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Nonlinear adaptive output feedback control of series resonant

DC-DC converters
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GREYC lab, UMR CNRS, University of Caen Basse-Normandie, Caen, France

ABSTRACT

The problem of regulating the output voltage of DC-to-DC series resonant converters (SRC) is addressed.
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The difficulty is threefold: (i) the converter model involves discontinuous and highly nonlinear terms
and is controlled through a modulating frequency signal; (ii) all state variables are not accessible to
measurements; (iii) the load is uncertain and may even be varying. An adaptive output feedback
controller, involving online state variable estimation, is designed and shown to ensure quite
satisfactory tracking performances. The controller development is performed using the adaptive

backstepping control approach combined with the high-gain observer design technique.

1. Introduction

Series and parallel resonant DC-to-DC converters have been given
a great deal of interest in the power electronic literature. Compared to
(hard) switched converters, resonant converters present several
advantages e.g. they provide much higher power supplies. Indeed,
the absence of switched components considerably reduces power
losses and improves the conversion efficiency of resonant converters.
Furthermore, since the losses (in hard switched converters) are
proportional to the switching frequency, it turns out that resonant
converters can operate at much higher switching frequencies than
comparable PWM converters (Erickson & Maksimivic, 2001;
Kazimierczuk & Czarkowski, 2011). On the other hand, it is widely
recognized (e.g. Rashid, 2001, p. 272) that resonant converters are
also useful for not necessarily high power applications when weight
and size reduction is sought. This feature is particularly useful in
embedded applications. The point is that resonant converters are
more complex to control due to their highly nonlinear dynamics.
Furthermore, being supplied by bipolar square signal generators, they
only can be controlled by unusual input signals e.g. switching
frequency, current/voltage phase shifting in the inverter output or
phase shifting between the inverter and rectifier control signal. These
considerations make SRC modeling a particularly hard task. In this
respect, approximate smooth state space models have been proposed
using generalized averaging procedures (Sun & Grotstohen, 1993),
harmonic approximation and Fourier transformations (Wong &
Brown, 1995). Small signal models for series and parallel resonant
converters have been obtained in (Vorperian, 1989).
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In addition to model complexity, the difficulty of the control
problem (for resonant power converters) also lies in the fact that
the state variables of these circuits are not all accessible to
measurements. Finally, the converter load, generally modeled by
aresistance, is usually uncertain and/or varying. These difficulties
make output feedback control of resonant power converters a
challenging problem.

In the present work, the focus is made on the problem of
controlling the DC-to-DC SRC depicted by Fig. 1. This is repre-
sentative of a wide class of circuits considered in the control
literature. Following the generalized averaging procedure (Sun &
Grotstohen, 1993), a fifth order state-space model is developed
for the considered circuit. The switching frequency stands up as
the system control signal. From the control design viewpoint, the
difficulty is threefold: (i) system nonlinearity and discontinuity;
(ii) some state variables are not accessible to measurements; (iii)
the control signal comes in explicitly in all state equations. In
recent years, the control problem has been coped with following
various control strategies including hybrid flatness control (Sira-
Ramirez & Silva-Ortega, 2002), ‘resonant tanks variables’ optimal
control (Oruganti, Young, & Lee, 2002), sliding mode control (Sosa,
Castilla, De Vicuna, Miret, & Cruz, 2005) and passivity control
(Carasco, Escobar, & Ortega, 2000). In these works, the converter
load was generally supposed to be known and the state variables
measurable. As already pointed out, these assumptions are gen-
erally not fulfilled in practice i.e. the load is generally uncertain
(ill-known and/or varying) and all state variables are not acces-
sible to measurements. Presently, a new control strategy is
developed without resorting to these assumptions. Following
(Giri, Liu, El Fadil, & Elmaguiri, 2009), a high gain observer is first
designed to get estimates of the unavailable state variables. Based
on the resulting observed model, an adaptive output control law



is designed, using the tuning-functions backstepping technique
(Krstic, Kanellakopoulos, & Kokotovic, 1995). Adaptation concerns
the unknown converter load. It is worth recalling that, unlike
linear systems, the separation principle does not systematically
apply to nonlinear systems (Atassi & Khalil, 2000). Presently, it
happens that the unknown load only enters the equation of the
output voltage (which is measurable). This fact will prove to be
crucial in obtaining a stabilizing output feedback controller by
direct combination of the observer and the adaptive control law.
Furthermore, a parameter projection will be introduced in the
parameter adaptive law (that online estimates the load) to
prevent possible parameter estimate drift (that otherwise can
result from the presence of state estimation errors in the observed
model). The output adaptive controller thus obtained is formally
shown to achieve quite interesting performances. Specifically, the
output reference tracking error vanishes asymptotically with a
specified convergence rate. This theoretical performance is con-
firmed by several simulations which also prove the good robust-
ness of the developed controller to modeling errors.

The paper is organized as follows: the series resonant con-
verter under study is described and modeled in Section 2; a state
observer is designed and analyzed in Section 3; the adaptive
output feedback controller is designed and analyzed in Section 4;
the controller performances are illustrated by simulation in
Section 5.

2. Series resonant converter modeling

Resonant converters contain resonant LC networks whose
voltage and current waveforms vary sinusoidally during one or
more subintervals of each switching period. Depending on how
the resonant networks are combined with other circuit config-
urations, one can obtain several types of resonant converters.
Fig. 1 shows a general functional diagram of resonant converters
and Fig. 2 shows the class of series resonant DC-to-DC full bridge
converters under study. There, the transformer is resorted to
potential separation and both the transformer and inductance (L)
are expected to operate at relatively large frequencies and
powers. Ferrite cores are most suitable for this purpose.

2.1. SRC physical modeling

Applying the usual electrical laws to the series resonant DC-to-
DC converter of Fig. 2 one gets the following state-space repre-

sentation of the system:

di Vo .

La =-v-— sgn(i)+v; (1a)
dv .

