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Ab stract. Autom atic and accurate methods to estimate norm alized regional brai n volum es from MRI data are valuable tools which may help to obtain an objective diagnosis and follow-up of many neurological diseases. To estimate such regional brain volum es, the Intrac rani al Cavity Volume (ICV) is often used for normalization. However, the high variability of brain shape and size due to normal inter-subject variability, normal changes occurring over the lifespan, and abnorm al changes due to disease m akes the ICV estimation problem challenging. In this paper, we present a new approach to perform ICV extraction based on the use of a li brary of prelabeled brain images to capture the large variability of brain shapes. To this end, an improved non-local label fusion scheme based on BEaST tec hnique is proposed to increase the accuracy of the ICV estimation. The proposed method is compared with rec ent state-of -the-art methods and the results demonstrate an improved performance both i n terms of accuracy an d reproducibility while m aintai ning a reduced com putational burden.

Introduction

Automated brain image analysis has a huge potential to objectively help in the diagnosis and follo w -up of m any neurological diseases. To perform such analysis tasks, one of the first image processing operations is the delimitatio n of the area of interest. For brain im age analysis, this operation has recei ved many di fferent nam es such as brain extraction, skull -stripping or intracranial cavity masking. In each case, the aim is to isolate the brain or intracranial tissues (depending on area definition) from the raw image. Th e ac c ur at e es t imat ion o f t he int r ac ra nial volume plays crucial role to obtain robust and reli abl e norm alized meas urements of brain structures [START_REF] Nordenskjöld | Intracranial volume estimated with commonly used methods c ould introduc e bias in studies including brain volume measurements[END_REF].

The importance of this operation is reflected by the large number of methods proposed over the past dec ade [START_REF] Smith | Robust Automated Brain Extraction[END_REF][START_REF] Lemieux | Fast, accurate, and reproducible aut omatic segm entation of the brain in T1-wei ghted volum e M RI data[END_REF][START_REF] Segonne | A hybrid approach to the skull stripping problem in M RI[END_REF][START_REF] Shattuck | Magnetic resonance image tissue classification using a partial volume model[END_REF][START_REF] Ward | 3dIntracranial: Automatic segmentation of intracranial region[END_REF][START_REF] Zhuang | Skull-stripping magnetic resonance brain images using a model-based level set[END_REF][START_REF] Sadananthan | Skull stripping using graph cuts[END_REF][START_REF] Ashburner | Voxel-based morphometrythe methods[END_REF][START_REF] Leung | Brain MAPS: an automated, accurate and robust brain extraction t echnique using a template library[END_REF][START_REF] Eskildsen | BEaST: Brain Extraction based on nonl ocal Segm entation Techni que[END_REF][START_REF] Park | Skull stripping based on region growing for magnetic resonance brai n images[END_REF][START_REF] Sandor | Surface-based labeli ng of cortical anatomy using a deformabl e atlas[END_REF]. Many of these methods are based on the modeling of brain intensities (normally using T1 wei ghted images due to their excell ent contrast for brain tissues) combined with a set of morphological operations [START_REF] Lemieux | Fast, accurate, and reproducible aut omatic segm entation of the brain in T1-wei ghted volum e M RI data[END_REF][START_REF] Shattuck | Magnetic resonance image tissue classification using a partial volume model[END_REF][START_REF] Park | Skull stripping based on region growing for magnetic resonance brai n images[END_REF] or atlas priors [START_REF] Ashburner | Voxel-based morphometrythe methods[END_REF].

The most widely used automated met hods corres pond to those t hat are publically available. For example, the BE T (B rain Extraction Tool ) software from the FS L image processing library [START_REF] Smith | Robust Automated Brain Extraction[END_REF] is one of the most used techniques probably due to its accuracy, ease of use and l ow computational load. Other techniques like 3dIntracranial [START_REF] Ward | 3dIntracranial: Automatic segmentation of intracranial region[END_REF], Hybrid Watershed algorithm (HWA) [START_REF] Shattuck | Magnetic resonance image tissue classification using a partial volume model[END_REF] or Brain Surface Extractor (BSE) [START_REF] Sandor | Surface-based labeli ng of cortical anatomy using a deformabl e atlas[END_REF] have been also widely used.

