
HAL Id: hal-01060490
https://hal.science/hal-01060490v1

Submitted on 3 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analyzing Large Network Dynamics with Process
Hitting

Loïc Paulevé, Courtney Chancellor, Maxime Folschette, Morgan Magnin,
Olivier Roux

To cite this version:
Loïc Paulevé, Courtney Chancellor, Maxime Folschette, Morgan Magnin, Olivier Roux. Analyzing
Large Network Dynamics with Process Hitting. Luis Fariñas del Cerro; Katsumi Inoue. Logical
Modeling of Biological Systems, Wiley, pp.125 - 166, 2014, 978-1-84821-680-8. �hal-01060490�

https://hal.science/hal-01060490v1
https://hal.archives-ouvertes.fr

Chapter 4

Analyzing Large Network Dynamics with
Process Hitting

4.1. Introduction / State of the art

4.1.1. The modeling challenge

Regulation is a key aspect of biological systems, all the way from the molecular
scale to the ecological one. Gaining a precise understanding of regulation is one of the
main goals of systems biology. This discipline has emerged from the synergy between
cell biology and cybernetics [WIE 48], from the collaboration of biologists, physicists
and computer scientists [IDE 01]. The modeling approach presented in this chapter
derives from this heritage by studying the interactions of components of a biological
system and analyzing how these interactions impact the function and behavior of the
system as a whole. Here, we will focus on applications to genetics, but the potential
field of the approach is broader: the Process Hitting framework is relevant to any
interactive system, whether it is a biological regulatory network, a logistic scheme or
an embedded system.

The recent progress in molecular biology has made it possible to obtain a com-
prehensive map of the genomes of many living organisms. Simultaneously, the de-
velopment of DNA micro array technology has given access to time series data of
the expression of several thousands of genes. One of the main challenges now is to

Chapter written by Loïc PAULEVÉ and Courtney CHANCELLOR and Maxime FOLSCHETTE

and Morgan MAGNIN and Olivier ROUX.

1

2 Logical Modeling of Biological Systems

integrate this high-throughput data in order to infer genetic networks using this previ-
ously inaccessible time series data. Because the interactions occur on different scales
(genes, proteins, biochemical components, cells, etc.), it is necessary to build methods
that can formally learn from biological data at a system-level understanding.

The modeling of biological regulation can be decomposed into two main trends.
The first is based on ordinary differential equations involving the quantitative expres-
sion of the interacting components. However, these equations are generally non-linear,
preventing the design of an analytical solution. In addition, the biological data we get
from experiments is generally quite noisy, thus needs to be filtered efficiently. By con-
trast, the second trend consists of addressing the problem using discrete methodology.
Even though discrete modeling could be seen as a less faithful abstraction, it has been
proven efficient in tackling many qualitative biological questions (e.g., understanding
how biological systems evolve or determining the reachability of some states).

4.1.2. Historial context: Boolean and discrete models

As data in a biological context is often more qualitative than quantitative, it is
meaningful that another trend, based on qualitative modeling, emerged in the late
1960s. The principle of this modeling framework, introduced as synchronous Boolean
networks by Stuart Kauffman on the one hand [KAU 69], asynchronous René Thomas’
networks on the other [THO 91], is to represent genes as Boolean variables. These
variables, or nodes, can take only two states, on or off, modeling the fact that their
influence is either active or not. Between the Boolean variables are activation and
inhibition relations, respectively represented by positive and negative edges. In the
following paragraph, we discuss the differences between Stuart Kauffman’s and René
Thomas’ models.

Stuart Kauffman established an idealized representation of a gene regulatory net-
work: he considered the state of genes as being described by Boolean variables, the
next state resulting from the application of a synchronous Boolean function governing
the state of each variable. Meanwhile, René Thomas proposed a comprehensive logi-
cal description of the mechanisms governing transcription regulation. He considered
the influence of an activating (resp. inhibiting) gene on its target as depending on a
threshold value: when the level of the gene is greater or equal to the threshold, the
gene has a positive (resp. negative) effect; when the level of the gene is lower than the
threshold, the gene has a negative (resp. positive) effect [RIC 06a]. Even if the specifi-
cation of these two models is different, they both rely on the central idea that the next
state depends on a Boolean function of the current state. The main difference between
the two paradigms is found in the update function: while Boolean networks are mainly
studied with respect to synchronous semantics, René Thomas’ approach deals with an
asynchronous one. Recent works [ARA 09, NOU 11a, NOU 11b] have discussed the
impact of synchronism compared to asynchronism on the network behaviors.

Analyzing Large Network Dynamics with Process Hitting 3

Both models were considered of interest and, after their publication, were fol-
lowed by numerous additional works. For example, for Boolean networks, the authors
of [AKU 08] review a panel of algorithms to address inference, identification of at-
tractors and control in Boolean networks. However, because the size of the state space
grows exponentially with the number of components, classical approaches may be
intractable for large systems. Therefore, a significant number of analysis were de-
signed to make explicit the relationship between the interaction graph of the network
and its dynamic properties. For instance, some innovative works focus on feedback
loops, i.e., circular chains of interactions. It can be shown that the number of inhi-
bition interactions in the loop is a sufficient condition for multiple steady states. In
[PAU 11c], the authors give insight on the relationship between the interaction graph
and the dynamical properties of Boolean networks. Another recently developed ap-
proach consists of analyzing Boolean networks as logical programs. In [INO 11], the
authors demonstrate direct translations of Boolean networks into logic programs and
exploiting methods of inferring these logic programs to compute the Boolean network
trajectories and attractors.

These Boolean paradigms may appear to be simplified models, but they led to
significant results about the behavior of networks, such as cyclicity or steady states.
Moreover, these models have been extended over the years, for example, to consider
additional levels of expressions, paving the way for discrete networks as we present
them here.

4.1.3. Analysis issues

Thanks to qualitative approaches, it is easier — although still quite complicated —
to get a deep understanding of the interactions involved in a particular network. This
methodology aims at explaining how the components of gene regulatory networks are
controlled or predict some previously unobserved behavior which can be experimen-
tally tested. This is of crucial importance, especially in the field of synthetic biology
and drug design. Challenges encountered in analysis and prediction can be thought of
as falling into one of three major categories:

– Identification of parameters: discrete models such as Boolean networks or
Thomas’ networks require not only information about the topology of the network
and the type of influences — activation or inhibition — between genes but also about
the strength of each interaction. This information is needed to determine, for example,
the net result when two genes have opposing effects on a single target. These param-
eters can be obtained from biological experimental observations via model-checking
or constraint programming.

– Inference of the model: the problem of inference is not limited to parameters
but is also found in the global structure of the network. Given some time series data
which can be translated into a partial state transition system, one may want to build a
discrete model that is consistent with the available data.

4 Logical Modeling of Biological Systems

– Identification of steady states and attractors, key properties of most biological
systems.

– Control of the model: closely linked to the analysis of key properties is the ability
to control the model such that it demonstrates some desired behavior or, conversely,
prevents some unwanted behavior. This is the most recent, yet challenging, topic in
systems biology directly connected to gene therapy.

These difficulties in classical approaches come short of our overall modeling goals.
Although the available data on the interaction graph between genes is more and more
extensive, there is an overall lack of precise quantitative kinetic data. As previously
mentioned, experimentally obtained data is generally noisy, making it difficult to infer
parameter values. As a consequence, parameter identification requires some indirect
reasoning, which becomes tricky when the model grows beyond ten interacting com-
ponents; due to the combinatorial explosion, it is extremely difficult to to handle large,
realistic regulatory networks.

4.1.4. The Process Hitting framework

The Process Hitting framework was introduced in order to address the scalability
issue [PAU 11a]. Three key concepts (some of them inspired by π-calculus) make up
the foundation of this qualitative approach:

– Biological components (e.g., genes) are abstracted as sorts which are in turn
divided into different processes which correspond to the qualitative discrete levels
that the sort may represent.

– Every interaction between genes is represented as a hit from one process of a
sort to another process of another sort.

– Such a representation allows to build the most generalized dynamics then pro-
ceed by successive refinement, for example the introduction of cooperative sorts to
represent the combined influences of multiple genes on a single target.

Process Hitting lends itself to modeling gene regulatory networks with different
levels of abstraction by capturing the most general dynamics. Establishing relation-
ships between the components at the most atomic level possible, the Process Hitting
opens the way to many static analysis and abstract interpretation methods to study
complex dynamic properties. Static analyses have already been developed in the Pro-
cess Hitting framework, notably for obtaining all the fixed points of dynamics of a
Process Hitting. Being a particular restriction of asynchronous automata networks
or safe Petri nets [BER 92], Process Hitting can be applied to complex dynamical
systems with a very large number of interacting components, where each of these
components can be described with a few internal states. Throughout the chapter, we
will illustrate the efficiency of the approach and show that it can be applied to large

Analyzing Large Network Dynamics with Process Hitting 5

networks (up to 10,000 components). Our methods produce very fast responses for the
decision of successive reachability questions, while well-established symbolic model
checking techniques regularly fail because of the state-space explosion. Thanks to this
efficiency, it appears that the Process Hitting approach offers a promising perspective
to the inference of gene regulatory networks even when a large amount of biological
data must be processed.

4.1.5. Outline

This chapter is structured as follows. Section §4.2 introduces the Process Hitting
framework, focusing on the associated methodology of constructing the most permis-
sive dynamics (called the generalized dynamics) and then using successive refine-
ments to fine tune the model. Section §4.3 presents static analysis methods designed
to identify fixed points or answer successive reachability questions. Section §4.4 in-
troduces the stochastic semantics of Process Hitting and draws links to available nu-
merical techniques. The overall approach is illustrated by biological applications in
section §4.5. Here, we present the Pint software designed to manipulate Process Hit-
ting models, give some benchmarks and discuss their results. Finally, section §4.6
concludes on the merits of the framework and gives an overview of future works.

4.2. Discrete Modeling with the Process Hitting

4.2.1. Motivation

The modeling and analysis of the qualitative dynamics of large interaction net-
works face two important challenges. For modeling, it is very rare that all logical
functions governing the dynamics are known, even if the interaction graph is con-
sidered as prior knowledge. One technique would then be to enumerate all logical
networks that are compatible with the prior knowledge on the interaction graph and
partial logical functions. But, with large networks, such an enumeration suffers from
high combinatorics. For analysis, because the size of the state transition graph grows
exponentially with the number of components, proving dynamical properties becomes
intractable for networks with hundreds or thousands of elements.

In order to illustrate the challenge of modeling interactions with partial knowledge,
let us consider a simple interaction graph where both b and c are the sole activators
of a. Typically, we can assume that if both b and c are inactive (resp. active), then a

should eventually become inactive (resp. active). However, the case where only one
of either b or c is active is undefined without additional knowledge on the system.
We cannot be sure that only one of the two activators will be enough to push a past its
relative threshold. To conduct an exhaustive analysis would then require us to consider
all possible Boolean functions compatible with the system.

6 Logical Modeling of Biological Systems

An alternative approach would be to instead consider the dynamical (transition)
system which includes the dynamics (transitions) of all compatible Boolean func-
tions. In such a setting, if we prove that a behavior is impossible in the model, we
have proved that it is impossible for any Boolean function compatible with the prior
knowledge. This modeling by over-approximation allows us to reason on the dy-
namics of multiple models while only looking at one model. In our simple example
of two activators, one could characterize the largest compatible dynamics with the

simple nondeterministic function fa(x) =

{
1 if x[b] = 1 ∨ x[c] = 1

0 if x[b] = 0 ∨ x[c] = 0
— where x is

the state of the network, x[b] is the value (0 or 1) of the component b in x, and fa
associates the state of the network with the next value of a. Such a function has a non-
deterministic result when b is different from c, as no knowledge permits us to decide
on a value for a, a phenomenon which cannot be represented using classical Boolean
or multi-valued frameworks for modeling dynamics of interaction networks.

These modeling and analysis challenges motivated the definition of a new formal-
ism, the Process Hitting. Thanks to the atomic description of possible transitions, the
Process Hitting enables us to easily model interactions with partial knowledge (that is,
nondeterministic logical functions). Moreover, as we explain in section §4.3, the par-
ticular structure of Process Hitting models makes possible the definition of powerful
static analysis for deciding dynamical properties such as fixed points, reachability and
cut sets for reachability. Those results make the modeling and analysis of dynamics
of very large networks tractable.