CE =i (1b)

C dv, abs(i)_vo
°d " " n R
where v and i denote the resonant tank voltage and current
respectively; v, is the output voltage supplying the load (here
represented by a resistance R); v; is the inverter output voltage;
L and C designate, respectively, the inductance and capacitance
of the resonant tank; and n is the amplification ratio of the
HF-transformer, the resonant frequency is denoted fy = 1/27+/LC.
The voltage v; is a periodic square wave of variable amplitude and
frequency. Usually, the amplitude is maintained constant, leaving the
frequency as the only possible control variable. In the rest of the
paper, this voltage is assumed to be of the form v; = Esgn(sin(wt))
with E a real constant representing the source amplitude. The varying
switching-frequency w (rd/s) turns out to be the control input signal.
For the sake of simplicity, no parasitic effects are considered, at this
stage, in switches, inductance and capacitance.

(10)

2.2. First-harmonic approximation model

From the control design viewpoint, the model (1a)-(1c) pre-
sents a major drawback, namely the control signal & comes in
nonlinearly. Following (Sun & Grotstohen, 1993), a control-
oriented simpler version of (1a)-(1c) will now be developed
applying the first harmonic approximation. This approach relies
on the assumption that the solution of a nonlinear oscillator
system can be expanded as a Fourier series with time-varying
coefficients. Specifically, one has the standard expressions

+ 00
x(t,9) L x(t-T+s)= D x> ek tTE s e[0T )
k= -0
(x> () = 1 Tx(t—T+s)e‘j"w“‘T+”ds 3)
w®O=7 [

with w=2n/T. The coefficients <(x,> undergo the following
equation:

d<Xk> _ d .
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Fig. 1. Functional diagram of DC resonant converters.
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Fig. 2. Series resonant converter under study.



In the case x(t) is generated by a nonlinear system x = f(x,u)
where u denotes the control signal, it follows from (4) that:

. |
0 — foxan )k 0 ©

The first-harmonic-approximation based modeling relies on
the following standard assumptions (e.g. Carasco et al., 2000):

A1. The voltage v and current i are well approximated by their
(time-varying) first harmonics (denoted V; and eV,
respectively).

A2. The time scale of the output filter is much larger than the
resonant tank so that the ripple appearing in the output
voltage can be neglected and v, can be well approximated by
its DC-component. i.e. v,=V, where V, is the DC-component of
the (time varying) Fourier series of v,.

A3. All physical variables (i.e. V,, V4, I;) are bounded. This is not
an issue because all real-life physical systems involve bounded
signals.

Applying (5) with k=1 to equations (1a)-(1c), one obtains the
following ‘first-harmonic’ nonlinear model of the SRC (Sun &
Grotstohen, 1993):

a1 2, w2

G = o+ |- Ve =i 7 ®)
dv- . 1

g = Joviteh )
dv, 4 Vo

dr ~ G, ke, ®

The ‘harmonic’ model (6)-(8) is quite representative of the SRC
due to Assumptions 1 and 2. The benefit of this model compared to
(1a)-(1c) is that the control signal « comes in linearly. However, it
still is not suitable for control/observer designs because it involves
complex variables and parameters. To get a convenient state-space
model (with real state variables), introduce the following notations:

L =x1+jx2, Vi=x3+jxa, Vo=x5 9)

Substituting (9) in (6)-(8) yields the following state-space
representation:

X3 2X5 X1

X1=XU————— (10a)
L nmnl /x% +X§

. X4 2X5 X2 2E

Xp=—XU———————— — (10b)

L nrnL /x%+x§ nil

)'c;;:x4u+x—1 (10c)
C

X4 =—X3 u+%2 (10d)

X5 = X2 +x27x—59 (10e)

neC, V172 ¢,

where u % and 0=1 [R. The only quantities that are accessible to

measurements are

X5:Vo, \/X%+X§:I], \/X§+X121:V] (11)

Remark 1. It is worth noting that the amplitudes of the resonant
tank (fundamental) current and voltage stay bounded away from
zero i.e. min(|l;],|Vi|)>¢&>0 for some threshold e. Indeed, it
readily follows from Assumption A2 that the voltage v,(t), at the
HF-transformer input, is a square wave. Furthermore, the

fundamental component of v,(t) is in phase with the resonant
tank output current i, due to Assumption Al. Therefore, the
rectifier behaves as a resistance load vis-a-vis to the resonant
tank network (Fig. 1). It can be easily checked that the load
equivalent resistance has the following value:

8

R. =
(nmy?

(12a)

Accordingly, the input impedance of the resonant tank network
has the following magnitude:

12| = \/R§+ <2nﬂ,—2;7>2

Due to semiconductor device characteristics, the switching
frequency f is physically limited to some finite value, i.e.
0 < f < fmax < oo. Then, it follows that the resonant current and
voltage magnitudes I; and V; stay away from some nonzero
thresholds I, and Vyngin, respectively, with:

(12b)

48 4E

— i —

Iimin = max ‘Zl ‘ = . 5 (12C)
0<1 < fnax 7\ R2 + (27fmaxl— 5oghc)
1 4E
Vimin = 272fmaxC — (12d)
RZ + (2 TfmaxL— m)
That is, min(|4|,|V;]) > & > 0 with & = min(l1min,Vimin)-

3. Observer design and analysis

The model (10a)-(10e) involves state variables, namely (x4, ..., X4),

that are not accessible to measurements. Therefore, an observer has
to be designed so that accurate estimates of the unmeasured variables
can be obtained online. State observers for nonlinear systems can be
obtained following different design approaches (see e.g. Besancon,
2007). A particular attention has been paid to the high-gain technique
due its ability to quickly reconstruct the system states and reject
modeling disturbances (e.g. Ahrens & Khalil, 2009). Furthermore, the
high-gain observer is featured by its mathematical simplicity as it
involves no (online) resolution of any differential equation. The
expression of this observer is immediately obtained when the system
fits a canonical model form composed of a fixed linear dynamic
subsystem and a triangular controlled subsystem. The development
of this form for the model (10a)-(10e) is coped with in Section 3.1.