Intracra nial ca vity extraction ca n also be obt ained indirectly as part of a full m odeli ng of brain intensities using a parametric model such as done in Statistical Parametric Mapping (SPM) [START_REF] Ashburner | Unified segmentation[END_REF] or VBM8 (http:/dbm.neuro. uni-jena.de/vbm) software packages.

Over the last decade, methods have been proposed to automatically measure the Intracranial Cavity Volume (ICV ) by using non-linear registration atlas-based approaches [START_REF] Buckner | A uni fied approach for morphom etric and functional data analysis in young, old, and demented adults using autom ated atlas -based head size normalizati on: reliability and validation against manual measurement of total i ntracranial volum e[END_REF][START_REF] Driscoll | Longitudi nal pattern of regional brain volume change differentiates normal agi ng from M CI[END_REF].

More recent works of special interest for the brain extraction problem are methods like MAPS [START_REF] Leung | Brain MAPS: an automated, accurate and robust brain extraction t echnique using a template library[END_REF] and BEaS T [START_REF] Eskildsen | BEaST: Brain Extraction based on nonl ocal Segm entation Techni que[END_REF]. Both methods rely on the application of a multi -atlas label fusion strategy.

MAPS uses multiple non-linear registrations followed by a voxel-wise label fusion while BEaS T uses a single linear registration in com bination with non-local patch-based label fusion. Both techniques scored well on the LONI segmentation validation engine (SVE) [START_REF] Shattuck | Online resource for validation of brai n segmentation m ethods[END_REF] comparison for brai n extraction (see http://sve.loni.ucla.edu) although MAPS has a much l arger com putational load compared to BEaST.

In this pa per we p rese nt an extensio n o f th e BEaS T methodol ogy where we aim to im prove the accuracy while reducing the computational load. The m ain contributi ons of the proposed method are threefold: First, the use of a new pipeline for the multi-atlas library construction for improved normalization between templ ate library subj ects. Second, the use of a new bilateral patch similarity measure t o better estimate pattern similariti es. Finally, a block -wise l abeli ng approach that enabl es signi ficant s avi ngs in computational cost and imposing at the sam e time a regularization constraint that increases the method's accuracy.

Materials and methods

Since the method proposed in this paper is based on the use of a library of pre-labeled cases to perform the segmentation process, we will first describe the template library construction and then present the proposed method.

Template library construction

Library dataset description

A library of manually labeled templates was constructed using subjects from different publically available datasets. To include as large age range as possible, different datasets nearly coveri ng the entire human life-span were considered. MRI data from the following databases were used: 

Pediatric dataset:

Ten infant datasets were also downloaded from the brain segmentation testing protocol [START_REF] Kempton | A comprehensive testing protocol for MRI neuroanatomical segmentation techniques: Evaluation of a novel lateral ventricle segmentation method[END_REF] website (https://sites.google.com/site/brai nseg/). ).

Downloaded im ages from t he different websites consisted of raw im ages with no preprocessing and no intracranial cavity masks were suppli ed wit h these data. To g en er at e t he t em plat e library, all 49 selected T1-weighted images were preprocessed as follows:

Denoi sing and inhomogeneity correction

All images in the database were denoised using the Spatially Adaptive Non -Local Means (SANLM ) Filter [START_REF] Manjón | Adaptive Non-Local Means Denoising of MR Images with S patially Varying Noise Levels[END_REF] to enhance the image quality. The SANLM filter can deal with spatially varying noise levels across the image without the need of explicitly estimate the local noise level which m akes it ideal to process data with either stationary or spatially varying noise (as in the case of parallel imaging) in a fully automatic manner. To fu rt he r imp ro ve t he im ag e qu alit y , an inhomogeneity correction step was applied using the N4 method [START_REF] Tustison | N4ITK: Improved N3 Bias Correction[END_REF]. The N4 method is an incremental improvement of the N3 method [START_REF] Sled | A nonparametric method for automatic correction of intensity nonuniformity in MRI data[END_REF] that has been implemented in the ITK toolbox [START_REF] Ib Áñez | The ITK Software Gui de[END_REF] and has proven to be m ore efficient and robust.

