OF | (Fy1(@m) @er) =Y (PR ((FRo1 (@) @ es) - ny)) - v
k#1

- Z €i Nk (P.]ka L (Faa (@, m)) Vg
k£l

vanishes as (e; -ng) = 0 if k # 4 and ng_l | (F%_1(Z,ni)) =0 if k =i. We
have also, using the fact that (e2), », =0,

Of1|( N_3(ZT,w) ®e; ® ez ® e3)
—Z P%@ "((FY_s(@w) ®er ®ex ®e3) - ng) - v4)

kA1
= (es-n3) (PR (Fy_3(Z,w) ®e1 ®ey)) - v
N—1
= (e3-n3 (P}\; L (F_s(2,w) @ ey ®62>) vl
q:l
N-—-2
—(63'"3)< (P.qu (Fy_s(z, w)®61®62)>'1/§
q=1

(73}'3 N1 | (FY 5@ w) @ e ® 62)) Vé)

l\')

N—
= (53 ( (PE2 1 (Fy_s(@w) @ en)) - v © (e2)m

q=1
(FN 3(T,w)®er ®eaz)- 1/?})

= (es-m3) (PR A | (Fh_s(@,w) @er @ es)) - v
= (e3 - ng)(FN_?)(fc,w) ®e; ®eg)- V%
= (63 . 77,3)(62 . V%)F(I)V_:;(E,w) (24 €1.

Hence, as (e1) 12, = 0, the term /Cy, (O}\i | (F_3(Z,w) ® e1 ® e3 ® e3)) van-
ishes. We continue our evaluations:

07 | (Fy (@, fi) ® E;) :Z (PETM((Fy_2 (2, fi) ® €ix1 ® €iqa) - 1)) - v
k£l

The addends in this sum vanish unless k = ¢ + 2. As also k # 1 the sum
vanishes if ¢ = 2. Otherwise it reads

Oﬁ | (Fy_o(Z, fi) @ E;)
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= (eira - mi2) (PRL2 | (Fhoa(@, f) @ i) ) - v

~ (e (Zw Nl (a7 £) - v © (1) L 5)

+N PR v | (Fh_o (B fi) @ eipn) - V¢1+2>
= (eir2 - nit2) (Fy_o (T, fi) ® €i1) - V1)
= (eir2 - nit2) (i1 - via) (Fy_2 (T, fi)) -

If i = 3 the term vanishes, as e;1 - l/i1+2 = e - 1/21 = 0. Thus the only

non-vanishing term is for i =1 :

K (OF(Fy_o (2, f1) ® E1)) = (es - na) (e2 - v3) Ky, (Fy_2 (2, /1))
= (e3 - n3) (e2- (n3 x 1)) Fy_o (T, f1)
=dFy_, (%, f1).

In this way we have proven formula (12).

We now prove formula (13) by computing O (Cy) in a similar way. The
term

=S (PRI (PR (Rea@ndoe) -m) - vl) | | - (=)

j=1 kit

:—(ei-ni)Z('Pg 2|(77N 1|(FN 1 (2, ”z)) g))'ej

J#i

vanishes, as F3,_,(Z,n;) is completely orthogonal to F;. On the other way,
the term

O | (Fy_o(Z, fi) ® E;)

3
:Z gj_ﬂ Z (Pjrvk_l | ((FN_2(Z, fi) ® €141 @ €i42) - n) - V,i) (—e))
j=1

oy
~(eivz mir) Yo (PR (PRI (Fhoa(@ £i) @ ein) - vlia) )
jA£i+2
—(eira miva) Y (eir1 - vlyy) (7’?_;2 | (Fy—2(Z, i) 'ej)
e

—(€iy2 - niva)(eipt - Vf+2) (7)2[:2 | (F}V72(j7fi)) 'ei)
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also vanishes, as F§_,(Z, f;) is completely orthogonal to £;. Finally we have

O | (FR_s5(z,w) ® e1 ® €2 ® e3)

3
=2 |7 (Z (PE (R s@w e ®ee)n))| |-(—e)
j=1

k£

X (P ((PE (Bsem oa o) 1)) -

= o)X (P (Feam) 01 962) ) o

= —(ez-ma)(e2-v3) (P72 ((FR_s(@,w) ®e1))) - e1)
= —(e3 -n3)(e2 - v3)Fy_5(T,w)

)
)

= —(e3 - n3)(e2 - (n3 x 61))F9v—3(f7w)
(

which concludes the proof of the last part of formula (12). O

Formula (11) is a partial representation result. Indeed, as Cn depends
on T,ey, ey, e3 i.e. on T,ny,na,n3 but does not depend on n, formula (11)
describes the way F3,_, (Z,n) depends on n. However the formula is not
valid for any unit vector n in the sphere S5 but only for those which belong
to the cone defined by inequalities (10). This is a common feature of all
classical proofs based on Cauchy tetrahedron argument and the results are
generally extended by using an action-reaction argument.