3.1. Model transformation

Let us introduce the following diffeomorphism map:

¥ IR > IR
x—>z=Y(x) (13a)
with
Z VX +X3
X1 22 /32 1 52
X3 +X4
X2 “3 X1X3+X2X4
X = X3 |, z= 'f’(x) = Z4 = X (13b)
X4 Zs5 X4
X5 Zg X
zZ7 X3



Notice that, in the new coordinate system, the first two
variables (i.e. z; and z;) are accessible to measurement, due
to (11). This suggests the introduction of the output vector
y=I[z1 z2]". Using (13b), it follows from (10a)-(10e) that the
new state vector z undergoes the following equations:

Z3 2xs 2Ez4

=l lz, (4

. Z3

Zy = ZZ_C (14b)
_ é ﬁ 2z3xs 2Ezs

BE-TTC Thnly T Al (140)
_ Zs5 2X5Z4 2E

Z4= _ZGU_T_W_H (14d)

25 = —zu+ %4 (14e)

. Zl _ 2Xs52Zg

Zg = Z4U— L " nnlz (141:)

27 =ZsU-+ Z?G (14g)

y=[a 2] (14h)

To give to (14a)-(14h) a compact form, let us introduce the
following notations:

T.

Z'=[z1 z2]; T

ZZ=[Z3 24} ; Z?’=[Zs ZG}T; Z4=Z7

(15a)

C=[hx2 022 O2x2 02.1] (15b)

where I, . » denotes the 2 x 2 identity matrix and 0; . j the i x j null
matrix. It is readily seen that z=[z!T 22T 23T z4T}T. Then, the
system (14a)-(14g) can be given the following compact form:

z =F(z,u)z+G(u,z)
{ y=z'=Cz (16)
with
0 Fi(z'u 0 0
0 0 Fy(z',2%,u) 0
F(z,u)= 17
@w=1y o 0 Fy@', 22,23 u) an
0 0 0 0
where the blocs F, (k=1, 2, 3) are defined by
Fi(z'\w= ? e (18a)
% O
=2k ¢
Fy(2' 22 u) = < e ) (18b)
7 -u
—u
F3(z',22.22,u)= < 1) (18¢)
-1
G(u,z) is a vector field of the form
G](Z1-u)
c Gy(2',2%,u) 19
@)= G3(z!,22,2%,u) a9
G4(Z-u)

with
—2X5
me=<%> (203)
~F+E-e
nmnLz;
Gy(z',22u)= 2vz, 25 1 (20b)
nnlz, mL
24
C
G322, 22 u) = (20¢)
’ Zqu—
z
Galz,u) = <25u+ Eﬁ) (20d)

The new system representation defined by (16) to (20d) fits
well the high-gain canonical form (e.g. Besancon, 2007) and
satisfies the required conditions i.e.y=z! is measurable and
dimz! > dimz? > dimz3. This form will now be based upon to
design the observer. As a first step, various auxiliary variables
needed in the observer definition will be computed in Section 3.2.
There, the following properties will prove to be useful:

Proposition 1. Consider the system (10a)-(10e), also represented
by (14a)-(14e) or (16). Then, the matrices F[(u,2)F,(u,2) (k=1, 2, 3)
are bounded and positive definite. Furthermore, the functions G(u,z),
Fi(u,z), Fx(u,z) and Fs(u,z) are globally Lipschitz with respect to z
uniformly in u.

Proof. Let us prove the first part for k=1. From (18a) one has

1,1
(Lz1)? + (Cz)?

2E 2E 2
n(lzy)? nlzy

2E
n(lz)?

Fl(u,2)F(u,2) = 21

From Remark 1 and definitions (11) and (13b), one gets that
|zil| > &> 0 (i=1, 2). Then, it readily follows from (11) and (13b)
that the matrix FI(u,2)F;(u,z) remains bounded. Furthermore, this
matrix is symmetric nonnegative definite and its determinant
4 E?/m2C?1%7272 is strictly positive because |z|| is bounded (by
Assumption A3 and (11) and (13b)). The same property can
similarly be proved for Fl(u,2)Fy(u,z) with k=2 and 3. The
Lipschitz feature of the nonlinear functions G, F;, F> and F3 is a
direct consequence of the smoothness of these functions and the
fact that their arguments belong to a compact set, due to
Assumption A3 O

3.2. Further notations and preliminary computations

Introduce the time-invariant block diagonal matrix:
IZXZ IZxZ IZXZ
AP
where A >0 is any positive design parameter. Introduce also the
state-dependent block diagonal matrix defined by

A,z)=diagll.o Fi FiF, FiFF3] (23)

A/j =dlag IZXZ

(22)

On the other hand, it can be checked that

42E ZLEu
nl?z nlzy
F'F? = ( 2;_ 0 > 24)

T nlCz,

T
GEu 2Eu ) (25)

1p213 _
F'F°F =< 7z Ttz



Then, the left pseudo-inverse of A(u,z), which exists due to
Proposition 1, has the form:

Azt =diag[hy: (F1)* FiR)T (FiRF)T] (26)
From (18a), (24) and (25), one has
0 Cz,
F] t= —Lnzy —Cnzy (27)
2F 2E
0 —LCrnzy
4 T2F
(F1F2) = (anl Cnz, > (28)
2Eu “Eu
(FiRF)* = {ﬁ ZELC}rotuzz] (29)
with
9 1
_ 30
L4272 * n2[2C273 =0

Consider the following algebraic Lyapunov equation:
S, +ATS; +5,A—C'C=0 31
with A and C defined as follows:
0 L, O 0
0 0 Ly 0|
A= 0 0 0 Ly, € =1[1,202,202,202,2],
0 0 0 0

(due to (15b))

(32)

It is shown in many places (e.g. Besancon, 2007, Chapter 2)
that Eq. (31) has a unique symmetric positive definite matrix
solution S; and

Ch
_ CI !
1 T_ 212 . n _ n!
SiC = Gl (Wlth Cm= m! x (n—m)!) 33)
Cil
where n!'=nx (n—1) x --- x 2 x 1.