MNI space registration

In ord er t o pe rform the se gme ntation process, templates a nd th e subj ect to be se gme nted ha ve to be placed in the same stereotactic space. Therefore, a spatial normalization based on a linear registrati on to the Montreal Neurol ogical Institute (M NI152) space was perform ed using ANTS software [START_REF] Avants | Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerati ve brai n[END_REF]. The resulting images in the MNI space have a size of 181 x 217 x 181 voxels with 1 mm 3 voxel resolution.

Intensi ty normalization

As the proposed method is based on the estimation of im age similarities usi ng int ensity -deri ved measures, every image in the library must be intensity normalized in order to make the intensity distributions comparable among them. We use a tissue-derived approach to force mean intensities of white matter (WM), grey matter (GM) and cerebro -spinal fluid (CSF) to be as similar as possible across subj ects of the library i n a similar m anner as done by Lotjonen et al. [START_REF] Lotjonen | Fast and robust multi-atlas segm entation of brai n magnetic resonance i mages[END_REF]. For this purpose, mean values of CSF, GM and WM tissues were estimated using the Trimmed Mean Segmentation (TMS) met hod [START_REF] Manjón | Robust MRI Brain Tissue Param eter Estimation by Multistage Outlier Rejection[END_REF] which robustly estimates the mean values of the different tissues by excluding partial volume voxels from the estimation jointly with the use of an unbiased robust mean estimator. Suc h est imation was performed using only voxels within the standard brain mask area of MNI152 template to minimize the inclusion of external tissues.

Finally, a piec ewise linear intensity mapping [START_REF] Lotjonen | Fast and robust multi-atlas segm entation of brai n magnetic resonance i mages[END_REF][START_REF] Nyul | Standardizing the MR image intensity scales: making MR intensities have tissue specific meaning[END_REF] was applied ensuri ng that WM had an average intensity of 250, GM 150 and CSF of 50 (see Fig. 1). The brainstem (pons, medulla)

Inte rn al brai n blo od vessels

In th e present work we exten de d that de finitio n by inclu ding all extern al CSF (thus co veri ng total CSF of IC) and therefore selecting most of the i ntracrani al cavity volume. We have not included other intracranial tissues in our mask definition such as dura, exterior blood vessels or veins because they are norm ally of no interest for brai n analysis. This mask definition has been traditionally used to estimate the Total Intracranial Volume (TIV) in many methods such RBM [START_REF] Keihaninejad | A robust method to estimate t he int racranial vol ume across M RI fiel d strengths (1.5T and 3T)[END_REF], SPM8 or VBM8 methods to normalize brain tissue volumes [START_REF] Peelle | Adjusting for global effects in voxel-based morphometry: Gray matter decline in normal aging[END_REF][START_REF] Pengas | Comparative Reliability of Total Intracra nial Vol ume Estimation Meth ods an d the In fl uence o f Atrop hy in a Lo ngitudi nal Semantic Dementia Cohort[END_REF] as it is expected to be nearly constant in each subj ect duri ng the adult life-span.

Figure 2. Example of mask differences b etween our mask definition (center) and BEaST mask (rig ht) for an Alzheimer case (Left). As can b e noticed, all external CSF is included in NICE mask while this is not case at the corresponding BEaST mask (example case from Oasis dataset).

To generate the template masks we followed a similar approach as described in BEaST paper since full manual labeling was too time consuming and error prone as discussed in Eskildsen et al [START_REF] Eskildsen | BEaST: Brain Extraction based on nonl ocal Segm entation Techni que[END_REF]. All template images in the library were automatically segmented using BEaST software to have an initial mask. Conditional mask dilation (only over CSF voxels) was appli ed to include external CSF not al ready included in the BE aS T m ask. Finally, all the im ages were manually corrected by an expert on brain anatomy using the ITK -SNAP software [START_REF] Yushkevich | User-gui ded 3D acti ve contour segm entation of anatomic al structures: Significantly improved efficiency and reliability[END_REF] to remove segmentation errors. In Fig. 2 we show an example of our mask definition compared to BEaST definition for a patient with Alzheim er's disease.