On the contrary the formulas (12), (13) are not, at this point, actual
representation results. Indeed they are valid only for the particular shapes
/1 and w and the way we introduced Cy explicitly involve F%_, (Z, f1) and
F&_5(Z,w).

The next theorem overcomes these difficulties and extends the previous
results in an actual representation theorem.

Theorem 2 There exists a unique continuous completely symmetric tensor
field Cn of order N such that, at any point T and for any plane shape n,

Fa_1(@,n) =0} | Cy = (Cn (2) | n®N) @ n®N 1. (17)

Moreover, for any edge L with shape f and any wedge shape with w which
coincide locally with the boundary of some non degenerated tetrahedron, we
have

P (2.0) = K2 (OF | Cn) and FY_y(z,0) =K (02 | C). (18)

Proof The proof is based on three technical lemmas which are proven in
Appendix 8 and 9.
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Let us apply Theorem 1 for Z and any triplet (ni,n2,n3). As n®V is a
completely symmetric tensor, it is clear that equation (11) remains valid if
we replace Cy by its completely symmetric part Cy. Note that the way we
constructed Cn (%) shows that this tensor depends continuously on z. We
get representation formulas for F4_, (Z,n) valid in the open cones defined
by inequalities (10). Then the purely topological Lemma 1 establishes that
this representation actually holds on the whole sphere S,. It also establishes
that, despite the way we defined it, the tensor C'y does not depend on the
triplet (e, ez, e3). Moreover the uniqueness of the representation is assured.

To deal with the edge force representation, we introduce with no loss of
generality a tetrahedron such that f; = f. From Theorem 1 we know that
Fhoo (@, f) = K¢ ((’)}V | Cn) and Lemma 2 establishes that this identity
remains valid when we replace C’N by Cy.

Similarly, we introduce with no loss of generality a tetrahedron such that
the wedge shape w coincides with the shape at the vertex Z of the tetrahe-
dron. We know from Theorem 1 that F}_4(Z, w) = K (O} (Cx)) and Lemma

3 establishes that this identity remains valid when we replace Cy by Cy. O

4 Extension to more general shapes

We now extend our representation formulas to more general shapes. We prove
a theorem analogous to Noll theorem [33] which states that the highest order
terms of the stress state depends on the shape of the domain only through
the tangent shape.

Our definition of prescribed shapes and assumption (5) play here an es-
sential role.

We restrict ourselves to shapes which are tangent to some shape of a tetra-
hedron. This is not the more general case : for instance non convex polyhedral
domains or vertex where more than three edges concur are not treated. That
could be done by playing with union and intersection of domains. We do not
do it here for lack of space.

Theorem 3 If a domain D is tangent at some point T € 0;D to a tetrahe-
dron A, then

F§V+1—i (37’7 (D/\,g)) = F3V+1—i (55, (A/\,g)) (19)

Proof We start by considering the case when T is a regular point of a face of
D (i = 2). We denote n the outward normal to the boundary at z. Saying
that A is tangent to D at T simply means that the shape of A at T is the
plane shape n. Let us temporarily use the orthonormal coordinate system
(Z,e1,ea,e3) (with e3 = 7) and consider the family of parallelepipeds

O. =[0,¢] x [0,¢] x [—ce?, ce?].
Let us define the sets

D.:=DnN0O., F.:=0DN0O. and F_:={zxcO,; 3= —ce?}
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As the curvature of S is bounded in a neighborhood of Z, a positive scalar
¢ can be found such that, for e sufficiently small, F. does not intersect the
face F_. Clearly, the shapes of the boundary of V. for all € belong to a set
of prescribed shapes.