In the next subsection, we give the formal definition of Process Hitting and its se-
mantics. The modeling of the most permissive dynamics delimited by an interaction
graph is detailed in section §4.2.3, and section §4.2.4 explains how such dynamics can
be refined to take into account known cooperative or synergistic interactions between
regulators. In those two subsections, we use the incoherent feed-forward loop interac-
tion network to illustrate the modeling of dynamics using Process Hitting with partial
or complete knowledge on cooperations between regulators. Finally, the relationship
with the classical Boolean (and multi-valued) modeling is discussed in section §4.2.5.

4.2.2. The Process Hitting Framework

Definition and Semantics

Process Hitting gathers a finite number of concurrent processes grouped into a
finite set of sorts (or automata). A process belongs to one and only one sort and is
noted ai where a is the sort and i the identifier of the process within the sort a. At any
time, one and only one process of each sort is present, forming a state of the Process
Hitting.

Analyzing Large Network Dynamics with Process Hitting 7

The concurrent interactions between processes are defined by a set of actions.
Actions describe the replacement of a process by another of the same sort conditioned
by the presence of at most one other process in the current state of the Process Hitting.
An action is denoted by ai → bj � bk where ai, bj , bk are processes of sorts a and b.
It is required that bj 6= bk and that a = b ⇒ ai = bj . An action h = ai → bj � bk is
read as “ai hits bj to make it bounce to bk”, and ai, bj , bk are called respectively the
hitter, the target and the bounce of the action, or hitter(h), target(h), bounce(h).

DEFINITION.– A Process Hitting is a triple (Σ, L,H):

– Σ = {a, b, . . . } is the finite countable set of sorts,

– L =
∏

a∈Σ La is the set of states with La = {a0 . . . ala} the finite and countable

set of processes of sort a ∈ Σ and la a positive integer; a 6= b ⇒ ∀(ai, bj) ∈
La × Lb, ai 6= bj .

– H = {ai → bj � bk, · · · | (a, b) ∈ Σ2, (ai, bj , bk) ∈ La×Lb×Lb, bj 6= bk, a =
b⇒ ai = bj}, is the finite set of actions.

Proc refers to the set of all processes (Proc = {ai | a ∈ Σ ∧ ai ∈ La}).

The sort of a process ai is referred to as sort(ai) = a and the set of sorts present in an
action h ∈ H as sorts(h) = {sort(hitter(h)), sort(target(h))}. Given a state s ∈ L,
the process of sort a ∈ Σ present in s is denoted by s[a], that is, the a-coordinate of

the state s. We define the following notations: if ai ∈ La, ai ∈ s
∆
⇔ s[a] = ai; and if

ps ∈ ℘(Proc), ps ⊆ s
∆
⇔ ∀ai ∈ ps, ai ∈ s.

An action h = ai → bj � bk ∈ H is playable in s ∈ L if and only if s[a] = ai
and s[b] = bj . In such a case, (s · h) stands for the state resulting from the play of
the action h in s, that is, (s · h)[b] = bk and ∀c ∈ Σ, c 6= b, (s · h)[c] = s[c]. Among
sequences of actions, the particular sequences only composed of successively playable
actions form scenarios.

EXAMPLE.– Figure 4.1 represents a Process Hitting (Σ, L,H) where Σ = {a, b, c, d},
L = {a0, a1} × {b0, b1, b2} × {c0, c1} × {d0, d1, d2} andH = {a0 → c0 � c1, a1 →
b1 � b0, c1 → b0 � b1, b1 → a0 � a1, b0 → d0 � d1, b1 → d1 � d2, d1 → b0 �

b2, c1 → d1 � d0, b2 → d0 � d2}. Playing the action b1 → a0 � a1 in the state
〈a0, b1, c0, d0〉 results in the state 〈a1, b1, c0, d0〉. δ = a0 → c0 � c1 :: b1 → a0 �

a1 :: a1 → b1 � b0 :: b0 → d0 � d1 :: d1 → b0 � b2 is a scenario playable in the state
s = 〈a0, b1, c0, d0〉 which results in the state 〈a1, b2, c1, d1〉.

4.2.3. Generalized Dynamics of Interaction Graphs

The starting point for modeling dynamics of interaction networks is typically the
Interaction Graph (IG). In this section we assume that the IG is our only prior knowl-
edge, that is, we have no constraints on logical functions. In addition, we assume that

8 Logical Modeling of Biological Systems

a

0

1

b

0

1

2

d

0

1

2

c

0 1

Figure 4.1: A Process Hitting example. Sorts are represented by labeled boxes, and
processes by circles (ticks are the identifiers of the processes within the sort, for in-
stance, a0 is the process ticked 0 in the box a). The current state is represented by
the grayed processes: 〈a0, b1, c0, d0〉. An action (for instance a0 → c0 � c1) is rep-
resented by a pair of directed arcs, having the hit part (a0 to c0) in plain line and
the bounce part (c0 to c1) in dotted line. The reachability of the process d2 (double
circled) is studied in next sections.

for any component, if all of its activators are present (resp. absent) and all its inhibitors
are absent (resp. present), the level of the component cannot decrease (resp. increase);
we refer to this constraint as the extreme values assumption.

Due to the extreme values assumption, the IG already delimits the dynamics (pos-
sible transitions) of the regulatory network. In this section, we show how to build the
most permissive dynamics with respect to an IG using Process Hitting which we call
the generalized dynamics of the IG. These dynamics include, in term of transitions,
the dynamics of any asynchronous Boolean/multi-valued network sharing the same
IG. A formal link is addressed in section §4.2.5.

We must first settle on one possible formal definition of an Interaction Graph (IG)
for discrete networks. In such IGs, an edge is either positive (activation) or negative
(inhibition) and cannot be both (there are no unsigned edges). In addition, each reg-
ulation receives a discrete threshold: if the regulator is below (resp. greater or equal
to) the threshold, the effective sign of the regulation is the negative of (resp. same as)
the sign of the edge. For each edge a → b, levels+(a → b) and levels−(a → b) are
respectively the set of levels of a where a is an effective activator and inhibitor of b.

Analyzing Large Network Dynamics with Process Hitting 9

DEFINITION.– An Interaction Graph (IG) is a triple (Γ, E+, E−) where Γ is a finite

number of components, and E+ (resp. E−) ⊂ {a
t
−→ b | a, b ∈ Γ ∧ t ∈ [1; la]}

is the set of positive (resp. negative) regulations between two nodes, labeled with a

threshold. A regulation from a to b is uniquely referenced: if a
t
−→ b ∈ E+ (resp. E−),

∄a
t′

−→ b ∈ E+ (resp. E−), t′ 6= t and ∄a
t′

−→ b ∈ E− (resp. E+), t′ ∈ N.

DEFINITION.– Let (Γ, E+, E−) be an IG and a, b ∈ Γ two of its components:

– if a
t
−→ b ∈ E+, levels+(a→ b)

∆
= [t; la] and levels−(a→ b)

∆
= [0; t− 1];

– if a
t
−→ b ∈ E−, levels+(a→ b)

∆
= [0; t− 1] and levels−(a→ b)

∆
= [t; la];

– otherwise, levels+(a→ b)
∆
= levels−(a→ b)

∆
= ∅;

where la is the highest level for a.

The generalized dynamics of the IG in Process Hitting can be encoded by follow-
ing this simple rule: the level of a component can increase (resp. decrease) if and and
only if at least one of its regulator activates (resp. inhibits) it. If the component has no
regulator, we consider that the component can freely increase or decrease in order to
be as general as possible. We denote by PH(G) the Process Hitting of the generalized
dynamics of the IG G, which is formally defined as follows.

DEFINITION.– Given an interaction graph G = (Γ, E+, E−), its generalized dynam-

ics in Process Hitting is given by PH(G), where

PH(G) = (Γ,
∏

a∈Γ La,
⋃

(a,b)∈Γ2 Hb
a) , with La = {a0, . . . , ala}, and

– if b
t
−→ a ∈ E+ ∪ E−,

Hb
a

∆
= {bk → ai � aj | bk ∈ Lb, ai, ak ∈ La, |i− j| = 1∧

i < j ⇒ k ∈ levels+(b→ a) ∧ i > j ⇒ k ∈ levels−(b→ a)} ;

– otherwise, if a = b and ∄c ∈ Γ, c
t
−→ a ∈ E+ ∪ E−,

Ha
a

∆
= {ai → ai � ai−1 | 0 < i ≤ la} ∪ {ai → ai � ai+1 | 0 ≤ i < la} ;

– otherwise,Hb
a = ∅.

Part of this construction is exposed by figure 4.2 for the Boolean case. Note that
the construction is linear with the number of edges and nodes in the IG.

Generalized Dynamics of the Incoherent Feed-forward Loop

In order to illustrate the modeling process of a biological network using the Pro-
cess Hitting, we selected a common motif of regulatory and signalling networks, the

10 Logical Modeling of Biological Systems

b c

b

0

1

c

0

1

a c

a

0

1

c

0

1

Figure 4.2: Rules for encoding the generalized dynamics of an IG in Process Hitting
where each component is assumed Boolean and the threshold of the edges to be 1.
Positive edges end with an arrow, while negative edges end with a bar.

Incoherent Feed-forward Loop [MAN 03] whose Interaction Graph (IG) is given in
figure 4.3. The network has three components: a (assumed here to be constant) which
activates b, and c which is both activated by b and inhibited by a. It is called incoherent
as c is both inhibited (directly) and activated (through b) by a.

Thanks to the rules depicted above, the generalized Boolean dynamics of the IG
in figure 4.3 can be automatically encoded in Process Hitting, resulting in the actions
summarized in figure 4.4(left).

Figure 4.4(right) draws the possible transitions from the state 〈a1, b0, c0〉 of the
generalized dynamics. First b is activated by a. Then, as there is no knowledge on the
cooperation between a and b and c, there cannot be any consensus on the value of c.
As a result, the value of c oscillates due to the successive independent activations by b

and inhibitions by a.

a b

c

1

1

11

Figure 4.3: Interaction Graph of the Incoherent feed-forward loop

Analyzing Large Network Dynamics with Process Hitting 11

a

0

1

b

0

1

c

0

1

〈a1, b0, c0〉

〈a1, b1, c0〉 〈a1, b1, c1〉

Figure 4.4: (left) Generalized Boolean dynamics of the Incoherent feed-forward loop
in Process Hitting. (right) possible transitions from the state 〈a1, b0, c0〉.

4.2.4. Refining Dynamics with Cooperativity

In Process Hitting, the local state change of a sort is controlled by one and only
one proces, the hitter. In such a setting, we may ask how to encode local state changes
that should be controlled by the presence of at least two active processes. For instance,
we may want c0 to bounce to c1 only if a0 and b1 are active. We call such a behavior a
cooperativity between sorts a and b to act on c0. Cooperativities are typically specified
using logical functions [RIC 06b, BER 08]. In this section, we show how to interpret
such cooperativities in Process Hitting.

Given a Process Hitting (Σ, L,H), let us define σ ⊂ Σ a subset of sorts that
cooperate to make cj bounce to ck. The set of states of cooperating sorts is denoted
by S =

∏
z∈σ Lz . The subset of those states where the cooperativity is effective is

denoted by ⊤ ⊂ S.

In Process Hitting, a cooperativity can be encoded with a new sort which will
act as the logical function. Such a cooperative sort contains one process per state of
the cooperating sorts. Let us call υ such a sort. The processes of sort υ are Lυ =
{υς , ∀ς ∈ S}. The intuition is that the active process of sort υ will reflect the state
of all the cooperating sorts. To do so, each cooperating process zi, z ∈ σ, hits all
processes υς where ς[z] 6= zi to make it bounce to υς′ where ς ′[z] = zi and ς ′[a] =
ς[a], ∀a ∈ Σ, a 6= z. We denote byHσ this set of actions (equation (4.1)).

Thus, the process cj is no longer independently hit by cooperating processes of
sorts in σ (Hrm, equation (4.2)), but by processes of the cooperative sort υ which

12 Logical Modeling of Biological Systems

represent the states in ⊤ (Hcoop, equation (4.3)).