3.3. Observer equations

Using the above notations, the high-gain state observer for the
system (14a)-(14g) is defined as follows:

2 = FGuz+Gu.z)— A+ @ud;'s;1C C2—y) (34)
with

Sl =collC}I, C2I, C3I, Cih (35)
_1:diag[12x2 i Pl hiyo) (36)

defined in Section 3.2. The observer (34) is exp11c1t1y expressed
in terms of the variables z; (i=1,...,7)

3 =—é—%—%—4z@—yn 37a)

b= B —4)(23—Y2) (37b)
Cz,

5 22 223xs 2EZs o s

23=—T+f—m—ﬁ—69 C23(22-y2) (379

§4=—26u—%—%—%—6)~2<Ln21(1 -y1)— ZE (Zz J’2)>

(37d)

LC

..Z = —Z7u+ C +4)\43 (ZZ —yz) (376)
Z7 2X526 2E 3 (Lnzy CTE22 A
%6 =2l g, A <ZEu G-y0-gy (Zz_y2)>
37f)
5 5o 26 o4l (Z2=y2))  3(&1-y1)
27 =2sutE 4 <ZEnLC22&u 2EL?nC, &u) (378
with
9 1

b=———S+—— 37h

[4m2z;  (nLCZy) G7
3.4. Observer convergence analysis

Consider the Lyapunov function

Vop(2)=2"41814,7 with z=z-2 (38)

The main result is summarized in the following theorem:

Theorem 1. Consider the system (16) and the observer (34). If the
observer gain A is sufficiently large then, whatever the initial
condition z(0) , the time-derivative of V,,(Z) along the trajectory of
Z satisfies the inequality

Vob < _()L_I)Vob (39)

for some real constant | > 0, depending on the Lipschitz coefficients of
the different functions i.e. G, F;, F> and Fs.

The proof relies on the technical properties emphasized in
Proposition 1. It can be found in many places, see e.g. Besan¢on
(2007, Chapter 2).

The above theorem shows that the time-derivative of V,,(2)
can be made negative definite by choosing the observer para-
meter A sufficiently large so that the condition 2 —1 > 0 is fulfilled.
Then, the state estimation error Z vanishes asymptotically, what-
ever its initial value z(0). This proves the global convergence of
the observer (34). A subsidiary consequence of such convergence
is that the online state estimates 2; (i=1, ..., 7) remain bounded
just as the real variables (z;, ..., z;) do (see Assumption A3).

4. Adaptive output feedback controller design and analysis

The load resistance R in the model (1a)-(1c) is unknown but only
assumes infrequent jumps. To cope with such a parameter uncer-
tainty the controller must be given a learning capacity. More
precisely, the adaptive controller (yet to be designed) will involve
an online estimation of the unknown parameter 6=1/R. The
unknown parameter estimate and the corresponding estimation error
are denoted 0 and 0 = 0—0, respectively. Three control objectives are
sought: (i) asymptotic stability of the closed loop system; (ii) tight
regulation of the output voltage xs5=Vy; (iii) as a fast transient
response as possible. To this end, an adaptive controller will now
be designed in the z-coordinates using the backstepping approach.
Following closely (Krstic et al., 1995), the control law is designed in
three major steps.

Design Step 1. Introduce the tracking error:

€1 =X5—Xs5pef (40)

where xs,.r denotes the desired constant-like output reference.
Achieving the tracking objective amounts to enforcing the error e;
to vanish. To this end, the e;-dynamics need to be clearly defined.
Deriving (40) one obtains:

4

é1= . 1—a9 41)



where the quantity %21 stands as a virtual control input.
Consider the following Lyapunov function:

1 2

257 42)

where y > 0 is a design parameter, called adaptation gain. Deriv-
ing V., along the (eq,0)-trajectory gives

S
Vei(er,0) = ie%+

. 4 ~ é A
Va=e (nnCo Z1+W19)—§(9—VW1€1) 43)
where w; denotes the first regressor function defined by
X
wi=-2 “4)

One could eliminate § from V; using the following parameter
update law:

é: VY71 45)
with
T1=Ws ey (46)

Furthermore, e; could be regulated to zero by letting
%c,,ﬁ = o1, where the stabilizing function o, is defined by

o =—C1€6q —W]Q (47)

where c¢; >0 is a design parameter. Since n‘:fg is not the actual
o

control input, one can only seek the convergence of the error
n‘:fgo —oq to zero. Also, 0 = y1; is not kept as the parameter update
law. Nevertheless, 7, is retained as the first tuning function and
the presence of § in V; is tolerated. Therefore, the following

second error variable is defined:

4
€= mﬁ—oﬁ (48)

Then, using (47) and (48), Eq. (41) becomes

é] =—C1€1+€2+W19 (49)
Also, (43) can be rewritten as follows:

. - 0
Va =—C1€%+€1€2+9(T1—§> (50)

Design Step 2. Now, the objective is to make the error
variables (eq,e2) vanish asymptotically. To this end, the dynamics

of ejare first determined. Deriving (48) one obtains, using
(14a)-(14g), (45), (47) and (49):

o, B8EZ 4z, 8xs 0 4 Xs )
2= T nn2lCoz;  nmlCoz; n2m2LC, G, \nmCo '™ G,
A~ Xz ~
+c1(—creq +€2)+W]9+9<C1W]+er) (51)
0

As the states z; (i=3, 4) are not available they are replaced in
(51) by their estimates, provided by (37a)-(37h). Doing so, one gets:

60— _ 8524 _ 423 _ 8X5
2= T nn2lCyz; nnlC,zy  n2m2LC,
é 4 X5 A
_C_O <nnCOZ]—C—09) +C1(—C1€] +e3)
A~ X5 5 8E 24 4 Z3
+W19+9<C1W1+C—39)_—nn2LCOZ_—nnLCOZ (52)

where Z3 and Z, are the estimation errors of z; and z4. The quantity
—(8Ez4/nm?LC,21) stands in (52) as a virtual control. Let o, denote
the corresponding stabilizing function, yet to be found and intro-
duce the new error

8E2,

3= —
3 nm2LCozq

o2 (53)

Then (52) is rewritten as follows:

éz=€3+062+W2+W29+W19+X1(z1_23_24) (54)
where the second regression function is defined by
X A
" =C1W1+é9 (55)
and
4 5 04 _ x5

Va=- nalCozy 2 mEmlc, T el g (WCOZ1 B Foe)

(56)
5. 3 8E Z 4 z
@232 =—— 223 57

nn2lC,z; nnlC,z4

Notice that the disturbing term y;(z1,Z3,Z4) vanishes exponen-
tially fast whenever Z3,z4 do so. Consider the augmented Lyapu-
nov function:

~ < 1
Vea(er,ez,0) = Vei(er,0)+ jeé (58)

Its derivative along the solution of (40) and (48) is

. P 0
Vo =—c1ed +ex(er +es+0o +, +wi0)+0 (171 +€2W2—V> +ex)1

(59)

This shows that 6 can be canceled in V5 using the update law

é =772 (60a)
with

e
Ty =T1+Wyey = [W1 Wz] [e;] (60Db)

If (— ngfLCi:zl) were the actual control in (52) and the term y;

were null, then (59) would reduce to Ve, = —¢4 e2—c,e3 by using
the above parameter update law and the stabilizing function

0y = —e1—Yp—Cre—W1)T2 (61)

As <_ ngfL ci,le) is just a virtual control, the above parameter

update law is not sufficient. Nevertheless, 7, is retained as a
second tuning function. Then, (59) gives

. A~ 0 J—
Ve =—cref—cre5—eawy (y12—0)+ 0 (Tz—y> +ezxe3+e3)1(21,23,24)

(62)

On the other hand, in view of (49), (54), (56) and (61), the
(eq,e2)-system undergoes the following equation:

—C1 1 el 0 .
-1 —cf|e + e3—wy(y12—0)

w1
w2

[é162] =

0

N (63)

0
+ %1(21,23,24)

Design Step 3. Here the objective is to make all control errors
(eq,e2,e3) vanish asymptotically. Deriving (53) gives

8E Z
. AN
€= nn2LC, <z1) %2 (64)

On the other hand, one obtains from (14a) and (37d)

/_/IH ~ ~
Z4 . 2Ez4

Z Z6 A > 24
<—) _—Zu+5](Z1,Zz,Z)+ZBE+Z4TZ% (65)



with

51(21'22'2)=_<25+2 Xs24  2E z4< 23 2xs 2};\))

Lzy "“nalZ2 " nlzi 2\ Lz nal wlzt
6% (Lnz; , Cnz, .
0 <T(Z1 —21)— 5F (Zz—Zz)> (66)

Furthermore, it is readily seen from (61) that
8y = —Y[W1T2 + W1 (Wreq +Wi€1 +Waey +Wpe))]—€1—, —Cr€s
(67)
Using (44), (55), (56), (57) and (63), the derivatives on the
right side of (67) can be given the following more suitable form:

é1=ej+wq0 (68)
€3 = ex0+W10+wy0+x,(-) (69)
., — X0 _Wig

Wi = G, G 0 (70)
, . S0 . 4

I/ =ao(Z10+Z10)+a1X5—azc—o+C1(—C1€'1+€'2)— nnLCBOZ1 71)

To alleviate the text, the exact expressions of the newly
introduced quantities (i.e. e1o, €20, Xs50, Z10, Z10, do, @1 and ay) are
placed in Appendix A. Substituting (65) and (67) in (64), one
obtains

8EZg

= mu+52(z,2)+W39+g39+)(2(e1,ez,eg,z,2) (72)

€3
where w3 denotes the last regression function defined by:
w3 = (1=} + W)+ (C1 +C2 + YW1 W2) W
0
-7 <772+W1 er+wiey <C1—C—> —Coa1>w1 (73)
0

8E

2= —m51 +(1=c2 +yw)ero +doz1o

e (it tywiws)e
7LCozy 3+ (C1+C2+ywiwa)ezo

) 0
—Lxso T2+wiei+wier| c1— = | —a1G (74)
G Co

a w?e
g3 =wWq(C1+C+ywiwo)— <C72 +“/572> (75)
0 0

8E (. 24 . 2E% . .
XZ=_m 23E+Z4TELZ? +(c1+C+yYwiwa)y; +0doZ10

(76)

Note that the actual control input u has emerged for the first
time in (72). Notice also that the term in y, vanishes exponen-
tially fast whenever the Z3,Z4 do so. Now, the goal is to find a
control law for u and an update law for 0 so that the (eq,e;,e3,0)-
system is asymptotically stable. To this end, consider the aug-
mented Lyapunov function candidate

. e et §F
Vc3(€1.€2.€3.9)=Vc2(€1.€2.9)+73 = ;7‘+2—y (77)

Using (62) and (72), the derivative of V3 turns out to be

. 2 8EZ A
Vs =—cref—ce5—eawi (y72—0) +e3 [MTSZ]U-HSZ +g39+€2}

- 0 .
+0 (12—5+63W3> +esy,(e1,e2,63,2,2) (78)

The term in fcould be canceled on the right side of (78) using
the following update law:

H= 13 (79a)
with
€1
T3 =T2+€3W3 = [W1 w» WB} e | =we (79b)
€3
e=[e1 e eg}Tandw=[W1 wy Wws] (790)