We apply the quasi-balance inequality with the fixed test field U(z) =

(z- 1)~ "' Uy to the family of domains D.. It implies that the limit

lim ™ /F?H (= (D)) |ﬁ®N—1Uo+/ F3 1 (2, —7) [a®N 10,
e—0 F. .

vanishes. Indeed (i) all other surface terms in the expression of the stress
state are negligible as the areas of the lateral faces of D, are of order 3, (ii)
the edge terms are negligible as the lengths of the edges are of the order e
and the fields VU are of order e2(N=1=9)  (iii) this order of magnitude of
the fields V49U also makes the wedge terms negligible. This leads to

FX 1 (i" (D/\g)> AN = _F2_ (z,—n) [a®N 1
= —(Cn(@) | (=) ()N
And so

P (7. (D,0) = (On(@) | 7%Y) @Y =B, (@,7) . (20)

Now we consider the case when Z is a regular point of an edge £ of D
(i = 1). Saying that A is tangent to D at & means that an edge £1 of A is
tangent to £ at T and the the two faces F», F3 of the tetrahedron are tangent
to the faces of D at . We denote €; a unit vector tangent to the line at Z,
79, Nz the normals of the two faces concurring there. We consider a vector
e3 orthogonal é; and satisfying

es-ng >0, ez -n3>0 (21)

We temporarily use the orthonormal coordinate system (é1,eq,e3) and use
in this system of coordinate the same notation for .. We introduce t. the
translation of vector ce?e3 and we redefine

D.:=t.(DN0O.), F.:=t.(0DN0O.)

and
F_:=t. ({x ell.; z3= —662})

(note that F. is no more a face of the domain but the union of two faces).
We moreover introduce the sets

L. =1, ([, n DE) R fgﬁ =1, (]‘—2 n DE) R fg}a =1, (]‘—3 n DE) . (22)

As the curvature of the edge is bounded in a neighborhood of Z, a positive
scalar ¢ can be found such that, for ¢ sufficiently small, the line £. does
not intersect the face F_. The shapes of D, for all € still belong to a set of
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prescribed shapes. Quasi-balance inequality when applied with the fixed test
field U(z) = ((z — &) - e3)" " Uy to the family of domains D, implies

E@Os3</ Faot (7.(D-,7)) |e§?N*1UO+/ F 1 (&, —es) | e§Y T,

€

[ P (.05 1 (@ 9) e Uo> =0,

Indeed (i) all the other surface terms in the stress state expression are neg-
ligible as the areas of the faces {z; = +¢} are of order * (ii) the other edge
terms are negligible as either their lengths are of the order €2 and the field
V*U with k < N — 1 is of order smaller or equal to €2 or they lay in the
plane (z — ) - e3 = 0, (iii) the wedge terms are also negligible as V*U with
k < N — 2 is of order smaller or equal to ¢*. We get

e—0 g3 —50

F F
lim (“') Fa_1 (7, 72) | e$N 1 + lim <;ﬁf|> F3_, (7,73) | e§N 71
+ lim <|f3> F2r_1 (%, —e3) | N1

e—0
L 2 —
+ lim (' elee >F}V2 (:z (D,fc)) eV 72 = 0.

e—0 g3

Computing the limits in the previous equality is straightforward. They are
clearly proportional to ¢ and depend only on the vectors e, no and 3. There-

fore the quantity FL_, (JE, (D, 57)) | egg’N*Q depends only on these vectors.

The vector e3 is generic in the plane cone defined by (21). We invoke Lemma 1

in the case d = 2 to conclude that the plane tensor F}; <j7 (D, 56)) depends

only on no and ng, that is, on the geometry of the tangent tetrahedron.

The case when Z is a regular point of an edge wedge of D (i = 0) is treated
in a very similar way. Now three faces of D and three edges are joining at Z.
Saying that A is tangent to D at  means that these geometrical elements are
tangent to corresponding elements of the tetrahedron. We denote 71, 72, 713
the normals of the faces concurring there. We consider a vector es satisfying

es3-ny >0, e3-ng >0, e3-ng>0 (23)

and use notations compatible with the previous ones in an orthonormal coor-
dinate system (eq, eq, e3). Applying the quasi balance of power for the same
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test field and with the family of domains defined in (22). We get

3

2 Jim (f”') (Faes (@) | e5V71)

. F_ _ _
+ lim <|€4|> (F?\,_l (Z,—e3) | e?N 1)

e—0

> | L] c? ~—
5 i (B a5

i, (U0 (8 (25 16 o

Computing the previous limits is again straightforward. They are clearly
proportional to ¢ and depend only on the vectors es, 711, g and fi3. Therefore

the quantity FQ 3 (:E7 (D, 55)) | e?Nfg’ depends only on these vectors. As the

vector e is generic in the cone defined by (23). We invoke Lemma 1 in the

case d = 3 to conclude that the plane tensor F%, 5 |z, (D, :E)) depends only

on n1 Ny and ng, that is, on the geometry of the tangent tetrahedron. O

5 Representation of lower order contact interactions

We still consider a body occupying the domain D and submitted to a phys-
ically admissible stress state & of grade N. We have established in the pre-
vious section that there exists a unique completely symmetric tensor Cly
representing the higher order contact interactions F%,_;, Fi_, and F_,.