Hσ = {zi → υς � υς′ | z ∈ σ ∧ zi ∈ Lz ∧ ς ∈ S ∧ ς[z] 6= zi (4.1)

∧ ς ′[z] = zi ∧ (ς ′[a] = ς[a], ∀a ∈ Σ, a 6= z)}

Hrm = {zi → cj � ck ∈ H | z ∈ σ} (4.2)

Hcoop = {υς → cj � ck | ς ∈ ⊤} . (4.3)

The new Process Hitting refined by the cooperation is defined by equation (4.4).

(Σ ∪ {υ}, L× Lυ, (H \Hrm) ∪Hσ ∪Hcoop) . (4.4)

Such a construction can be easily extended to the interpretation of fully defined
logical functions of the form f : La1 × · · · ×Lan 7→ Lc (such a function maps a state
of the cooperating sorts σ = {a1, . . . , an} to a bounce process ck). The sets Hrm

(equation (4.2)) and Hcoop (equation (4.3)) can be respectively replaced with Hf
rm

(equation (4.5)) andHf
coop (equation (4.6)).

Hf
rm = {zi → cj � ck ∈ H | z ∈ σ, zi ∈ Lz, cj , ck ∈ Lc} (4.5)

Hf
coop = {υς → cj � ck | cj ∈ Lc ∧ f(ς) = ck} . (4.6)

The complexity of these encodings is exponential with the number of cooperating
sorts: the cooperative sort υ gathers |La1 | · . . . · |Lan | processes. Nevertheless, the
size of υ can be drastically reduced by splitting the encoded function into several
cooperative sorts. Such a step is equivalent in putting parentheses within the logical
function and having one sort per pair of parenthesis. This is illustrated in figure 4.5.

It is very important to note that the proposed construction introduces a temporal
shift in the application of the cooperativity. It results in potential spurious transitions
when the state of the cooperative sort is incoherent with the actual state of the coop-
erating sorts. This behavior is somehow similar to a biological complex: the complex
A − B can be present while individuals A and B are absent. In addition, such spuri-
ous behaviors can be eliminated by adding the notion of priority to Process Hitting to
make the update of a cooperative sort always happen before any other action. This is
discussed in the last section of the chapter.

Overall, applied to a Process Hitting of the generalized dynamics of an IG, re-
finement using cooperativity allows the encoding of additional knowledge into the
logical functions between regulators. The resulting model dynamics is smaller (in
term of transitions) than the generalized one. We remark that the presented construc-
tions allow us to automatically encode a Boolean or multi-valued network into Process
Hitting.

Analyzing Large Network Dynamics with Process Hitting 13

(a ∧ b) ∨ c

000

001

010

011

100

101

110

111

a

0

1

b

0

1

c

0

1

d

0

1

H
{
a
,b
,c
}

a ∧ b

00

01

10

11

(a ∧ b) ∨ c

00

01

10

11

d

0

1

a

0

1

b

0

1

c

0

1

H
{
a
∧
b
,c
}

H
{
a
,b
}

Figure 4.5: Encoding of the Boolean function fd(a, b, c) = (a1 ∧ b1) ∨ c1: (top) a
single cooperative sort is used with 8 processes (bottom) splitting of the cooperativity:
two sorts are used with 4 processes in each. Grayed processes are those satisfying the
encoded part of the Boolean expression. For the sake of clarity, actions on cooperative
sorts (Hσ , equation (4.1)) are not drawn, but represented by a dashed rectangle.

14 Logical Modeling of Biological Systems

Refined Dynamics of the Incoherent Feed-forward Loop

Returning to our example of the incoherent feed-forward loop, we may know that
a and b cooperate for c as such: c is active if and only if a is absent and b is present.
Therefore, we refine our generalized dynamics using a cooperative sort that encodes
the Boolean function ¬a ∧ b, as shown in figure 4.6.

a

0

1

b

0

1

c

0

1

¬a ∧ b

10 11 00 01

Figure 4.6: Refined Process Hitting encoding the dynamics of the Incoherent Feed-
forward Loop where the activation of c needs both a inactive and b active. The process
01 of the sort ¬a ∧ b mirrors the (only) state where c1 should be present. Grayed
processes indicate the state where figure 4.7 starts.

In the generalized dynamics, due to the undefined cooperation between a and b

when both are present, c oscillated. In our refined dynamics, it is no longer the case:
c converges to c0 as a is active. Part of the transition graph is shown in Figure 4.7
when starting in the state 〈a1, b0, ab00, c0〉. It ends on the fixed point 〈a1, b1, ab11, c0〉.
The initial process of the cooperative sort (named ab) has been intentionally choosen
incoherent with the state of a and b.

4.2.5. Relationship with Boolean/multi-valued Networks

The modeling scheme we propose in this chapter is the following: starting from an
Interaction Graph (IG) and under the extreme values assumption (section §4.2.3), we
can model in Process Hitting a transition system that includes the dynamics (transi-
tions) of any Boolean network sharing the same IG. Then, with additional knowledge
on the cooperations between the regulators, we can modify the Process Hitting to
refine the dynamics, i.e., remove transitions that are impossible with respect to the

Analyzing Large Network Dynamics with Process Hitting 15

〈a1, b0, ab00, c0〉 〈a1, b0, ab10, c0〉

〈a1, b1, ab00, c0〉 〈a1, b1, ab10, c0〉

〈a1, b1, ab01, c0〉 〈a1,b1,ab11, c0〉

〈a1, b1, ab01, c1〉 〈a1, b1, ab11, c1〉

Figure 4.7: Transition graph of the Process Hitting in figure 4.6 from the state repre-
sented by grayed processes.

specified cooperations (logical functions). The effect of this refining procedure on
dynamics is illustrated by figure 4.8.

Dynamics of the concrete system

Generalized dynamics

Process Hitting w/ 1 cooperation

Process Hitting w/ all cooperations

Corresponding Boolean network

Figure 4.8: Illustration of the inclusion of dynamics (transitions) between several re-
finement steps of Process Hitting models of generalized dynamics.

This “modeling by over-approximation” approach has multiple advantages: one
can obtain a (single) dynamical model without a complete knowledge on the coop-
erations (discrete parameters); if a behavior is impossible in the over-approximation,
it is impossible for any concrete model having its dynamics included in the Process
Hitting model. This allows us to reason on multiple dynamical models at once.

16 Logical Modeling of Biological Systems

We first detail the link between the generalized dynamics of an IG and the compat-
ible Boolean or multi-valued networks. Then, we discuss the link with Process Hitting
models refined using cooperativity.

Generalized Dynamics

We state the theorem on the generalized dynamics of an IG G in Process Hitting
(section §4.2.3) which includes the dynamics of any asynchronous multi-valued net-
work F whose IG IG(F) ⊆ G (for a possible definition of IG(F) see [RIC 10]).
The main argument is the following: if a regulated component of F increases (resp.
decreases), then from the extreme values assumption, there exists a regulator that ef-
fectively activates (resp. inhibits) the component: in such a case, the generalized dy-
namics necessarily include the same transition. In the proof, Hb

a and Ha
a refer to the

sets defined in section §4.2.3.

THEOREM.– Given any Interaction Graph G = (Γ, E+, E−), if PH(G) = (Γ, L,H),
for any asynchronous multi-valued network F with extreme values assumption such

that IG(F) ⊆ G, for any state s, s′ ∈ L, s 6= s′, F (s) = s′ ⇒ ∃h ∈ H : s · h = s′ .

PROOF.– If F (s) = s′ with s 6= s′, there exists a unique a ∈ Γ such that s′[a] −
s[a] = ±1 and ∀b ∈ Γ, b 6= a, s[b] = s′[b]. If ∃c ∈ Γ : c → a ∈ G, from extreme

values assumption, if s′[a] − s[a] = 1 (resp. −1), there exists b ∈ Γ such that s[b] ∈
levels+(b → a) (resp. levels−(b → a)), hence s[a] → s[a] � s′[a] ∈ Hb

a. Otherwise,

∄c ∈ Γ : c→ a ∈ G (a has no regulator), hence s[a]→ s[a] � s′[a] ∈ Ha
a.

Refined Dynamics

Refining a Process Hitting model of the generalized dynamics of an IG may im-
ply the deletion of some action and the definition of cooperativities. Intuitively, these
refinement steps remove transitions and put constraints on the compatible logical func-
tions having dynamics included in the refined Process Hitting. In [FOL 12], we give
a complete and automatic method to derive all Boolean/multi-valued network whose
dynamics is included in a Process Hitting. An implementation of the inference algo-
rithm is distributed with PINT (section §4.5.1).

Discussion

The Process Hitting can be defined as a restriction of general asynchronous au-
tomata networks, where the arity of synchronizations between automata is at most
two and each synchronization changes the state of only one automata. This restriction
prevents the construction of bisimular Boolean networks or Petri nets, as those for-
malisms allow the specification of synchronization with arbitrary arities. One exten-
sion of the Process Hitting attaches to an action a priority level: an action with priority
p can be applied only if no action of priority lower than p is applicable. With prior-
itized actions, it is possible to weakly bisimulate any asynchronous Boolean/multi-
valued networks or safe Petri nets with Process Hitting [FOL 13, PAU 12a].

Analyzing Large Network Dynamics with Process Hitting 17

On the other hand, as it is depicted in the next section, the specific restrictions
imposed by the Process Hitting allow the derivation of static analysis for dynamical
properties which are highly scalable. Moreover, the spurious transitions due to coop-
erativity in classical Process Hitting (without priority) do not prevent any reasoning on
dynamics by over-approximation: if a behavior (sequence of transitions) is impossible
in the Process Hitting, it is impossible in any Boolean/multi-valued networks encoded
by the Process Hitting. The Process Hitting approach makes the formal analysis of dy-
namics of very large interaction networks tractable and allows us to reason on multiple
Boolean/multi-valued networks at once.

4.3. Static Analysis of Discrete Dynamics

4.3.1. Motivation

Biological regulatory networks can be studied using their state graph, which con-
tains the complete dynamics of the system. However, the state graph grows exponen-
tially with each added component, quickly making the problem become intractable.
For this reason, alternative approaches have emerged which rely only on the interac-
tion graph (IG). For example, starting from conjectures formulated by René Thomas,
research has shown that multi-stationarity systems require the presence of at least one
positive circuit and that oscillatory behavior requires the presence of a negative circuit.
Although these conjectures were proven [RIC 10] and provide some useful insight to
the inner workings of a system, they do not provide enough detail of the dynamic prop-
erties to conduct a full analysis. The structure of Process Hitting, however, lends it
to other analysis methods which can be performed without computing the state graph,
such as static analysis by abstract interpretation [COU 77]. In this method, a systems
behavior is described via several abstractions giving over- and under-approximations
of a particular property without running any simulation. In this section we will fo-
cus on the potential of static analysis as it applies to Process Hitting systems. In
section §4.3.2, we will demonstrate the computation of fixed points, also known as
steady states. Section §4.3.3 introduces an efficient reachability analysis based on
abstract structures called graphs of local causality which are computed statically. Fi-
nally, using these very graphs of local causality, we are also able to compute cut sets,
that is, the sets of processes necessary to demonstrate a given behavior, as shown in
section §4.3.4.

4.3.2. Fixed points

The expression of fixed points in a given regulatory network is potentially one of
the most crucial behaviors to include in a model and is often the aspect of greatest
interest for a biologist. For this reason, a great amount of research has gone toward
the topic of fixed point analysis. We have already mentioned that a positive circuit is

18 Logical Modeling of Biological Systems

a proven necessary condition for multiple fixed points, as shown in [RIC 10], but this
does not speak to the exact number of fixed points present in the system. In the field
of Boolean networks, analysis of the interaction graph can give an upper bound of the
possible number of fixed points [ARA 08] and the topological fixed points indepen-
dent of logical functions [PAU 10], but these still do not give a complete enumeration.
In [NAL 07], the authors propose an efficient method for enumerating all the fixed
point by relying on the encoding of logical functions using decision diagrams.

In this section, we show that the fixed points of a Process Hitting model can be
completely derived from its structure. More precisely, we show that this enumeration
is equivalent to listing the n-cliques of a n-partite graph directly derived from the
Process Hitting. This method provides an efficient alternative to listing all the fixed
point of an interaction network.