To further increase the number of available priors on the library all the c ases were flipped along the mid-sagittal plane using the symmetric properties of the human brain yielding a total number of 98 labeled tem plates (origi nal and fli pped) as done in BEaS T paper [START_REF] Eskildsen | BEaST: Brain Extraction based on nonl ocal Segm entation Techni que[END_REF].

Com pared to BE aS T tem plate library creation, mai n differences are the use of a denoising method to improve data quality, the use of a different registration method (ANTS instead of ANIMAL) and the application of different intensity normalization method. The scheme of the template library construction pipeline is summarized in Fig. 3. 

Proposed Method

While the BEaST technique was designed to improve downstream analysis such as the assessment of cortical thickness, our proposed m ethod has extended the mask defi nition to include extra-cerebral spinal fluid as it can be interesting to obtai n normalized brai n and tissue specific volumes in many neurological diseases such as Alzheimer or Parkinson. We will refer our proposed method as NICE (Non-local Intracrani al Cavity Extraction). Since the method proposed in this paper is an evolution of the BEaST brain masking method [START_REF] Eskildsen | BEaST: Brain Extraction based on nonl ocal Segm entation Techni que[END_REF] we refer the reader to t he ori ginal paper for the detailed m ethod overvi ew. Here, we summ arize t he NICE method and pres ent the main improvements introduced to increase the method performance.

Preprocessing

To segment a new case, it must be first preprocessed using the proposed normalization pipeline (see section 2.1 and Fi g. 2) s o that the new case is spati ally aligned with the templ ate library and to ensure that it has the same intensity characteristics.

Improved Nonlocal means label fusion

In the classical no nlocal me ans lab el fusion techni qu e propos ed by Coupe et al. [START_REF] Coupé | Patchbased segm entati on using expert pri ors: application to hippocampus and ventricle segmentation[END_REF], for each voxel x i from the new image to be segmented the method estimates the final label by performing a weighted label fusion v(x i ) of all surrounding sampl es inside the search area V i from N subjects selected from the library:
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where l s,j is the label from the vox el x sj at the position j in the template library subject s and w(x i , x s,j ) is the weight calculated by patch comparison which is computed depending on the similarity of the surrounding patch for x i and for x s,j This weig ht is es t imat ed as follo ws :
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where P(x i ) is the patch around the voxel x i , P(x s,j ) is the patch around the voxel x j in the templates and ||.|| 2 is the normalized L2-norm (normalized by the number of elements) calculated by the distance between each pair of voxels from both patches P(x i ) and P(x s,j ) and modulated by h parameter. If ss (structural simil arity index [START_REF] Wang | Image quality assessment: from e rror visibility to structural simil arity: IEEE transactions on image processing[END_REF] bet ween patches) is less than a threshold th then w is not computed thus avoiding unneeded computations.

The structural similarity index ss is calculated as follows:

(3) where µ and σ are the mean and standard deviation of t he patches surrounding x i and x s,j at location j of the templat e s.

Finally, the final label L(x i ) is computed as: [START_REF] Segonne | A hybrid approach to the skull stripping problem in M RI[END_REF] In this pap er, we i ntro duce two modifications to this strategy. First, we make use of the fact that all the im ages are registered to a comm on space and therefore a locality principle can be used, assuming that sam ples that are spati ally closer are likely to be m ore similar in t heir labels.

However, this locality principle is limited by residual anat omical vari ability and registration errors in the template library space. Therefore, we redefined the similarity weight to take into account not only intensity similarity but also spatial patch proximity:
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where x i and x j are the coordinates of patch centers and d is normalization constant. We set d = 8 mm experimentally which curiously coincides with the typical Gaussian blurring kernel size normally used on Voxel Based Morphometry (VBM) to deal with registration error and subject anatomical variability. This approach shares some similarities to the bilateral filter proposed by Tom asi and Manduchi [START_REF] Tomasi | Bilateral Filtering for Gray and Color Images[END_REF] fo r imag e d en oising. W e exp erim entally set the threshold th to 0.97 instead of 0.95 as used in BEaST (this difference can be explained due to the use of filtered data and a different intensity normalization method). Also a comment about h parameter of equation ( 5) is requi red since it plays a m ajor role in t he weight computation process. In [START_REF] Coupé | Patchbased segm entati on using expert pri ors: application to hippocampus and ventricle segmentation[END_REF] this value was set to:
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where ε is a small c onstant to ensure num erical stability. In [START_REF] Coupé | Patchbased segm entati on using expert pri ors: application to hippocampus and ventricle segmentation[END_REF] was set to 1 but we found experim entally t hat a value of 0.1 produced better results in the proposed method possibly due to the improved intensity normalization.