Let us now compute fD Cx | VMU by using the divergence theorem :
/ Cy | VNU = —/ div(Cy) | VN7IU +/ (Cy-n) | VVNTIU
D D 85D

The last term can be decomposed using formula (32) and the representation
formula (17). It reads

/ F2 | vN—1U+/ (PO (Cn -m)) | VMU
92D 92D

Owing to (31) we can compute the last term using the surface divergence
theorem on each face of D. Setting G, _, := diva,p (’ngl | (Cn -n)), this
last term becomes

f/ o [ VITRU Z/ Z (PAE [ (Cx-m)) ) | VY20
02D

j€I1(D) Lj ke[l

f/ 2 | VN2U 4 Z/ of|cN)|vN2U
92D

JEIL(D)

or
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Using formula (32) and the representation formula (18) the last term can be
decomposed in

3 / Fuo V204 3 / (P21 (0F 1ow)) 1920
jeI1(D) jeI1(D)

Owing again to (31), we finally apply the divergence theorem along each line
Lj. Setting on each line £;, Gy _, := divg, (7727_2 | (O}V | CN)), we write

the last term as the sum of _dell(D fﬁ N_s | VN73U and
> X ((PEI(0F 1ow)) o) 1V
z€lo(D) je(z]

i.e., as the sum

- > /GN3|VN U+ Y Ry vV

JjE€I (D) z€ly(D)

Collecting all these results we obtain the identity

/ F?V,1|VN—1U+/ F}V,Q\VN—2U+/ FO 5 | V73U
O2D oD oD

:/ CN|VNU+/ G% ,2\VN—2U+/ Gh_ 5 | V73U (24)
D 82D 81D

The sum [, , GX o | VN 72U+ [, [, Giy_3 | V¥ 72U corresponds to a stress

state of order N — 1 but, as G4 _, and G},_5 are not necessarily orthogonal
to the shape where they are applied, we have to rewrite it in the canonical
form

N-2 N-3 N—4
F2|VEU + / Fi|VEU + / Fo | VU

where the k-forces Fj can be made explicit in terms of G%,_, and G} _,
Let us now subtract equality (24) to the quasi-balance inequality (2). As the
term [ »COn | VU is itself clearly quasi-balanced, we get that the new stress
state

N—-2
Z/ F2 +F2) |ka+Z/ (Fr+Fh) | VFU
—0 62A5
N—4
+Z/ FO 4+ B9 | ViU

—0 Do As
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which is of order N — 1 is also quasi-balanced. The representation theorem
can be applied to the higher order terms of this new stress state : there exists
a completely symmetric tensor Cy_1 of order N — 1 such that

Fh o +Fy =071 | Cnoa, Fh_s+Fyn_s=K¢ (Ojvv_l | CN—l) )

Fos+Fy_s=K (Og_l | CN—l) .

As the interactions G and therefore F can be made explicit, we have obtained
a representation for F%_,, FA_5 and FQ_,. Clearly this operation can be
repeated in order to get a representation of all terms in the stress state
through a chain of N completely symmetric tensors with decreasing orders.

We warn the reader that the chain of tensors (Cy,...,Cy) obtained in
this way is equivalent but not identical to the one used in [36], [30] [13], this
last being more natural when one starts from the principle of virtual work.

Indeed if, following Mindlin, we denote (71', ce ]7\']) the last one, we have the

relation T = Cy and, for 1 < g < N, 7= Cq — div(Cyy1). It happens that,
even when following Mindlin, the boundary conditions are written in a more
compact form when using (C1,...,Cy).

We do not try to explicit the representation of all terms. Indeed, such a
task needs the introduction of a very heavy notation. We restrict ourselves
in section 6 to the description of the representation of a stress state of order
one, two or three and let the reader apply the procedure for higher order
cases.

6 First, second and third gradient theories

The fact that our results enable us to recover the classical Cauchy theory is
an evidence as we have closely followed the path of Cauchy. After quickly
checking it, we verify here that they also enable us to recover the now widely
used second gradient theory or the third gradient theory described in [30].