The principal idea of this method is relatively simple: if two processes are linked
by an action (that is, one hits the other), they cannot belong to the same fixed point.
By constructing a complementary representation of a Process Hitting called the hitless

graph, we can exploit this idea to find all fixed points of the system. In a hitless graph,
an edge is drawn between two processes if there exists no action between them. Logi-
cally, two processes of the same sort are never linked and no process which possesses
a self-hit is included in the graph. The hitless graph of a Process Hitting is n-partite,
where each partition corresponds to exactly one sort of the original Process Hitting
and n is the number of sorts with at least one process not hitting itself; therefore:
n ≤ |Σ|.

DEFINITION.– Given a Process Hitting PH = (Σ, L,H), its hitless graph is the undi-

rected graph (V,E) defined by:

V
∆
=

⋃

a∈Σ

{ai ∈ La | ∀ak ∈ La, ∄ai → ai � ak ∈ H}

E
∆
= {{ai, bj} ∈ V × V | a 6= b, ∀bk ∈ Lb, ∄ai → bj � bk ∈ H

∧ ∀al ∈ La, ∄bj → ai � al ∈ H}

DEFINITION.– If n ∈ N, a graph (V,E) is n-partite if and only if:

– V =
⋃

k∈J1;nK Vk,

– ∀k, k′ ∈ J1;nK, k 6= k′ ⇒ Vk ∩ Vk′ = ∅,

– ∀{ai, bj} ∈ E, ∃k, k′ ∈ J1;nK, k 6= k′ ∧ ai ∈ Vk ∧ bj ∈ Vk′ .

A clique is a collection of connected processes in the hitless graph, with a n-clique
being a clique with n elements. If n = |Σ|, a n-clique of the hitless graph corresponds

Analyzing Large Network Dynamics with Process Hitting 19

to a fixed point of the Process Hitting since no playable action exists amongst the pro-
cesses to move the system to a new state. The search for n-cliques in a n-partite graph
can be efficiently encoded with constraint programming on integers, which avoids
an explicit computation of the hitless graph and makes the search for fixed points in
Proces Hitting efficient in practice.

DEFINITION.– Given a graph (V,E), a subset of the vertices C ⊆ V is a |C|-clique

if and only if ∀(ai, bj) ∈ C × C, {ai, bj} ∈ E.

THEOREM.– The fixed points of a Process Hitting PH = (Σ, L,H) are exactly the

|Σ|-cliques of its hitless graph.

The search of fixed points by using n-cliques has been implemented in Pint using
SAT techniques. It successfully computes on models with hundreds of components
in less than a second. For the example of figure 4.1, this search is illustrated by the
hitless graph of figure 4.9 and the following fixed points are found:

〈a0, b2, c1, d2〉 〈a1, b0, c0, d2〉 〈a1, b2, c0, d1〉

〈a1, b2, c0, d2〉 〈a1, b2, c1, d2〉

4.3.3. Abstract Interpretation using Graphs of Local Causality

An efficient way of checking a reachability property, described below, was de-
veloped in [PAU 12b]: with this methodology, the analysis of models with hundreds
or thousands of components becomes tractable. In this section, we present a general
overview and the main results of this method, along with an insight of the five de-
veloped approximations. For further detail, we would like to refer the reader to the
original publication which contains all properties and proofs.

An objective, defined below, is a pair of processes which describes the eventual
activation of a process from another process. For instance, d0 �∗ d2 depicts the reach-
ability of process d2 from a state where d0 is active. We call reachability property

a property of the form P = reach(ς, ω) where ς is an initial context (a generaliza-
tion of a state) and ω = P1 :: P2 :: . . . :: P|ω| is an objective sequence. Objectives
are useful in describing a reachability property, since the reachability of a process
ai from a state s is denoted by the objective: s[a] �∗ ai. For example, the property
P = reach(〈a0, b0, b1, c0, d0〉, b1 �∗ b0 ::d0 �∗ d2) on the Process Hitting of figure 4.1
means that starting from state 〈a0, b0, c0, d0〉 or 〈a0, b1, c0, d0〉, we can play several
actions in order to reach a state s1 s.t. b0 ∈ s1; then, starting from this state, s1, we
can play some other actions to reach a new state s2 such that d2 ∈ s2.

20 Logical Modeling of Biological Systems

a

0

1

b

0 1 2

d

0

1

2

c

0 1

Figure 4.9: The hitless graph of the Process Hitting example of figure 4.1. Edges link
two processes of different sorts if they are not involved in the same action. Given that it
consists of a 4-clique, as stated by the thick edges, the highlighted state 〈a0, b2, c1, d2〉
is an example of stable state.

DEFINITION.– A context ς associates with each sort in Σ a non-empty subset of its

processes: ∀a ∈ Σ, ς[a] ⊆ La ∧ ς[a] 6= ∅. For a given context ς , we write: ai ∈ ς
∆
⇔

ai ∈ ς[a], and for any state s ∈ L: s ⊆ ς
∆
⇔ ∀a ∈ Σ, s[a] ∈ ς[a].

DEFINITION.– An objective is a pair of processes denoted ai �
∗ aj that depict the

bounce from a process ai to another process aj of the same sort after some actions.

We note: target(ai �
∗ aj)

∆
= ai, bounce(ai �

∗ aj)
∆
= aj , and the set of all objectives:

Obj
∆
= {ai �

∗ aj | a ∈ Σ∧ (ai, aj) ∈ La×La}. An objective sequence P1 ::P2 :: . . .
is a sequence of objectives verifying that the target of each objective is equal to the

bounce of the previous objective on the same sort in the sequence, if it exists.

Checking for the exact reachability property, P , would be too computationally dif-
ficult as the required computing time grows exponentially with the number of sorts.
However, an under-approximation, Q, and an over-approximation, R, were devel-
oped, that can be checked in time polynomial with the number of sorts, and exponen-
tial with the number of hits on a single sort. Rather than using the Process Hitting
model to check P , we use Q in order to ensure that reachability is possible and R
to refute the given reachability property. These approximations are based primarily
on two abstractions of scenarios called bounce sequences (BS), and abstract bounce

Analyzing Large Network Dynamics with Process Hitting 21

sequences (BS∧). A bounce sequence consists of a sequence of actions hitting the
same sort in order to solve an objective. For example, b0 → d0 � d1 :: b1 → d1 � d2
is a bounce sequence of the objective d0 �∗ d2 and abstracts any scenario contain-
ing these actions in the same order with possible intermediate actions. A bounce
sequence leads to the definition of an abstract bounce sequence which consists of the
set of hitters, thus focusing on the required processes to play a bounce sequence while
abstracting the order of the involved actions. The abstract bounce sequence for the
previous example would be {b0, b1}. We note that there are two particular cases of
abstract bounce sequences for an objective P : BS∧(P) = ∅ if P cannot be solved,
and BS∧(P) = {∅} if P can be solved without involving any other sort. Provided
the particular structure of the PH, these abstractions can be statically computed on the
Process Hitting model.

DEFINITION.– A bounce sequence ζ is a sequence of actions such that ∀n ∈ Iζ , n <

|ζ|, bounce(ζn) = target(ζn+1). We will write BS to denote the set of bounce se-

quences, and BS(P) to denote the set of bounce sequences resolving the objective P :

BS(ai �
∗ aj)

∆
= {ζ ∈ BS | target(ζ1) = ai ∧ bounce(ζ|ζ|) = aj ∧ ∀m,n ∈ Iζ , n >

m, bounce(ζn) 6= target(ζm)}.

DEFINITION.– The set of abstract bounce sequences of an objective P ∈ Obj is

the set: BS∧(P)
∆
= {ζ∧ | ζ ∈ BS(P) ∧ ∄ζ ′ ∈ BS(P), ζ ′∧ (ζ∧} where ζ∧

∆
=

{hitter(ζn) | n ∈ Iζ ∧ sort(hitter(ζn)) 6= sort(P)}.

Computing the approximations Q and R depends on the construction of graphs

of local causality (GLC). These directed graphs use the previous abstractions to give
conclusions about the successive reachability of an objective sequence from an initial
state. The nodes of a GLC fall into three categories:

– an objective node (in Obj) depicts an objective to be met;

– a solution node (in Sol
∆
= ℘(Proc)) stands for one of the abstract bounce se-

quences which meets the requirements of an objective;

– a process node (in Proc) is a process required by a solution in the graph.

Edges in a GLC link the different nodes to their requirements. The GLC Aω
ς , used to

compute the over-approximation R is recursively defined as follows: an objective P

is linked to all of its related solutions in BS∧(P) (equation (4.8)), a solution to all the
processes it contains (equation (4.9)), and a process ai to all the objectives of the form
aj �

∗ ai where aj is in the initial context (equation (4.10)). Finally, equation (4.7)
includes the objectives of ω in the GLC. The GLC ⌈Bως ⌉ used to compute the under-
approximationQ is built in a similar fashion, except for two key differences. First, an
objective aj �

∗ ai may link to another objective ak �∗ ai if the process ak is required
to solve the former (equation (4.12)). Secondly, the structure is saturated: for any
process ai mentioned, an objective starting from ai is added (equation (4.11)).

22 Logical Modeling of Biological Systems

EXAMPLE.– Figure 4.10 gives an example of the two GLCs computed on the Process
Hitting model of Figure 4.1 for two different reachability properties.

DEFINITION.– The graph of local causality Aω
ς

∆
= (V ω

ς , Eω
ς) is the smallest graph

with V ω
ς ⊆ Proc ∪Obj ∪ Sol and Eω

ς ⊆ V ω
ς × V ω

ς so that:

ω ⊆ V ω
ς (4.7)

P ∈ V ω
ς ∩Obj ∧ ps ∈ BS(P)⇒ (P, ps) ∈ Eω

ς (4.8)

ps ∈ V ω
ς ∩ Sol ∧ ai ∈ ps⇒ (ps, ai) ∈ Eω

ς (4.9)

ai ∈ V ω
ς ∩Proc ∧ aj ∈ ς ⇒ (ai, aj �

∗ ai) ∈ Eω
ς (4.10)

DEFINITION.– The graph of local causality ⌈Bως ⌉ is defined as:

⌈Bως ⌉
∆
= lfp{Bως }

(
Bως 7→ B

ω
ς⋓procs(Bω

ς
)

)
(4.11)

with Bως = (V ω
ς , Eω

ς) the smallest graph so that V ω
ς ⊆ Proc ∪ Obj ∪ Sol and

Eω
ς ⊆ V ω

ς × V ω
ς , that respects equations (4.7), (4.8), (4.9) and (4.10), and:

P ∈ V ω
ς ∩Obj ∧ q ∈ maxContς(sort(P), P)⇒ (P, q �∗ bounce(P)) ∈ Eω

ς

(4.12)

where for all GLC (V,E):

procs(V,E)
∆
= (V ∩Proc) ∪ {target(P), bounce(P) | P ∈ V ∩Obj}

and for all context ς and set of processes ps:

∀a ∈ Σ, (ς ⋓ ps)[a]
∆
=

{
{p ∈ ps | sort(p) = a} if ps ∩ La 6= ∅

ς[a] otherwise

and for all context ς , process a and objective P :

maxContς(a, P)
∆
= {p ∈ Proc | ∃ps ∈ BS∧(P), ∃bi ∈ ps, b = a ∧ p = bi

∨ b 6= a ∧ p ∈ maxContς(a, bj �
∗ bi) ∧ bj ∈ ς[b]}

The approximations of P = reach(ς, ω) take the form of several properties on
these GLCs: the over-approximation R = R1 ∧ R2 ∧ R3 is a conjunction of three
properties on Aω

ς , while the under-approximation Q = Q1 ∨ Q2 is a disjunction of
two properties on ⌈Bως ⌉. In practice, this means that only one of the sub-properties of
Rmust be invalidated in order to invalidate P , and if at least one of the sub-properties
of Q is true, then the reachability P is also true. Properties R1 and Q1 are unordered
approximations since the order of the requested reachabilities in P is ignored:

Analyzing Large Network Dynamics with Process Hitting 23

d1 �∗ d2

d2

b2 b0 �∗ b2 d1 d1 �∗ d1

b1 b0 �∗ b1 c1 c0 �∗ c1 a0 a1 �∗ a0⊥

d0 �∗ d2

d2
b0 b1 �∗ b0 a1 a1 �∗ a1

b0 �∗ b0

b1 b1 �∗ b1

b0 �∗ b1 c1 c1 �∗ c1

Figure 4.10: (top) GLC Aω
ς computed on the Process Hitting model of figure 4.1 for

reach(〈a1, b0, c0, d1〉, d1 �∗ d2). (bottom) GLC ⌈Bως ⌉ computed on the same Process
Hitting model for reach(〈a1, b1, c1, d0〉, d0 �∗ d2). Square nodes are processes, round
nodes are solutions and nodes with no border are objectives. The ⊥ symbol denotes
an objective with no successor solution.