However, this update law (which is a gradient type) is not
suitable because of its integral nature. The disturbing term
%2(z,2,2) in (78) may cause the divergence the estimate 0. This
issue is commonly coped with resorting to estimate projection on
a convex compact set including the true parameter (e.g. loannou
and Fidan, 2006; El Fadil and Giri, 2009). Let such convex be any
interval C=[ — My, Mo] such that Mo > |0|. Practical choice of M is
not an issue as this may be arbitrarily large. The gradient
algorithm with projection is then defined as follows:

0= P(y 13) (80)

where 0(0) is chosen so that QZ(O)SMZ, P(-) is the projection
operator defined by
Y] oo A2 .
P(“/Tz.)dg y13 if 00 <M2 or if (" = M2 and y730 <0) @1)
0 otherwise

It is readily seen that this adaptive law maintains the estimate
6 within the convex bounded set C. More interestingly, the
projection operator P(-) is shown in many places to possess the
following key property (see e.g. loannou & Fidan, 2006):

—0P(yt3) < 0713 (82)

Owing to the control action u, the expression of V5 suggests
the following control law:

2 .
nn“LCozq A
U= ————(—0y—g30—ey;—c3e3+Vv 83
SEzG(2g3 2—C3e3+V) (83)
where c3 >0 is a new parameter and v is an additional control
action resorted to cope with the parameter adaptive law satura-
tion. The following choice will prove to be useful:

v { —ywywse, if ?: VT3 84)
0 if 6=0

The adaptive output feedback controller thus established is
composed of the control law (83) and (84), the parameter update
law (80) and (81) and the state observer (34) (or (37a)-(37h)).
Substituting the right side of (83) to u(t) in (72) and putting the
resulting equation together with (68), (69) and (80), one gets the
following equations describing the closed-loop control system, in
terms of the errors e and 0:

e=Ae+wl+w+y (85)

é:—é:—P(y 73) (86)



where A is a skew symmetric matrix defined by

—C 1 0
A= -1 —c;  1+023 |, (with o3 =ywiws) 87)
0 —1—0’23 —C3
and
RRL
W={O —W1(y172—9)"] (88)
T
1=[0 1) %0 (89)

The performances of the closed-loop system will now be
described in the next theorem, using the following usual nota-
tions (Khalil, 2003):

o ||x|| denotes the Euclidean norm of any finite dimension vector x,
e if x is a function of time then |x|, and |x||  denote,
respectively, its L, and L., norms:

HXH2=[) [x@[de, x|, = sup_[x] (90)

The set of all functions x such that Hpr < oo is denoted
L,(0 o0) (or simply L,), with pe{2, w0 }.

Theorem 2. (Main result). Consider the control system consisting of
the SRC model (1a)-(1c) in closed-loop with the adaptive controller
composed of the control law (83) and (84), the parameter update
law (80) and (81) and the high gain observer defined by
(37a)-(37h). There exists a real constant cpyin >0 such that, if
min (¢1,C3,C3) > Crin then:

1) all closed-loop signals remain bounded,
2) the output reference tracking error e, =xXs—Xs.r belongs to L,
and vanishes asymptotically.

Remarks 2. (a) The first part of the theorem ensures that all
auxiliary signals, introduced throughout the regulator design
steps, remain bounded. This particularly applies to the control
signal u and 6. The second part ensures that the output voltage
tracking error actually vanishes asymptotically with an L, rate
convergence i.e. e3(t) converges to zero at least as rapidly as 1/t?,
with p > 2, when t— oo. The proof of the theorem is a bit long and
so is placed in Appendix B alleviating thus the presentation.

(b) Robust control could be an alternative to adaptive control in
coping with load uncertainty. In this respect, note that a robust
controller could be obtained using the (nonadaptive) backstep-
ping control design technique that involves damping functions
(Krstic et al., 1995). This control strategy was used (to cope with
similar load uncertainties) in previous works e.g. (El Fadil, Giri, EI
Maguiri, & Chaoui, 2009; El Magri, Giri, Abouloifa, & Chaoui,
2010).

5. Simulation results

The controlled system is represented by Eqs. (1a)-(1c) where
the different components have the numerical values of Table 1.
The DC voltage source is fixed to E=60 V. The adaptive output
feedback controller, including the control law (83) and (84), the
parameter update law (80) and (81) and the state observer (34), is
given the following design parameters that proved to be con-
venient:

A=1x103, ¢;=45x10?, ;=1 x 10?,
c3=19x10% 77 1=1x10'" and My=10.

Table 1
Numerical values of the SRC characteristics.

Parameters Symbols Values Additional information
Resonant inductor L 09x10"3H Ferrite core coil
Resonant capacitor C 130x107°F Film capacitor

Output capacitor G 24x1073F Electrolytic capacitor
Isolation transform T Turn ratio 1 Ferrite core coil

The initial value of the state vectors and parameter estimates
are chosen as follows:
x0)=[035 -075 -5 -8 10]"
21(0)0=03, 2(0)=0.3, 2z3(0)=0.2,
7z5(0)=0, 2z5(0)=0.25, 2;(0)=0.5,

24(0)=0,
25(0)=0

Recall that the correspondence between the sate vectors x and
z is defined by (13b) which is rewritten for convenience:

Z1=\/X{+X5, Za=\/X3+X], Z3=X1X3+XoX4,

Zy =Xy, Zs=2Xs, Zg=X1, Z7=X3 91

5.1. First harmonic model checking

Here, the aim is to check the good accuracy of the (first harmonic
approximation) model defined by Eqgs. (6)-(8) (or equally
(10a)-(10e)) in approximating the behavior of the real-life system
represented by the (more physical) model (1)-(3). In this respect,
recall that the variables I, Vo and V; in the model (6)-(8) represent
by definition the (time-varying) amplitudes of the variables i(t), vo(t)
and v(t) in the model (1)-(3). In other words, I, Vo and V; are
nothing other than the envelops of i(t), vo(t) and v(t), respectively.
Both models are simulated, in the Matlab/Simulink environment,
using the numerical parameter values, f;=3 Khz, R=2.3 Q. The
resulting variables are shown by Fig. 3a-c. It is seen that I;, Vy
and V; are actually very close to the envelops of i(t), vo(t) and v(t).
Therefore, the model (10a)-(10e) can be based upon to control the
physical circuit represented by (1)-(3).