6.1 Cauchy first gradient theory

When N=1, the stress state is reduced to

G(D,U):/ F2|U

82D

This corresponds to the Cauchy postulate that contact interactions can be
described by to a surface density of forces distributed along the regular part of
the boundary. Our theorem reduces to the theorem established by Cauchy.
Indeed, as O} = n, our theorem states that there exists a tensor Cy (the
Cauchy stress tensor) of order 1 such that F3(z,n) = C;(x) - n. The reader
should not feel outraged by the fact that the Cauchy stress tensor is of order
one. We recall that we have made no assumption on the tensorial nature of U
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and considered it in our calculation as a scalar. So are the dual quantities F3.
If U is a vector in the physical space, the theorem can be applied component
by component and the Cauchy stress tensor becomes a tensor of order two.
Note that the complete symmetry stated in our theorem is irrelevant in the
case N = 1 and that such a symmetry is of quite different nature from the
well known symmetry of the Cauchy stress tensor which is a consequence
of assumptions (physical nature of the kinematic descriptor and Galilean
invariance) out of the scope of our considerations.

6.2 Second gradient theory

When N=2, the stress state reads

F§|U+F§|VLU+/ Fo | U.
oD

&(D,U) :/

02D

Let us make explicit the boundary operators when N = 2. We have 02 =n®3
and 07, = > kele,] Vi © 1. Indeed

(95),..= 2 (4),(75),,, (), = 32 (), (75),,, (ne),
ke[L;] ke[L;]

Theorem 2 and the procedure described in the previous section establish
the existence of tensors Cy and C7 such that, at every regular point z of a
face with normal n and every regular point y of an edge £;,

Fi(z,n) = (Co [ n®)n, Fi(y, f;) = (Ca| Y vi®m),
ke(L;]

F2(x,n) = Cy - n — dive,p((Cy - n) - [, p).
We recover here the expressions stated in [44], [30], [22], [23] or [12].

6.3 Third gradient theory

Let us now consider the case N = 3 of third gradient models. The stress
state reads

&(D,U) :/ Fo |U+Fi|VU+F3 | VU
02D
+/ F(1)|U+FHVU+/ Fo | U
oD oD
We have 02 = n®5. Moreover definition (8) implies

i3

. i2 i3
(P;’“) Cinds oii (H]:k)ﬁ + (UF’“)@ (Af’“>'
11,€,22,13 2 i1
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and

(") = (), ().,

Thus

(03 )
i ). ..
11,22,13,%4

Z (Vj)z <P§:")i1,€,i2,i3 (nk>24

ke[[lj}

52 (), 00, 2 (), (), (00, ().

5]

and

02 e = 2 (e3) (L), (0%)

( w)117’b27l3 - J A LJ 04,05 fJ 0o,i1,i,i3
(95,)

12 fi l2,i1,i2,i3

(), (2), (),

Theorem 2 establishes the existence of a completely symmetric tensor Cs
such that, at every regular point = of a face with normal n, every regular
point y of an edge £; with shape f;, and every wedge point z with shape w,

F2(z,n)= (C3 | n®*)n®@n (25)
Fl(y, fj):Z ((Cg | (zx,jC ® l/i ®ng)) V]z +2(Cs | (I/i ®@nE @ ng)) nk) (26)
kelL;]
Fo(z,w)= Z Z Cs | (e; ® l/i ® Ng)- (27)
JEl@] kelLy]

Lower order terms can again be computed using the procedure described in
Section 5. We have

Pz | (Cs-n) = (Id+np @ ng) - (Cs-n) - I 5,
Therefore, on each face Fy, we define G7 as the surface divergence:
G = divr, <(Id—|—nk ®nk) (C3-n)- ka)
and, on each line £;, G} as the line divergence

Gy = divg, Z (03 | (ng ® V/i ® ej))ej
kelL;]
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We then rewrite the stress state [, , Gi | VU + [, , Gj | U in the canonical

form [, F2|U+F?| VU + Jo.p Fi | U by using the surface divergence
theorem, setting on each face Fj

and, on each line £,

Fo=Go+ > Gi-v.
kelL;]

As shown in Section 5, the new stress state

6(D,U):/ (F3+ﬁg)|U+(F§+ﬁ§)|le+/ (FL+FH | U
82D 81D

is a quasi-balanced stress state of order two. We can apply to it the results
obtained in the case N = 2 : two tensors Cy and C represent F2 +F3, F§ +F}
and F2 + F2. In [30] Mindlin introduced the operator which, to any tensor
X, associates Ly,p(X) := —divg,p(X - ITs,p). Let us write our final results
using this operator.

F2(x,n) = ((02 | n®?) +L32D<(Id+n®n) -(Cs - n)) n) n (28)
Fg(x,n):C’l-n—|—L52D<CQ~n+L32D((Id+n®n)-(Cg-n)>> (29)

Fo(z, f;) = (Ca| Z l/]i ® ny) — divg, ((Cg \ Z (ng ® I/i ® ej))ej>

ke[L;] kelL;]

+ 3 Lfk<(1d+nk®nk)-(03-nk)).ug. (30)
kG[LJ‘]

The equations labeled (18a), (18b) and (18c) by Mindlin [30] correspond
respectively to our equations (29), (28), (25) while the expressions for the
quantities called F' and (N7, No, T1, To) and G page 436 in [30] correspond
respectively to our equations (30), (26) and (27). However the reader should
be aware that, in [30], the decomposition of the plane vector Fi in four
components (Ny, No, T1,T») is unfounded.