– R1 states that, starting from each objective in ω, there exists a path of Aω
ς with

no loop such that, from an objective node, at least one linked solution node is traversed
and, from any other node, all linked nodes are traversed.

– Q1 states that ⌈Bως ⌉ has no cycle and all its leaves are solution nodes.

Based on these unordered approximations, one can recursively build the ordered
approximationR2 (resp.Q2) by using the propertyR1 (resp.Q1) to check reach(ς, (ω1)),
and then, by iterating, check reach(ς ′, (ω2, . . . , ω|ω|)), where ς ′ is an update of ς given
the results of the first step which is not detailed here. The last over-approximationR3

exploits more a precise ordering of constraints between occurrences of processes that
can be statically extracted from the model but which we will not detail here.

THEOREM.– Q1 ∨ Q2 ⇒ reach(ς, ω)⇒ R1 ∧R2 ∧R3.

EXAMPLE.– The over-approximation property R1 is false on the structure of fig-
ure 4.10(top): indeed, the two possible paths in the graph visit the objective node

24 Logical Modeling of Biological Systems

a1 �∗ a0 which has no successor. However, the under-approximation property Q1 is
true on the structure of figure 4.10(bottom), as all the leaves of this acyclic graph are
solutions. We can therefore conclude that property reach(〈a1, b0, c0, d1〉, d1 �∗ d2) is
false, and property reach(〈a1, b1, c1, d0〉, d0 �∗ d2) is true.

Overall, this method is considered efficient since each step can be performed in
polynomial time. Building both GLCs is polynomial with respect to the number of
sorts and exponential with respect to the number of actions hitting a single sort. How-
ever, assuming that the number of processes inside each sort is very small (typically
4 or below), this step is typically very efficient. Approximation properties can be
checked in polynomial time with respect to the size of Aω

ς and ⌈Bως ⌉. In the case of
the under-approximation,Q1, a more conclusive checking can be achieved by remov-
ing a subset of solutions at the cost of being exponential with respect to the number
of solutions for a single objective. These new analyses can, therefore, also be consid-
ered efficient, although they come at a risk of a non conclusive response. Most cases,
however, do reach conclusions, as shown in section §4.5.

4.3.4. Cut sets

More information about the system can be derived from the GLCs than reacha-
bility properties as presented in the previous section. It was shown in [PAU 13] that
analyzing the structureAω

ς also gives an approximation of the requirements which en-
sure a reachability property. In particular, it is possible to derive cut sets, that is, sets
of necessary processes which, should they be disabled, would prevent the considered
reachability. To disable a process p is to remove any action involving p. Such cut sets
can be especially of interest for therapeutic applications by preventing the expression
of an uncontrollable gene by knocking in/out other observable genes, that is, prevent
the activation of a particular process by disabling other, controllable, processes. Cut
sets are also very useful to refute a model: if a cut set computed from the model does
not prevent the reachability in the concrete (modeled) system, then it is a proof that
there exists concrete behaviors that are not reproducible by the model.

Given a set of processes, Obs ⊆ Proc, we introduce an algorithm computing
on Aω

ς the set V(ai) of minimal cut N -sets of processes in Obs that are necessary
for the independent reachability of each process ai ∈ Proc ∩ V ω

ς . Assuming a
first valuation V associating each node with its cut N -sets, this valuation can be re-
fined on node n by using update(V, n) defined below. In the following, if A is a
set and B1, . . . , Bn ∈ ℘(℘(A)) are sets of sets, we note the sets of sets product:
∏̃

i∈[1;n]B
i ∆
= B1×̃ · · · ×̃Bn ∈ ℘(℘(A)) where:

{e1, . . . , en}×̃{e
′
1, . . . , e

′
m}

∆
= {ei ∪ e′j | i ∈ [1;n] ∧ j ∈ [1;m]} .

Analyzing Large Network Dynamics with Process Hitting 25

The product ×̃ is commutative, and we have in particular: ∅×̃Bi = ∅ and
∏̃

∅
∆
= {∅}.

If M : A → B is a mapping from elements in A to elements in B, M{a 7→ b} is the
mapping M where a ∈ A now maps to b ∈ B.

DEFINITION.– A valuation V : V ω
ς 7→ ℘(℘≤N (Obs)) is a mapping from each node of

Aω
ς to a set of N -sets of local states. Val is the set of all valuations. V0 ∈ Val refers

to the valuation such that ∀n ∈ V ω
ς ,V0(n) = ∅.

DEFINITION.– For any V ∈ Val and n ∈ V ω
ς , update : Val× V ω

ς → Val with

update(V, n)
∆
=

V{n 7→ ζN (
⋃

m∈children(n) V(m))} if n ∈ Sol

V{n 7→ ζN (
∏̃

m∈children(n)V(m))} if n ∈ Obj

V{n 7→ ζN (
∏̃

m∈children(n)V(m))} if n ∈ Proc \ Obs

V{n 7→ ζN ({{ai}} ∪
∏̃

m∈children(n)V(m))} if n ∈ Proc ∩ Obs

where ζN ({e1, . . . , en})
∆
= {ei | i ∈ [1;n] ∧ |ei| ≤ N ∧ ∄j ∈ [1;n], j 6= i, ej ⊂ ei},

ei being sets, ∀i ∈ [1;n].

Starting with V0, one can repeatedly apply update on each node of Aω
ς to refine

its valuation. Only nodes where one of their children values has been modified should
be considered for updating. Hence, the order of nodes updates should follow the
topological order of the GLC, where children have a lower rank than their parents
(i.e., children are treated before their parents). If the graph is truly acyclic, then it is
sufficient to update the value of each node only once. In the general case, the nodes of
a strongly connected component (which all have the same rank) have to be iteratively
updated until convergence of their valuation.

Figure 4.11 formalizes this procedure where rank(n) refers to the topological rank
of n. The node n ∈ V ω

ς to be updated is selected as being the one having the least
rank amongst the nodes to update, delimited byM (line 4). In the case where several
nodes with the same lowest rank are inM, they can be either arbitrarily or randomly
picked. Once picked, the value of n is updated (line 6). If the new valuation of n
is different from the previous one, the parents of n are added to the list of nodes to
update (line 8).

Given the particular construction of Aω
ς , the theorem given below allows for the

derivation of minimal cut sets for a given reachability property. Such a result is possi-
ble due to the fact that all abstract bounce sequences computed for Aω

ς are sound: for
any objective P ∈ V ω

ς ∩ Obj, if a process of each set in BS∧(P) is disabled, then
P becomes unreachable from any state s ∈ L so that target(P) ∈ s. Furthermore,
the algorithm is guaranteed to terminate. Finally, we note that since the GLC abstracts
several dynamical constraints in the underlying Process Hitting model such as the or-
dering of transitions, the computed cut sets under-approximate the complete cut sets

26 Logical Modeling of Biological Systems

1: M← V ω
ς

2: V← V0

3: whileM 6= ∅ do

4: n← argminm∈M{rank(m)}
5: M←M\ {n}
6: V′ ← update(V, n)
7: if V′(n) 6= V(n) then

8: M←M∪ parents(n)
9: end if

10: V← V′

11: end while

12: return V

Figure 4.11: Aω
ς -MINIMAL-CUT-NSETS algorithm.

of the model: some cut sets may be missed, and some returned may be non-minimal
for the concrete model.

THEOREM.– The valuation V computed by Aω
ς -MINIMAL-CUT-NSETS on the GLC

Aω
ς = (V ω

ς , Eω
ς) verifies: ∀ai ∈ Proc ∩ V ω

ς , ∀kls ∈ V(ai) \ {{ai}}, aj is not

reachable from ς if all processes of kls are disabled.

EXAMPLE.– If an action a1 → a1 � a0 is added to the Process Hitting model of
figure 4.1, then a trivial solution (i.e., with no successor) is added in the GLC of
figure 4.10(top) as a successor of the objective a1 �∗ a0. Table 4.1 then details the
result of algorithm Aω

ς -MINIMAL-CUT-NSETS on this GLC. As this GLC contains
no cycle, each node is visited once. The result for d2 consists in five cut sets: three of
them are singletons and two are couples of processes.

4.4. Towards a Stochastic Semantic

Up to this point, we have considered Process Hitting in the context of its own syn-
tax: that is to say, in terms of processes interacting with one another via actions, hits
and bounces. As we have seen, analysis on this level can answer some of the most
interesting questions about the constructed model, including steady state behavior or
whether or not a particular state is reachable. However, this analysis is not complete.
To answer deeper, more nuanced questions of the model, we must change its context
to that of stochasticity. Rather than working with specific pathways (a single state
moving into another via playable actions) we will adopt a more global point of view.
From this perspective, we consider the fact that a Process Hitting model constructs a
problem with a unique solution, a surface which defines the probability of existing at

Analyzing Large Network Dynamics with Process Hitting 27

Node in Aω

ς Type Valuation (V)
BS∧(d1 �

∗ d1) ∋ ∅ Sol ∅
d1 Proc {{d1}}
b2 Proc {{b2}, {d1}}

BS∧(a1 �
∗ a0) ∋ ∅ Sol ∅

a0 Proc {{a0}}
c1 Proc {{a0}, {c1}}
b1 Proc {{a0}, {b1}, {c1}}

BS∧(d1 �
∗ d2) ∋ {b2, c1} Sol {{a0}, {b2}, {c1}, {d1}}

d1 �
∗ d2 Obj {{a0}, {b1, b2}, {b1, d1}, {c1}}

d2 Proc {{a0}, {b1, b2}, {b1, d1}, {c1}, {d2}}

Table 4.1: Result of the execution of algorithm Aω
ς -MINIMAL-CUT-NSETS on the

Process Hitting model in Figure 4.1, with the addition of the action: a1 → a1 � a0.
Nodes of the form BS∧(P) ∋ ps represent one solution of the objective P . The nodes
that are not mentioned in this table have the same valuation than their only successor.

any state at any given time. From this distribution we can extract all that there is to
know about the system as it has been defined. In this way, the solution is “complete”.
In this section, we will investigate how to move a Process Hitting model to a more
general form without loss of information, what methods are commonly used to solve
the system, what kind of questions can be posed of this solution that were not previ-
ously accessible and, finally, how to enrich the Process Hitting framework thanks to
its newfound stochastic nature.

A Process Hitting action, in its most basic interpretation, moves the system from
one state z to another with a given propensity which depends on the state and time,
a(z, t). Each action corresponds to a Markov equation which tallies changes in the
probability of existing at a given state and time, or Φ(z, t). Some actions move from
the current state, zc, to another, zo, causing an outflow in probability at that state, while
other actions move into said state, causing inflow in the probability. If we consider
all j actions which concern a particular state, we can write the Markov equations for
each state in terms of net change:

∂Φ(zc, t)

∂t
=

∑

j

aj(zo, t)Φ(zo, t)−
∑

k

ak(zc, t)Φ(zc, t)

These equations are linear, time dependent, Partial Differential Equations (PDE). Like
any other PDE, they can be solved given an initial condition and boundary conditions.
So, unlike static analysis in which one can pose questions based on sufficient con-
ditions of one or two variables, stochastic analysis requires a full initial condition to
construct a properly defined problem. Boundary conditions, however, are the same
for all Process Hitting models: probability cannot exist in any state not contained by

28 Logical Modeling of Biological Systems

the sorts, thus is zero everywhere else. The solution to this problem is a sort of mul-
tivariate Bernoulli distribution in which exactly one of the K outcomes is successful,
or 1-in-K. This is also referred to as the categorical distribution.

Access to this underlying solution gives new avenues of analysis for Process Hit-
ting: for instance, moments such as mean and covariance are quickly derived from a
probability distribution and be used to develop hierarchical models. In addition, by
observing the probability distribution, one can make informed qualitative statements
about the overall behavior of the system and have access to the temporal nature of the
problem in addition to the steady state projection.