5.2. Controller performances in presence of varying load

The controller performances are illustrated by Figs. 4-8. Fig. 4
illustrates the closed-loop system responses to a step reference
Xsre;=48 V (stepping time t=0) in presence of converter load
changes. Fig. 5 shows that the true load jumps between 2.3 and
4.6 Q (resulting in nearly 50% in power change). It is seen from
Fig. 4 that the output voltage is well regulated as it shortly
recovers its reference value after each transient periods following
load changes. Fig. 5 shows that the load estimate 0  does
converge toward its true value 0~ !'=R. The resulting control
frequency is shown by Fig. 6. Fig. 7 shows the trajectory of all
state estimates obtained with A=1000. It is seen that the
trajectories of the true states (x;,X2,X3,X4) and those of their
estimates are too close to be distinguished. Then, a zoom is made
on the state estimation errors in Fig. 8 showing that the errors
vanish after 6 ms. Note that the convergence rate depends on the
value of the observer gain A.

5.3. Controller performances in presence of system parameters
uncertainties

In this subsection, the true converter parameters are subject to
uncertainty, but the controller design is still based on the
converter nominal values of Table 1. In all simulated experiments,
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Fig. 4. Output voltage regulation in presence of varying converter load. estimate R = 971 (solid).



the controller design parameters are given the following values
that prove to be suitable:

J=1x10% ¢ =30 x10?,
p71=1x 10", and My =10.

6=1x10%, =19 x10?%

5.4. Controller behavior in presence of disturbed and changing
voltage source

In the first experiment, the source voltage uncertainty AE(t) is
let to be time-varying according to the following protocol:

e in the time interval [0, 4 ms]: AE(t) is a zero mean random
noise, with variance 0.3 V2,

2400

2200

2000

1800 r

[rd/s]
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1200

1000 . . . . . . . .
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time (s)

Fig. 6. Control frequency.
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e from time 4 to 7 ms: AE(t)=4V (step like change),
e from time 7 ms to the end: AE(t)=—-5V.

The resulting voltage source variation is shown in Fig. 9 (top).
In this experiment, the load resistance and the output voltage
reference are both kept constant:

R=2.3Q, Voref = Xsrer =48V.

Fig. 9 shows that the controller compensates well the disturb-
ing effect due to source voltage uncertainty and variation. That is,
the proposed controller is quite insensitive to voltage source
uncertainties.

5.5. Controller behavior in presence of uncertainties on (L, C)

In this subsection, the converter capacitance and inductance
are subject to uncertainty, namely AL=0.045 mH, AC=6.5 pF.
These uncertainties represent 5% of the parameter nominal
values. Presently, the unknown load resistance is fixed to R=2.3
Q and the output voltage reference trajectory Voer=Xsr is let to
be a filtered step-like signal taking the values 49, 54 and 46 V.
Filtering is performed by a third order linear filter; it is resorted to
make Vorer=Xser time-derivable with known derivatives (because
these are needed in the control law). The resulting controller
performances are illustrated by Fig. 10 which shows that:

o the load estimate R = 9_1 = 2.26 Q2 matches its true value up to
a small error of 1.81%,

e the output voltage Vy=x5 tracks well its reference, up to a
relative error not exceeding 2.5%.

That is, the output tracking error (less that 2.5%) is much
smaller that the parameter uncertainty (5%). This proves again the
controller robustness against parameter uncertainties.

-15

0 0.5 1
time (s)

40

20

-20 P

-40

0 0.5 1
time (s)
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Fig. 7. State variable trajectories with A=1000.
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Fig. 9. Controller performances in presence of disturbed changing input voltage change. Top: input voltage source E. Middle: output voltage xs=Vo. Bottom: estimated

resistance load Rest =R.

5.6. Comparison with more conventional controller

Now, the performances of the proposed nonlinear controller
are compared with those of a traditional linear PI controller
(Carasco et al., 2000). To make a fair comparison, both controllers
are tuned to obtain a stable and as a fast closed-loop response as
possible, over a wide load variation range (Fig. 11). Accordingly,

the parameters of the PI controller are given the values k,=70
and k;=5 x 10°. The design parameters of the proposed nonlinear
backstepping controller are given the values A=1x 10
€1=45x10% =14x10% c3=12x10% y'=1x10" and
Mp=10. The performances of both controllers are illustrated in
Fig. 11. It is seen that the backstepping response is faster and less
oscillatory (i.e. more stable) than the PI controller.
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5.7. Controller robustness against parasite load

In this subsection, it is no longer assumed that the load is a pure
resistance R=2.3 Q (as this was the case in previous subsections).
Rather, the load is let to be frequency dependent by adding to it a
capacitance Cz=1 mF. The proposed controller is kept unchanged,
ignoring the presence of the added load capacitance. The robustness
of the controller against such parasite capacitance is illustrated in
Fig. 12. It is seen that the controller still ensures a tight output
regulation despite the load uncertainty and parasite capacitance.

ntroller (dashed).

6. Conclusion

The problem of controlling series resonant converters has been
addressed. An adaptive output feedback controller has been
designed using the backstepping control technique and the
high-gain observation approach. It is the first time that a con-
troller, not necessitating the measurement of all state variables
and perfect knowledge of the load, is proposed and guarantees
closed-loop stability and perfect output reference tracking for this
class of converters.