7 Conclusions

We hope that the results stated in this paper will be considered sufficient to
give an end to the controversy about the soundness of N-th gradient theories.
The method we have presented here is not the simplest way for establishing
the relationship between hyperstress tensors and generalized contact interac-
tions. However, as it follows closely Cauchy’s path, it should persuade those
who consider it as the only physically based one.
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In a previous paper [13] the same results were obtained by following
the D’Alembertian approach. This approach, first conceived by Lagrange
for fluids and by Piola [37] for more general continuous systems consists in
postulating the form of internal virtual power (represented by a sequence
of hyperstress tensors) and in computing the contact interactions which are
compatible with it. As expected the results of both approaches are the same.
A careful reader could notice a difference between the boundary operators
defined in the present paper and in the reference [13]. Cumbersome tensorial
computations can show that they actually give the same representation of
contact interactions.

It has to be remarked that we are far from having treated all possible
shapes for bodies. For instance, wedges where more (or less !) than three
edges concur or reentrant wedges are not treated. The extension to more
general bodies could be obtained by considering unions and intersections of
simple bodies.

It would also be interesting, at least from a theoretical point of view, to
understand what happens in a body where the order of the stress state varies
from point to point, eventually being even unbounded.

Finally we have to remark that the presented results cannot encompass
stress states for which there are stress concentrations along lower dimensional
manifolds, models which are needed if one wants to model for instance a 3D
elastic body containing a free moving 2D plate or a fluid containing some
unknown interfaces endowed with surface tension. An interesting step in this
direction has been performed in [4] when the localization of stress is known.
To our knowledge the theoretical tools for attacking the general problem
remain to be developed.

8 Appendix A Multilinear Symmetric Operators on the Sphere

Here we prove that an operator which, locally on the sphere, coincides with
multilinear completely symmetric operators coincides globally on the sphere
with a completely symmetric operator®.

Lemma 1 Let ¢ be a function defined on the unit sphere So. Assume that,
for any n € So, there exists an open neighborhood Oz of . in So and a
completely symmetric p—tensor Cs, such that, for any n € Op,

p(n) = s | nP.

Then there exists a unique completely symmetric p—tensor C such that, for
any n € Sa,
p(n) =C|n®.

Moreover all tensors Cy, coincide with C.

6 It is remarkable that in the particular case of linear operators Lemma 1 allows
to skip the classical Cauchy Action-Reaction lemma. Indeed, as soon as the Cauchy
representation is proven to be valid in any trihedron, the linearity of Fg(n) with
respect to n is assured on the whole sphere.



28

Proof Let us first remark that if two functions C | n®? and C' | n®? coincide
on some open subset O of Sy, then C = C’. Indeed the completely symmetric
p—tensor C” := C — (' satisfies C"" | n®? = 0 for all n € O and therefore for
all n in the cone D := {rn;r € R, n € O}. We use the polarization formula
valid for any completely symmetric p—tensor (see [43] and references there
cited):

®p
1 p
c” | (U1 @u2 @ ... Quy) = QTP' Z 5152---5170// | (Z fiui>
i=1

Cee{-1,1)7

®p
2plpl Z (fp)zp 3 gpcﬁ (Z )

Tee{-1,1)

1 p—1 ®p
= or1p! Z §1.-6p1C" | (Z Siug + up>

ge{-11}r71 i=1

Let y € O and r > 0 such that B(y,pr) C D and let us consider the
open subset O’ of (R3)p defined by O’ := (0,0, ...,0,y) + B(0,r)?. For any
€e{-1,1}""" and any (uq, us, ) €0

p—1
Z&ui +u, € D.
i=1

As a consequence

o1 @p
c”| (Z Eiui + up> =0
=1

and from the polarization formula we get C” | (u1 @ u2 ® ... ® u,) = 0. Then
the multilinear application C” vanishes in the open set O’ and therefore is
identically null.