4.4.1. Numerical Techniques

4.4.1.1. Direct Solution of the Partial Differential Equation

Once we assemble the system of equations formed by the Markov translations of
Process Hitting actions, we can start looking its solution. Ideally, as a system of PDEs
with defined initial condition and boundary conditions, we would obtain a direct, an-
alytical solution. This would be exact according to the model as it is defined, without
any associated error. However, as is common in the world of PDEs, this is almost
never an option outside toy problems. In addition, realistic models in gene regulation,
even when given in their most simplistic form, contain many interconnected species.
The very enumeration of the possible states of the resulting system create a combi-
natorial explosion: twenty sorts with two processes each yield 220 states, over one
million states. Realistic models are much larger: when considering 300 sorts, the
number of states skyrockets to 1090, keeping in mind that 1080 is the presumed num-
ber of elementary particles in the universe! This is a frequent obstacle in the field of
computer science and has been dubbed the “curse of dimensionality”.

In order to circumvent this problem, we turn to the many numerical techniques in
the field of partial differential equations which can give approximations of the true
solution. Each of these techniques come with their own set of tools, including un-
certainty quantification to examine the fitness of the resulting approximation, canon-
ical implementations in multiple platforms, and a plethora of literature examining
the strengths and weaknesses of each methodology, some of which may be partic-
ularly suited to gene regulatory networks. For example, decompositional methods
such as Proper Generalized Decomposition (PGD) [CHI 10, CHA 13] can overcome
the curse of dimensionality without a priori knowledge of the state space and can
incorporate unknown parameters at the cost of an additional dimension. Another par-
ticularly adept algorithm is known as Finite State Projection (FSP). In this method, the
state-explosion is controlled by recognizing that it is most probable that only a finite
number of states will be visited and, thus, truncates the system while retaining enough
information to satisfy the modeler’s needs. Many adaptations of this algorithm have

Analyzing Large Network Dynamics with Process Hitting 29

been explored over the years, as illustrated in [MUN 08]. As it stands today, no one
method satisfies all of the requirements of scalability, computational ease and biolog-
ical realism, though research in this field is making clear advances.

4.4.1.2. Simulation Techniques

So far we have investigated the direct treatment of the Markov equations based on
their qualities as partial differential equations. However, some of the most famous and
broadly used techniques for obtaining a probability distribution solution for a model
such as Process Hitting are simulation-based. In this approach, we let the system be-
gin at a given initial condition and evolve according to the Markov jump equations,
keeping track of its pathway until a given stop time. This represents a single trial: by
averaging over many trials, we approximate the underlying probability distribution.
As the number of trials increase and, eventually, go to infinity, the approximation
converges to the true solution. This approach offers many advantages: not only is it
very straightforward to understand, but conditions can be formally obtained for de-
termining the number of trials needed to guarantee a “good” fit. As a categorical
distribution, the conjugate prior of the solution is a Dirichlet distribution. This allows
all information from previous trials can be effortlessly used as a prior for the current
run. Of greatest interest in the field of bioinformatics, however, is that no enumeration
of the state space is needed. Only visited states are tallied, which is always a much
more restricted space when working with networks of large size (recall the curse of
dimensionality mentioned in the previous section).

There are instances in which simulation fails: for complex systems or systems
with important states exhibiting very low probability, massive numbers of trials are
needed to achieve good approximations of the solution. This can be prohibitive in
regards to computational run-time and available memory. Even here, approximative
methodologies have been developed to overcome some of these difficulties. Under
the umbrella of Stochastic Simulation Algorithms (SSA), we find not only Gillespie’s
algorithm, an exact solver though computationally expensive, but also its adaptations.
Two overarching trends exist: methods which attempt to leap forward in time, such
as τ -leaping, and methods which separate fast and slow reactions, treating part of the
system as though it is deterministic in nature. Although they do attempt to alleviate
some of the biggest problems of simulation, even these algorithms can be prohibited
by the sheer number of random number generations or trials required.

The construction of a Process Hitting system sets up a problem, the solution of
which is a probability distribution. In this section, we have explored two ways of
approaching the generated Markov equations: direct treatment via their properties as
PDEs or simulation-based techniques. Each of these methods have their advantages
and disadvantages. It is up to the modeler to determine which is appropriate for a
given regulatory network. In practice, it is common to use static analysis for the
initial exploration of a model. Important behaviors are tested against biological data to

30 Logical Modeling of Biological Systems

validate the basic structure of the system. Later on, simulation or solution techniques
are used to perform deeper validation and to obtain an accurate model to export for
long term use. Simulation remains the gold standard, although numerical treatment
is growing in prevalence as state of the art methodologies from other computational
fields make their way into the field of bioinformatics.

4.4.2. Rates and Stochastic Absorption

Only the most general dynamics of a system can be derived from the basic inter-
action graph, that is, the weighted, directed graph indicating the inhibition and acti-
vation interactions between genes. Our model is not complete without an in-depth
understanding of the reaction rates, until now, only vaguely referenced by the propen-
sity function a(z, t). The correspondence of each Process Hitting model to a stochastic
π-calculus allows us to increase the expressiveness with regards to stochastic and tem-
poral features via conditions placed on the channels defined within the calculus. Once
the foundation is laid in the Process Hitting language, a model can be further refined
through the addition of these features, a theme fore fully explored in [PAU 11b].

The use rate of an action controls the duration and probability of a reaction (a com-
munication along a channel) and corresponds to its own probability distribution along
the time axis. The most simplistic and commonly used distribution for a reaction is
the exponential distribution with random variable rate, r: a(z, t) = [zc = z] 1− e−rt.
The exponential distribution has many advantages that suggest that it should, in fact,
be our first choice when modeling relatively unknown reactions. First, the exponen-
tial distribution has the greatest entropy of all distributions with mean µ contained by
[0,∞], meaning that it contains the least amount of prior information possible. It also
has well-defined moments, including µ = r−1 and var = r−2. However, perhaps the
most beneficial trait is the fact that the exponential distribution exhibits memoryless-
ness, making simulation algorithms such as Gillespie very efficient.

Any distribution can be used for the use rate, although, as we have demonstrated,
some are more adept than others. So what if we would like to control more precisely
the channel, say, by modifying the typical amount of wait time without changing the
average duration of an action? To this end, we propose the use of another special distri-
bution via the introduction of a new parameter which we call stochasticity absorption,
sa. Here, the classic exponential distribution is replaced by the sum of sa random
variables, each of which is an exponential distribution with parameter r × sa. This
is known as the Erlang distribution, a particular case of the gamma distribution.The
mean of this distribution remains the same since sa (r × sa)

−1
= r−1, however, the

variance is divided by sa: sa (r × sa)
−2

= r−2sa−1. Thus, the rate becomes more
tightly bounded and resembles more a wait time than a stochastic feature, hence the
name “stochasticity absorption”.

Analyzing Large Network Dynamics with Process Hitting 31

Thanks to this combination of rate and stochasticity absorption, we have shown
in [PAU 11b] that any time interval has a corresponding couple of parameters (r, sa)
such that the resulting distribution of firing time has the matching confidence interval
(given a confidence coefficient). Figure 4.12(left) illustrates the effect of increas-
ing the stochasticity absorption while preserving the rate: the confidence interval of
the action duration shrinks around the mean duration fully characterized by the rate.
Hence, it is possible to model stochastic dynamics with much more precise timing
constraints. This is particularly relevant for qualitative modeling: some logical transi-
tions may hide hundreds or thousands biochemical reactions and should thus exhibit
rather low variance. Figure 4.12(right) gives a simple example of two concurrent ac-
tions a0 → b0 � b1 and a0 → a0 � a1. Due to their stochastic parameters, the
resulting probability of observing the reachability of b1 from the state 〈a0, b0〉 is very
close to 0.

t
0

1
rd D

sa = 1

t
0

1
rd D

sa = 5

t
0

1
rd D

sa = 50

action duration

a

0

1

b

0

1

a0 → b0 � b1
t

a0 → a0 � a1
t

Figure 4.12: (left) Probability distribution of the action duration with a fixed rate r

and a varying stochasticity absorption sa. The confidence interval [d;D] at 95% is
also indicated. (right) Simple Process Hitting (top) with two actions parametrized
using rate and stochasticity absorption resulting in the given the confidence interval
(bottom).

Such a framework allows us to model stochastic dynamics with controlled vari-
ances. Process hitting may therefore take advantage of both stochastic and timed
modeling paradigms.

32 Logical Modeling of Biological Systems

4.5. Biological Applications

4.5.1. The Tool PINT

PINT1 is a set of command-line programs that implement the various analysis of
Process Hitting, including those presented in this chapter. It is distributed freely under
the CeCILL license. Graphical interfaces are also available2, and a web interface3 as
well.

PINT comes with a textual language for describing Process Hitting models. A
Process Hitting can be described by the flat list of its actions, but also with macros
that ease the writing of the model, in particular for biological interaction networks.
Figure 4.13 shows the source file of the refined Process Hitting for the Incoherent
Feed-forward Loop described in section §4.2. This file makes use of two macros:
BRN which computes the generalized dynamics of the given interaction graph; and
COOPERATIVITY which does the refining according to section §4.2.4. The flat list of
actions can be obtained by using the phc utility (phc -l dump -i source.ph).

(* declaration of sorts *)

process a 1

process b 1

process c 1

(* generalized dynamics *)

BRN([a 1 -> + b; a 1 -> - c; b 1 -> + c])

(* cooperativity: c becomes 1 only when a=0 and b=1 *)

COOPERATIVITY([a;b] -> c 0 1, [[0;1]])

Figure 4.13: Source file for the Incoherent Feed-forward Loop model described in
section §4.2.

Among the features of PINT, one can find: a stochastic simulator that supports
stochasticity absorption (non-Markovian simulation); an implementation of the fixed
point listing; a static analyzer for reachability properties and cut sets computation;
the inference of Boolean/multi-valued networks compatible with the Process Hitting
model; importation from/exportation to various formats for biological networks. Fur-
ther documentation can be found on the PINT website mentioned above.

1. http://loicpauleve.name/pint
2. http://loicpauleve.name/pint/gui
3. http://mobyle.biotempo.univ-nantes.fr/cgi-bin/portal.py

http://loicpauleve.name/pint
http://loicpauleve.name/pint/gui
http://mobyle.biotempo.univ-nantes.fr/cgi-bin/portal.py

Analyzing Large Network Dynamics with Process Hitting 33

4.5.2. Biological Examples

Now that we have established how to construct, refine and analyze a Process Hit-
ting model, we will tackle a more realistic biological example in order to illustrate how
the framework can be applied. In particular, we detail an investigation on a medium-
scale model of the EGF receptor in order to emphasize the complementarity between
our modeling approach through refinement of a generalized dynamics, and our static
methods for reachability and cut sets analysis. Finally, we briefly present benchmarks
of PINT for the analysis of reachability and cut sets on large scale networks, up to 100
and approximatively 10,000 components.

4.5.2.1. Investigating the dynamics of EGF receptor

ErbB is the genetic family of four structurally similar receptor tyrosine kinases, of
which the epidermal growth factor receptor (EGFR or ErbB-1) is most widely stud-
ied in the field of oncology. In healthy cells, production of ErbB leads to signaling
pathway which regulates the cells transition from the G1 to S life phase, a checkpoint
which determines whether a cell should divide, delay division or enter a quiescent
state. Over expression of ErbB is associated with many kinds of cancer, and drugs
which target it and its receptor are common treatments for breast, lung and colon can-
cers. In the case of breast cancer, drug resistance is present in roughly 30% of patients,
leading to a call for alternative targets along the same molecular pathway. Innovative
therapies which exploit the structure of the regulatory network have the potential to
advance medical interventions on a very real clinical level. Here, we begin our in-
vestigation by considering a simplified model of twenty sorts which does not contain
all sub reactions, but does capture the most important dynamics of the ErbB signaling
process. The directed graph for this network was taken from [SAH 09]. This medium-
scale model contains two main proteins of interest: EGF can be considered as the input
protein as it is the only one without predecessor, and pRB can be considered as the
only output, having no successor.

In order to illustrate reasoning on model dynamics using the Process Hitting and
the approach of refining the generalized dynamics of the interaction graph, we apply
several analysis on three different Process Hitting models:

– Model (1) contains the generalized dynamics of the IG and therefore encom-
passes no cooperative sorts.