40 + i

35

25 H

20 ! L ! I
0.05 0.1 0.15 0.2

0.25 0.3 0.35 0.4 0.45 0.5

28 T T T T

2.6

24

[Ohms]

22 ¢

2 1 1 1 1

1 1 1 1 1

0.05 0.1 0.15 0.2

0.25 0.3 0.35 0.4 0.45
time (s)

0.5

Fig. 12. Tracking behavior of the controller in the presence of load parasite. Above: output voltage vo=xs (solid) and its reference signal voref=Xsrer (dashed). Bottom: the

estimate resistance R = Res .

Appendix A. Expressions of auxiliary variables

ejp=—Ci1e1+e2; ey =—e1—Ce2+e3—YW1T2 (A1)
Xso= & 2 vwid A2
50 = o 1+WwWq (A2)
_ —23 2Xs 2E24 5 —23 2524
20= G Tl wlz 0T Izl &3)
A A A2
G 3 2 40 -8 0 4 2,
0~ nnlC, 22 nC2’ 1= n2n2l G, 2’ 2= nnC3 ! G
(A4)

Appendix B. Proof of Theorem 2

Part 1. Proof that all closed-loop signals remain bounded.

The physical variables x; (i=1, ..., 5) are bounded by Assumption
A3 and (11). The state variables z; (i=1, ..., 7) are bounded by (13b)
and their estimates are so by Theorem 1. Then, one show by a direct
checking that all auxiliary signals (i.e. ye;g,w;,ti,%;, 0, ...) are
bounded. Then, it follows from (79a) and (79b) and (83) that § and u
are in turn bounded.

Part 2. Proof of tracking performances.

First, substituting (83) for u on the right side of (78) yields

. 0\ -
Ve =—crei—cre3—csel + (73—§> (0—yeaw1)+e3(v+ywiwsez)

+€3XZ(€],€2,€3,2,Z) (Bl)

This can be simplified considering the two cases of (81).
Indeed, when 0 = y75 Eq. (B1) simplifies to
Vi3 =—cre2—ces—czel +es(v+ywiwse;) +esyo(e1,62,63.2,2) (B2)

This clearly suggests the choice (84) concerning the additional
action v. In effect, this choice makes possible to simplify further
(B1) which reduces to (when 0 =y13)

. 2 2 2 5
V3 = —Cre1—Ce3—C3e5+e3),(e1,62,3,2,2) (B3)

. On the other hand, it follows from (81) and (84) that, when
0 =0, (B1) reduces to
Vi =—cief—ce5—cse3 +130—yT383W1 +7€3W 1 W3E,
+e3)y(e1,62,63,2,2)
= —c1e2—cred —c3e3 —yerwi(Waey + wrer) +esyy(e1,62,63,2,2)
(B4)

where the last equality follows from (46), (60a) and (60b), (73)

and the fact that, in the present case, P(y t3)=0 (because 0=0).
Applying the inequality 2|ab| < a® + b?>with a=e; and b=e, one
gets

Y '\% vl — W_% 2
Ve, Wi (Waey +wieq) <y 5 +y( —wiwy+ 5 €5

Using (44) and (55), it follows from (B5) that, when é: 0

’ ywi 1 0
Va < —(C1— /;\/1)6%_6% <C2+VW% <—§—C—+C1>>
0

2 ~
—C3e3+e3),(e1,62,63,2,2)

(B5)

(B6)

Up to now, the design parameters (c;,c,,c3) are arbitrary. Let
the first one be chosen such that C1—(O.5+9/Co)>0 and
c1—05yw3 >0 where |w;|  <Wimax<oo (Wimax exists
because x5 is physically bounded). Given that, presently,
\9\ =My (because 9:0) the above inequalities suggest that c;
must be chosen such that

1 MO VW%max
C1 > max (i —+ G2 (B7)
Using (B7), it follows from (B6) that, when é: 0
Va<— C—m e?—cel—csel +e 2,z B8
a3 =< 1 5 1 —C265—C3€5+e3),(e1,62,63,2,2) (B8)

Comparing (B3) (which holds when é="/f3) and (B8) (that

holds when 9:0), it follows that (B8) holds in all cases. There-
fore, the latter will be based upon in subsequent developments.
Applying again the inequality 2|ab| <a?+b? but this time with



a=e3 and b=y, one gets
Y Vw%max 2 2 2 = 2
Vaa<—|c1— — e —Ce5—(c3—1)e3+(yz(e1,62,63,2,2))"  (B9)

Now, recall that all physical variables (and particularly xs) are
bounded (Assumption A3), all estimated states z; are bounded
(by Theorem 1) and the parameter estimate 0 is bounded (thanks
to the projection (81)). Then, using (44), (55), (57) and (A3), it follows
from Eq. (76) that the state estimation errors come in linearly in
%2(e1,62,e3,Z,2). Then, this can be bounded from above as follows:

(12(e1,€2,€3,2,2)* < B Vi (B10)

for some finite real number f > 0 (dependent on the signal bounds
and the two parameters (c;,c2). Using (39), one obtains from (B10)

(2(€i1..3,2,2))* < BVop(0)exp(—(2—Dt) (B11)
Combining (B9) and (B11) yields
Ves < —ate|* + BVon(0)exp(—(A—Dt) (B12)

where [le|” = 537 _,

e=[er

.e'i2 is the Euclidean norm of the error vector

e e3 }T and

2
fx=min{c1—%,cz,@—l} (B13)

Integrating both sides of (B12) over [0 co0) and rearranging
terms implies

/+ HEH dt <Ve3(0)— V63(OO)+B ob(O)
0

< VC3(O)+ ﬁvob(o)

(B14)
where the last inequality is obtained using the fact that
Ves(o0) > 0. Inequality (B14) proves that eeL,. On the other hand,
it has already noticed that all closed-loop signals are bounded.
This particularly applies to all terms on the right side of (85).
Consequently, the time derivative of the error vector is in turn
bounded. Since ecL, and é €L, it follows from the Barbalat’s
lemma that e vanishes asymptotically (e.g. Khalil, 2003). This
completes the proof of Theorem 2.
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