Now let us fix 7 € S and consider the largest open subset O of Sy such
that o(n) = Cy | n®P for all n € O. Clearly O is a non empty subset of Sy
as it contains Oy. Let . € Sy belong to the closure of O. On the non empty
open set On N O, we have p(n) = Cy | n® = Cy | n®P. Thus C; = C; and
son € O. The set O is closed. The connectedness of Ss implies that O = Sy
which concludes the proof. 0O

9 Appendix B. Boundary tensors

This appendix is devoted to the proof of two lemmas which establish that
the boundary tensors are completely symmetric with respect to their p last
subscripts. We need first to study some properties of the tensors P%, 4 and

P,



29

The tensors PV, » have been defined in such a way that, for any tensor X
of order p and for any 1 < ¢ < p,

(7?]’(47(1 | X) My =P | X
Hence, by summation,

(Phy | X) - Ty =Py | X. (31)

Extending definition (8) to the case p = 0 by setting
(PR in o= ()™ ()

so that PY, , | X := X | p, we obtain, by a simple induction argument that,
for any tensor X of order p, any completely symmetric tensor Y of order p
and for any 0 < r < p,

(Z (sz’mqu))IY: iy A AT Ly

q=0
and, in particular, (Zp:o <’P§/f’q | X)) | Y = X | Y which can be written
=
(Xim+(Py | X)) | Y =X Y. (32)
The tensor Py, := >0, Py, where

(PMﬂ) = B LG ()2 (Aag) 24 (Aan) 27 (Ap)

-1 tg41 -1
vap

is the adjoint of P¥, in the following sense: for any pair (X,Y") of tensors of
order p,

(X | (PR, [ V) = (P [ X) V).

When M is a surface with normal n, then Ay; = n ® n and thus, for any
tensor Y of order p — 1 and any vector v tangent to M,

P
Y ®v) :Z (V [n®P~9) @ v @n®P~a. (33)
q=1

We are now in position to prove the following lemma.

Lemma 2 The tensor ngj(O?j | X) depends only on the completely sym-
metric part of X.
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Proof Let us start by noticing that, for any tensors X and Y of order respec-
tively p and p — 2,

O X)) Y= Y PRI (X )| 1Y

ke([L;]
= Y PR (X m) | (Y @)
ke(L;]
=Y X)) | (PEV (Y ou))
ke[L;]

=x|| Y PEY  (veu)omn
ke(L;]

We have to prove that, for any tensors X and Y,
Ke, (07 X) | Y = Ke, (071 [ K(X)) | Y.

As the operator K, is self adjoint, it is equivalent to prove that for any
tensor X and any tensor Y completely symmetric and orthogonal to £;,

(O X) |V = (05 [ K(X) | Y.

Owing to our preliminary remark and using identity (33), we are reduced to
prove that, for any tensor Y completely symmetric and orthogonal to £;, the
tensor

p—1

—1)% ; —g— i —

Y. PE Y e en | = (Y [ nr e @ng?
ke[L;] a=1

is completely symmetric. To that aim, we check the invariance of this tensor
with respect to the transposition of subscripts (4,i+1) for alls € {1,...,p—1}.

All terms in the sum satisfying ¢ > i+ 1 are clearly invariant owing to the
complete symmetry of Y. The terms for which ¢ < i are also clearly invariant
owing to the complete symmetry of n.?~?. So, for any i € {1,...p — 2}, the
only two terms in the sum which are not clearly invariant are those for which
qg=1+1or ¢ =1i. The sum of these two addends reads

Y P e @nd™ "+ (Y [P ) @vleon L (34)

Using the fact that Y is totally orthogonal to £;, we have the equality (Y |

n,;@pfifz) -e; = 0 so that we can decompose the second of these terms in

Y [P Y em ey en " T+ (Y | 0" ) el evendP T
Therefore the sum (34) can be rewritten

(Y | n%ﬁ—i—Z) . (nk ® (yi ®ng + ng I/i) + Vli X l/i ® yi) ® n};@P—i—l
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the invariance of which is now clear.

We still have to deal with the case : = p — 1. In that case there is only
one term Y ® 1] ® ny, which is not clearly invariant with respect to the
transposition of subscripts p — 1 and p. Indeed it is not and we have to
remind that we deal with a sum over all k € [£;]. Actually, the sum

> <Y®l/i®nk) =Yoo | > ven
ke[L;] ke[L;]

is invariant as the matrix ) -, clz,] ui@nk is symmetric. Indeed let us compute
its skew-symmetric part : up to a factor 2 it reads

Z (Vi@nk—nk®ui> ZRej —Rej =0,
ke(L;]

where R., means the rotation of angle 7/2 about the axis e; and where we

have used that the two bases (ej, N, I/j> for k € [£;] have opposite orienta-
tions. The proof is completed as the transpositions of successive subscripts
generate all permutations. O

Remark 1 Now let Y be a tensor of order p — 3, e a unit vector tangent to
a line £ and 1 < i < p — 3. We remark that (’Pﬁ;z + Pg;il) | (Y ®e)is
invariant with respect to transposition of the subscripts 7 and i + 1.