– In Model (2), the dynamics are refined by the addition of 14 cooperative sorts.
While reviewing the literature, components which were noted as being particularly
important to the chain of reactions were selected. Indeed, the knockdown experiments
conducted in [SAH 09] showed that eliminating these components led to a significant
decrease of the production of the output protein pRB. Therefore, all Boolean functions
involving these components were included in this model via cooperative sorts. In
theory, less cooperative sorts would have sufficed, but we used the splitting method
presented in section §4.2.4 to reduce their size.

34 Logical Modeling of Biological Systems

– Finally, model (3) was built using all of the Boolean functions provided
in [SAH 09], taking the form of 22 cooperative sorts.

Table 4.2 sums up several static analysis results on these models from the methods
developed in section §4.3, that we briefly comment below.

Model Fixed points PEGF1 PEGF0 Cut sets

(1) 0 True True 30
(2) 0 True False 12
(3) 3 True False 11

Table 4.2: Results for several analyses on the three models of the EGFR/ErbB regu-
lation with 20 components. In the first column, we list the models being used. The
second column gives the number of fixed points enumerated by the static analysis of
section §4.3.2. The third column gives the result of the static analysis described in
section §4.3.3 for property reach(ς, pRB0 �∗ pRB1), where ς is the initial state where
all components are at level 0 and the input protein EGF is at level 1. This experiment
was repeated for EGF at level 0 and is listed in column four.

Fixed points Model (3) is the only model that contains fixed points. Amongst the
three steady states found are two states that correspond to a complete propagation of
the input signal, that is, in the case where EGF is active and in the case where it is not.
The two other models contain no fixed point because some cooperations are not fully
defined, leading to oscillations as a consequence of nondeterministic behavior.

Reachability of the output The main reachability property of interest here is
pRB0 �∗ pRB1, given that pRB is the only output of all three models. If we sup-
pose that all components are at first inactive, there are two reachability properties of
interest:

– PEGF1
= reach(ς ⋓ {EGF1}, pRB0 �∗ pRB1),

– PEGF0
= reach(ς, pRB0 �∗ pRB1),

where ς is the initial context where all sorts are at level 0. In other words, PEGF1
means

that pRB can be activated in normal conditions (when the input EGF is activated), and
PEGF0

means that pRB can be activated despite EGF being at 0, a condition which
can be used to invalidate a faulty model. We note that PEGF1

is, of course, true for
all models, and PEGF0

is only true for Model (1): the generalized dynamics are too
permissive for this system. We also note that the fact that PEGF0

is false for the Model
(2) is sufficient to prove that the reachability is also impossible for the Model (3),
because of the abstraction relationship between the two models.

Cut sets Table 4.3 details the distribution of cut sets on the three models. As de-
tailed in section §4.3.4, a cut set is a set of processes that, if all disabled, makes the

Analyzing Large Network Dynamics with Process Hitting 35

reachability property impossible. From the abstraction relationship between the mod-
els, all cut sets of Model (3) are subsets of cut sets of Model (2), and all cut sets of
Model (2) are subsets of cut sets of Model (1).

Model (1) Model (2) Model (3)
Size Number Total Number Total Number Total

1 1 (pRB) 1 6 6 6 6
2 0 1 2 8 2 8
3 2 3 0 8 3 11
4 7 10 1 9
5 2 12 3 12
6 4 16
7 6 22
8 2 24
9 6 30

Table 4.3: Distribution of the cut sets for the three models.

This investigation highlights the advantage of using (partial) refinements of the
generalized dynamics of the network using Process Hitting: without a complete knowl-
edge on the precise logical functions between regulators, it is already possible to derive
formal dynamical properties of the system and draw conclusions on any subsequently
refined models.

4.5.2.2. Performances on large-scale networks

The static analysis of Process Hitting models using abstract interpretation pre-
sented in section §4.3 has been proved to have a low complexity compared to ex-
act model-checking. Hence, we expect our method to outperform classical model-
checkers when applied to large-scale networks. However, our methods may not give
conclusive results (necessary conditions are satisfied but not the sufficient conditions).
Table 4.4 lists some execution times obtained on various Process Hitting models of
signaling pathways: one medium-scale (20 components) and large-scale (104 compo-
nents) model of EGF receptor [SAH 09, SAM 09], and one medium-scale (40 compo-
nents) and large-scale (94 components) model of T-Cell receptor [KLA 06, SAE 07].
The number of sorts is typically greater than the number of components as some sorts
are used to encode logical functions. These Process Hitting models are available on
the PINT website mentioned previously. For each of these models, a broad range of
reachability properties have been checked from many initial conditions. Verification
has been conducted using exact symbolic model-checkers Biocham [CAL 06] and lib-
ddd [HAM 09] in addition to PINT. Whereas PINT makes tractable the formal analysis
of the dynamics of those models (thanks to the low complexity of our static analyzes),
we emphasize that all the analyzes are conclusive.

36 Logical Modeling of Biological Systems

Model Nb sorts Nb procs Nb actions Nb states Biocham libddd PINT

egfr20 35 196 670 264 [3s-out] [1s-150s] 0.007s
tcrsig40 54 156 301 273 [1s-out] [0.6s-out] 0.004s
tcrsig94 133 448 1124 2194 out out 0.030s
egfr104 193 748 2356 2320 out out 0.050s

Table 4.4: Comparison of execution times for various reachability properties on
several models between Biocham (using NuSMV), libddd, and PINT. An out-of-
time/memory is noted “out”. When execution times vary significantly depending on
the reachability properties, minimum and maximum durations are given.

In order to demonstrate once again the scalability of our approach, we apply our
algorithm of under-approximating cut sets for reachability to a model consisting of
approximately 10,000 components. This model is a dynamical interpretation of the
full PID database [SCH 09] referencing various influences (complex formation, in-
ductions (activations) and inhibitions, transcriptional regulation, etc.) between more
than 9,000 biological components (proteins, genes, ions, etc.). Amongt the numerous
biological components, the activation of some are known to control key mechanisms
of cell dynamics. Those activations are the consequence of intertwining signaling
pathways and depend on the environment of the cell (represented by the presence of
certain entry-point molecules). Uncovering the environmental and intermediate com-
ponents which play a major role in these signaling dynamics is of great biological
interest.

Using this model, we focus on the independent reachability of active SNAIL tran-
scription factor, involved in the epithelial to mesenchymal transition [MOU 07] and of
active p15INK4b cyclin-dependent kinase inhibitors involved in cell cycle regulation
[DRA 12]. For this analysis, we considered a very large number of different initial
conditions: the cut sets are computed from an initial context encoding for about 23000

different initial states. Cut sets would then indicate combinations of knock-outs/ins
that should prevent the activations of those components.

The studied Process Hitting4 gathers more than 21,000 sorts, either biological or
logical, containing between 2 and 4 local states. Such a system generates 233874 states.
The Graph of Local Causality relates 20,045 nodes, including 5,671 processes (bio-
logical or logical). Table 4.5 shows execution time of PINT for the computation of cut
N -sets, that are cut sets whose cardinality is at most N , up to N = 6.

According to section §4.3.4, all of the returned cut sets are exact: if all the pro-
cesses of a cut set are disabled, the (transient) reachability of the related process be-
comes impossible. Also according to section §4.3.4, it may occur that some cut sets

4. Models and scripts available at http://loicpauleve.name/cutsets.tbz2

http://loicpauleve.name/cutsets.tbz2

Analyzing Large Network Dynamics with Process Hitting 37

N Visited nodes in the GLC Exec. time
Nb N -sets

SNAIL1 p15INK4b1

1 29,022 0.9s 1 1
2 36,602 1.6s 6 6
3 44,174 5.4s 0 92
4 54,322 39s 30 60
5 68,214 8.3m 90 80
6 90,902 2.6h 930 208

Table 4.5: Results for the computation of cut N -sets for 2 processes. For each N , only
the number of additional N -sets is displayed.

have been missed, or are non-minimal for the concrete Process Hitting model. This
is due to the fact that the computation is done on the Graph of Local Causality which
over-approximates the dynamics, resulting in an under-approximation of the cut sets.

To our knowledge, PINT is currently the only tool able to perform (transient) reach-
ability and cut sets analysis for dynamics of networks at such a scale, ranging from
hundreds to several thousands of components.

4.6. Conclusion

Assessment

In this chapter, we presented an important new approach to the discrete modeling
of biological regulatory systems. The fundamental objective of our work is to address
very large networks: in doing so, it then becomes possible to work on more realistic
models which are of greater interest to biologists.

The ultimate goal of this modeling framework is to allow us to analyze the opera-
tional behavior of biological systems, that is, to understand not only what can possibly
occur and what will occur ineluctably, but also to understand how to prevent some
events from occurring at all, as they may bring upon pathological states. At the very
least, we can already make some situations less likely to occur.

Regulatory interactions (activations and inhibitions) are generally characterized by
the crossing of some threshold concentration level or expression level. While each of
these reactions is, alone, very simple, the overall model complexity arises from the
number of interacting agents and the states in which they can be. The sheer number
of possible combinations of these states leads to exponential growth of the size of
the resulting model. Unfortunately, the huge dimensionality of this model prevents
us from analyzing a large number of real systems using classical approaches. As we
have shown in this chapter, it is imperative to design methods which make it possible

38 Logical Modeling of Biological Systems

to smartly abstract pieces of information. This subtle abstraction does not create a
loss of knowledge, but only keeps it aside, as though placed on layers of tracing paper.
These papers are never all simultaneously superimposed but, rather, taken one by one
in accordance with the stage of analysis which one wants to perform. The needs of the
modeler may therefore dictate which of the sheets of tracing paper will be taken from
a stack which contains a sum of knowledge that cannot be studied as a whole.

It is exactly this decomposition of data which can be realized thanks to our new
approach. Initially inspired by the π-calculus, but from which it has since departed,
Process Hitting is founded on simple principles:

– Rather than focusing on the concept of global state, our method starts by gath-
ering in a fundamental entity (the so-called sort) the various possible states of each
component of the system. Based on the principle that, at any moment, this component
can be only in one of these states (the current process), one avoids the direct enumera-
tion of the state space, a very desirable property in that the space is of huge dimension
and much of the global states are unreachable or unexpressed.

– To study the operation of the system, we begin at an initial state (a tuple com-
posed of one process from each sort) and monitor all the states in which each com-
ponent can be after an interaction between two of the components in the tuple. Only
these two components are taken into account in the reaction and only the one that
undergoes said reaction changes state. The information to be kept for these steps is
reduced to the so-called process hit. A complete list of hits allows us to easily re-
construct any situation which can occur according to the system. Furthermore, it is
also possible that, after some initial evolution, some events will become unable to oc-
cur. Some knowledge of the precedence relationships (immediate precedence or other
kinds of precedence, etc. ...) must therefore, at times, be reintroduced to the set of
data to be treated.

Process Hitting, therefore, is very well suited to analysis by processing superimposed
layers of data. Therein is the great contribution and uniqueness of this framework.

It is to be noted that there exists a complete semantics for Process Hitting, de-
scribed in part by this chapter, which associate static analysis methods to it. These
methods, also described within the chapter, are well suited to the study of discrete, or
qualitative, behaviors. Moreover, a projection towards stochastic semantics has been
included to illustrate the function and depth of Process Hitting in a concrete way, in-
cluding ways to exploit this semantic in order to increase model expressivity. One
section of this chapter was devoted to a demonstration of the types of biological appli-
cations which we were already able to tackle while obtaining some spectacular results
on very large, real systems.

Analyzing Large Network Dynamics with Process Hitting 39

Future work

These first very encouraging results motivate us to push onward and to consider fu-
ture work which seems both interesting and promising. Among those is the automatic
inference of biological regulatory networks, a work which has already been launched
and relies on the use of Answer Set Programming (ASP).

– In an initial approach, [FOL 12] presents a work which establishes a link be-
tween a Process Hitting model and the corresponding Interaction Graph, then to the
corresponding modeling according to René Thomas’s approach [THO 91]. This is
done by developing a method of enumerating compatible parameterizations efficiently.

– A work a little more on the technical than theoretical side is also currently being
done so that Process Hitting models may be automatically derived from knowledge
established in databases. This approach seems well adapted and specifically useful for
the treatment of timed data.

Other forecasted works touch on a smattering of ideas:

– A greatly interesting extension consists of the introduction of priorities, as pre-
sented in [FOL 13]. The development of priorities lends itself naturally to as of yet
open prospects of deepening the description of time-lag behaviors and urgent actions.