Indeed as the subscripts different from ¢ and ¢ + 1 play no role, we can
assume, without loss of generality, that p — 3 = ¢ = 1. In which case, the
matrix e Y, ,+Y QRe=e®@Y, .+ Y, ®e+ (Y -e) ® e ® e is clearly
symmetric.

This remark is useful to prove the following lemma.

Lemma 3 The tensor (O, | X) depends only on the completely symmetric
part of X.

Proof The proof is similar to the proof of Lemma 2. We start by noticing
that, for any tensors X and Y of order respectively p and p — 3,

@101y =[S P (PR & m) ) | | e ] Y

j€[2] ke[L;]

=X[[ 3 3 PRI (PET (Y @) @u)) @
JEZ] ke[L;]

We have to prove that, for any completely symmetric tensor Y of order p — 3,
the tensor

Z:=3 3 (PEIV(PET(Y @) @) @ny
JE[#] ke[Ly]
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is completely symmetric. Using (33) we get
—1)* 2)x j
(PETI(PE | (Y @e) @ 1)) @y

p—1
fz 7)(17 2)*|(Y®6]))‘n®p q— 1)®Vk®n®p q
qg=1

—Z (Zp(p (Y @e) | n?”‘“) @ vl @ng" .

When ¢ < r, (Pp 2 | (Y ®¢;)) | nPP~ 7" = 0, otherwise, after some
computation and using the complete symmetry of Y,

2)% ® 1 -1 ®p—q—1
(PLI (Y @ey) [nf? 0 =PE D" (Y [P @ey)),
Thus we get
z=> 3 Z (ZP(" Dy a2 @ ej)> @] @nPP™ (35)
JE[Z] ke[L;] g=1 \r=1
We now check the invariance of Z with respect to all transpositions of sub-
scripts ¢ and i41 for 1 < i < p. This is clear, owing to the complete symmetry
of Y, for every term in the sum (35) satisfying r > i+ 1lorr <i<q—1.
This is also evident if ¢ < 7. Remark 1 shows that the sum of a pair of terms
corresponding to r = ¢ and r = i+ 1 with the same ¢ > i+ 1 is also invariant.
When i < p — 1 the sum of a pair of terms corresponding to ¢ = ¢ and

q = 1+ 1 with the same r < 7 is also symmetric with respect to the considered
transposition. Indeed it reads

PEYTIY [ ngP Y @e) @v] @ng?
+PE LY 0P ) @) @) @ngP T

But as r < ¢ implies PZ*J_’T (Y | 2277 ") @ ¢;) - ¢j = 0, we have
—i—2 —i—1
Pe (V[0 ) @) = (PED (Y [0 e ey) @m
ix —i—2 j j
+ (PE (V[P ) @) f) @i,
So the sum of a pair of terms corresponding to ¢ = ¢ and ¢ = i + 1 becomes
PE (Y 0" @) @ (v @+ @] ) @ nn !

(P(z 1) | ((Y ‘ n[;@n—i—Q) ® ej) ) ® Vk ® Vk ® n®n i—1

which is now clearly invariant under the considered transposition.
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From now on we must consider the whole sum defining Z. Indeed we are
left with some terms whose symmetry cannot be established for a fixed pair
of subscripts (7, k).

When ¢ = p—1 the terms corresponding to ¢ = ¢ and r < ¢ can be treated
for a fixed j. Indeed we have already noticed in the proof of Lemma 2 that

the matrix Zke[ ;] V] ® ny, is symmetric. Thus each sum

> (P}’jf’* (Y ® ej)) ® vl ® i
ke(L;]

is invariant with respect to the considered transposition.

The only remaining term corresponds to r = i, ¢ = ¢+ 1. It can be treated
for a fixed k. Indeed consider the two edges (denoted j € [#, k]) which concur
in the wedge [Z] and border the face Fj,. We have

Z ((7)2;_2)* | YV ® ej)> | ni@p—i—2> ® Vi ® n];@p—i—l
JE[2K]

= Z (Y |nP" 2 Qe; @l ® ngp_i_1>
JE[&,K]

iy , i
=Y 2P e Zej@)yi @nP!
JE[Z K]

which is invariant with respect to the considered transposition, as the matrix
Y e; @i is symmetric (it skew symmetric part is R,,, — R, = 0). The

JE[2,K]

proof is completed as we have explored all terms in the sum (35). O
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