– In a slightly different direction, as cooperative sorts were presented in sec-
tion §4.2.4 in order to express actions that have to be processed whenever a logical
combination of incoming events have occurred, there is another forthcoming idea of
designing multiple actions which are simultaneously provoked by some event. These
multi-actions are made possible as an improvement of the above so-called urgent ac-
tions.

– In addition to the work already done on static analysis as it pertains to reachabil-
ity properties, we will also try to deal with more intricate properties such as conditional
reachability. For example, it could be of interest to know if some state is reachable as
long as some actions on certain states are avoided or on the condition that we do visit
some given list of states.

– A greater pursuit of the stochastic semantic and investigation of novel numer-
ical techniques specifically designed for such a qualitative modeling scheme may
open doors to greater depths of analysis and, perhaps, the inclusion of more stochas-
tic/temporal features to Process Hitting.

This is a non exhaustive list of the work we intend to be involved in for the follow-
ing years. Many beautiful results were thus already obtained, but several interesting
prospects still remain to be explored which enrich this framework for the analysis of
biological systems.

40 Logical Modeling of Biological Systems

4.7. Bibliography

[AKU 08] AKUTSU T., HAYASHIDA M., TAMURA T., “Algorithms for inference, analysis
and control of Boolean networks”, Algebraic Biology, p. 1–15, Springer, 2008.

[ARA 08] ARACENA J., “Maximum number of fixed points in regulatory boolean networks”,
Bulletin of Mathematical Biology, vol. 70, num. 5, p. 1398–1409, Springer, 2008.

[ARA 09] ARACENA J., CH. E. G., MOREIRA A., SALINAS L., “On the robustness of update
schedules in Boolean networks.”, Biosystems, vol. 97, num. 1, p. 1-8, 2009.

[BER 92] BERNARDINELLO L., DE CINDIO F., “A survey of basic net models and modular
net classes”, ROZENBERG G., Ed., Advances in Petri Nets 1992, vol. 609 of Lecture Notes

in Computer Science, p. 304-351, Springer Berlin / Heidelberg, 1992.

[BER 08] BERNOT G., COMET J.-P., KHALIS Z., “Gene regulatory networks with multi-
plexes”, European Simulation and Modelling Conference Proceedings, p. 423–432, 2008.

[CAL 06] CALZONE L., FAGES F., SOLIMAN S., “BIOCHAM: an environment for model-
ing biological systems and formalizing experimental knowledge”, Bioinformatics, vol. 22,
num. 14, p. 1805-1807, 2006.

[CHA 13] CHANCELLOR C., AMMAR A., CHINESTA F., MAGNIN M., ROUX O., “Linking
Discrete and Stochastic Models: The Chemical Master Equation as a Bridge between Pro-
cess Hitting and Proper Generalized Decomposition”, Computational Methods in Systems

Biology, Springer, p. 50–63, 2013.

[CHI 10] CHINESTA F., AMMAR A., CUETO E., “On the use of proper generalized decompo-
sitions for solving the multidimensional chemical master equation”, European Journal of

Computational Mechanics/Revue Européenne de Mécanique Numérique, vol. 19, num. 1-3,
p. 53–64, Taylor & Francis, 2010.

[COU 77] COUSOT P., COUSOT R., “Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints”, Proceedings of the

4th ACM SIGACT-SIGPLAN symposium on Principles of Programming Languages, ACM,
p. 238–252, 1977.

[DRA 12] DRABSCH Y., TEN DIJKE P., “TGF-β signalling and its role in cancer progression
and metastasis”, Cancer Metastasis Rev., vol. 31, num. 3-4, p. 553–568, Dec 2012.

[FOL 12] FOLSCHETTE M., PAULEVÉ L., INOUE K., MAGNIN M., ROUX O., “Concretizing
the Process Hitting into Biological Regulatory Networks”, GILBERT D., HEINER M., Eds.,
Computational Methods in Systems Biology, Lecture Notes in Computer Science, p. 166–
186, Springer Berlin Heidelberg, 2012.

[FOL 13] FOLSCHETTE M., PAULEVÉ L., MAGNIN M., ROUX O., “Under-approximation
of reachability in multivalued asynchronous networks”, Electronic Notes in Theoretical

Computer Science, vol. 299, p. 33 - 51, 2013, 4th International Workshop on Interactions
between Computer Science and Biology (CS2Bio’13).

[HAM 09] HAMEZ A., THIERRY-MIEG Y., KORDON F., “Building efficient model checkers
using hierarchical set decision diagrams and automatic saturation”, Fundamenta Informat-

icae, vol. 94, num. 3, p. 413–437, IOS Press, 2009.

Analyzing Large Network Dynamics with Process Hitting 41

[IDE 01] IDEKER T., GALITSKI T., HOOD L., “A new approach to decoding life: systems
biology”, Annual review of genomics and human genetics, vol. 2, num. 1, p. 343–372,
Annual Reviews 4139 El Camino Way, PO Box 10139, Palo Alto, CA 94303-0139, USA,
2001.

[INO 11] INOUE K., “Logic Programming for Boolean Networks”, Proceedings of the Twenty-

Second International Joint Conference on Artificial Intelligence - Volume Volume Two, IJ-
CAI’11, AAAI Press, p. 924–930, 2011.

[KAU 69] KAUFFMAN S. A., “Metabolic stability and epigenesis in randomly constructed
genetic nets”, Journal of theoretical biology, vol. 22, num. 3, p. 437–467, Elsevier, 1969.

[KLA 06] KLAMT S., SAEZ-RODRIGUEZ J., LINDQUIST J., SIMEONI L., GILLES E., “A
methodology for the structural and functional analysis of signaling and regulatory net-
works”, BMC Bioinformatics, vol. 7, num. 1, Page 56, 2006.

[MAN 03] MANGAN S., ALON U., “Structure and function of the feed-forward loop network
motif.”, PNAS, vol. 100, num. 21, p. 11980–11985, Oct 2003.

[MOU 07] MOUSTAKAS A., HELDIN C. H., “Signaling networks guiding epithelial-
mesenchymal transitions during embryogenesis and cancer progression”, Cancer Sci.,
vol. 98, num. 10, p. 1512–1520, Oct 2007.

[MUN 08] MUNSKY B. E., The finite state projection approach for the solution of the master

equation and its applications to stochastic gene regulatory networks, ProQuest, 2008.

[NAL 07] NALDI A., THIEFFRY D., CHAOUIYA C., “Decision diagrams for the representation
and analysis of logical models of genetic networks”, Computational Methods in Systems

Biology, Springer, p. 233–247, 2007.

[NOU 11a] NOUAL M., “Synchronism vs Asynchronism in Boolean networks”, CoRR,
vol. abs/1104.4039, 2011.

[NOU 11b] NOUAL M., REGNAULT D., SENÉ S., “Non-monotony and Boolean automata
networks”, CoRR, vol. abs/1111.4552, 2011.

[PAU 10] PAULEVÉ L., RICHARD A., “Topological Fixed Points in Boolean Networks”,
Comptes Rendus de l’Académie des Sciences - Series I - Mathematics, vol. 348, num. 15-16,
p. 825–828, 2010.

[PAU 11a] PAULEVÉ L., MAGNIN M., ROUX O., “Refining Dynamics of Gene Regulatory
Networks in a Stochastic π-Calculus Framework”, Transactions on Computational Systems

Biology XIII, p. 171-191, Springer, 2011.

[PAU 11b] PAULEVÉ L., MAGNIN M., ROUX O., “Tuning Temporal Features within the
Stochastic π-Calculus”, Software Engineering, IEEE Transactions on, vol. 37, num. 6,
p. 858–871, IEEE, 2011.

[PAU 11c] PAULEVÉ L., RICHARD A., “Static Analysis of Boolean Networks Based on In-
teraction Graphs: a Survey”, Electronic Notes in Theoretical Computer Science, vol. 284,
p. 93 - 104, 2011, Proceedings of The Second International Workshop on Static Analysis
and Systems Biology (SASB 2011).

[PAU 12a] PAULEVÉ L., MAGNIN M., ROUX O., From the Process Hitting to Petri Nets and
Back, Technical Report num. hal-00744807, October 2012.

42 Logical Modeling of Biological Systems

[PAU 12b] PAULEVÉ L., MAGNIN M., ROUX O., “Static Analysis of Biological Regulatory
Networks Dynamics using Abstract Interpretation”, Mathematical Structures in Computer

Science, vol. 22, num. 04, p. 651-685, 2012.

[PAU 13] PAULEVÉ L., ANDRIEUX G., KOEPPL H., “Under-Approximating Cut Sets for
Reachability in Large Scale Automata Networks”, SHARYGINA N., VEITH H., Eds.,
Computer Aided Verification, vol. 8044 of Lecture Notes in Computer Science, p. 69-84,
Springer Berlin Heidelberg, 2013.

[RIC 06a] RICHARD A., COMET J.-P., BERNOT G., “Formal methods for modeling biological
regulatory networks”, Modern Formal Methods and Applications, p. 83–122, Springer,
2006.

[RIC 06b] RICHARD A., COMET J.-P., BERNOT G., “Modern Formal Methods and Applica-

tions”, Chapter Formal Methods for Modeling Biological Regulatory Networks, p. 83–122,
2006.

[RIC 10] RICHARD A., “Negative circuits and sustained oscillations in asynchronous au-
tomata networks”, Advances in Applied Mathematics, vol. 44, num. 4, p. 378–392, 2010.

[SAE 07] SAEZ-RODRIGUEZ J., SIMEONI L., LINDQUIST J. A., HEMENWAY R.,
BOMMHARDT U., ARNDT B., HAUS U.-U., WEISMANTEL R., GILLES E. D., KLAMT

S. et al., “A Logical Model Provides Insights into T Cell Receptor Signaling”, PLoS Com-

putational Biology, vol. 3, num. 8, Pagee163, Public Library of Science, 2007.

[SAH 09] SAHIN O., FROHLICH H., LOBKE C., KORF U., BURMESTER S., MAJETY M.,
MATTERN J., SCHUPP I., CHAOUIYA C., THIEFFRY D., POUSTKA A., WIEMANN S.,
BEISSBARTH T., ARLT D., “Modeling ERBB receptor-regulated G1/S transition to find
novel targets for de novo trastuzumab resistance”, BMC Systems Biology, vol. 3, num. 1,
2009.

[SAM 09] SAMAGA R., SAEZ-RODRIGUEZ J., ALEXOPOULOS L. G., SORGER P. K.,
KLAMT S., “The Logic of EGFR/ErbB Signaling: Theoretical Properties and Analysis
of High-Throughput Data”, PLoS Computational Biology, vol. 5, num. 8, Pagee1000438,
Public Library of Science, 2009.

[SCH 09] SCHAEFER C. F., ANTHONY K., KRUPA S., BUCHOFF J., DAY M., HANNAY T.,
BUETOW K. H., “PID: The Pathway Interaction Database”, Nucleic Acids Res., vol. 37,
p. D674-9, 2009.

[THO 91] THOMAS R., “Regulatory networks seen as asynchronous automata: a logical de-
scription”, Journal of Theoretical Biology, vol. 153, num. 1, p. 1–23, Elsevier, 1991.

[WIE 48] WIENER N., Cybernetics: Control and communication in the animal and the ma-

chine, Wiley New York, 1948.

	Chapter 4. Analyzing Large Network Dynamics with Process Hitting
	 Introduction / State of the art
	 The modeling challenge
	 Historial context: Boolean and discrete models
	 Analysis issues
	 The Process Hitting framework
	 Outline

	 Discrete Modeling with the Process Hitting
	 Motivation
	 The Process Hitting Framework
	 Generalized Dynamics of Interaction Graphs
	 Refining Dynamics with Cooperativity
	 Relationship with Boolean/multi-valued Networks

	 Static Analysis of Discrete Dynamics
	 Motivation
	 Fixed points
	 Abstract Interpretation using Graphs of Local Causality
	 Cut sets

	 Towards a Stochastic Semantic
	 Numerical Techniques
	 Direct Solution of the Partial Differential Equation
	 Simulation Techniques

	 Rates and Stochastic Absorption

	 Biological Applications
	 The Tool Pint
	 Biological Examples
	 Investigating the dynamics of EGF receptor
	 Performances on large-scale networks

	 Conclusion
	 Bibliography