The second modification concerns the voting scheme. Classical non-local label fusion works in a voxel-wise manner which sometimes results in a l ack of regularization on t he final labels.

Given that we wish to segment a continuous anatomical structure, some level of regularizatio n can be used as a constraint achieved by a block-wise vote scheme, similar to the one used by

Rousseau [START_REF] Rousseau | A Supervised Patch-Based Approach for Hum an Brai n Labeli ng[END_REF] fo r l ab el fusio n a nd d eri ve d from M RI d en oising [START_REF] Coupé | An Optimized Blockwise NonLocal Means Denoising Filter for 3-D M agnetic Resonance Images[END_REF]. This bilateral block-wise vote is computed as foll ows:
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where is a 3D region which is labeled at the same time. Finally, the vote for the voxel x i is obtained in an overcom plete manner by averaging over all blocks containing x i and the label L(x i ) is decided as in Eq. ( 4).

With overlapping blocks, it is worth noting that the distance between adjacent block centers can be increased to be equal or higher than 2 voxels. Therefore, we can obtain important accelerati ng factors compared t o the voxel-wise version of t he algorithm (fo r ex ample for a distance equal to 2 voxels in all three di rections a speedup factor of 2 3 =8 can be obtained). The described approach is used withi n the m ultiresol ution framework as described i n the BEaS T paper [START_REF] Eskildsen | BEaST: Brain Extraction based on nonl ocal Segm entation Techni que[END_REF].

Ex pe rime nts

Ex pe rime nta l da ta se t s

To val i dat e t he p ro pos ed m et ho d di f fe re nt dat as et s wer e us ed. Th es e dat as et s c an be classified two categories: a) those that were used to measure the accuracy of the different methods compared and b) those used to measure their reproducibility.

Accuracy datasets

LOO dataset: To me as ur e t he ac c ur ac y of t he p ro pos ed m et ho d we us ed t he t em plat e lib ra ry dataset by using a l eave -one-out (LOO) cross validation. The c haracteristics of t his datas et have already been described in section 2.1. Each of the 49 (non-flip pe d) lib rary ima ges was processed with the remai ning im ages as pri ors (after rem ovi ng the current case and its flipped version). The resulting segment ation was compared to the corresponding m anual labels in the library.

Independent validation dataset:

To a voi d any factor associated to our IC mask definition that could bias the comparison of the compared methods we decided to use an independent dataset with its corresponding manual segm entations. Therefore, we performed a validation using an independent dataset available in the online Segmentation Validation Engine (SVE) [START_REF] Shattuck | Online resource for validation of brai n segmentation m ethods[END_REF]. The SVE IC segmentation followed rules similar to those used here. This dataset consists of 40 T1w 

Reproducibility data set

Although the accuracy of a method is very important another important feature is its reproducibility. Indeed, the capability to detect changes induc ed by the pathol ogy in a consistent manner is a key aspect. To meas ure the reproducibility of the different compared methods we used the reproducibility datas et of the brain s egmentation testing protocol website 

SSS dataset:

To measure the reproducibility of the different methods compared on the same subjects and using the same MRI scanner, we used a subset of the OASIS ( www.oasisbrai ns.org) dataset consisting in 20 subj ect s (age=23.4±4.0 years, 8 females) who were scanned using the same pulse sequence two times (1.5 T Siemens Vision scanner, TR=9.7 ms, TE= 4 ms , TI= 2 0 ms , fli p a ngle= 10°, s lic e t hic k nes s = 1. 2 5 mm, mat rix s iz e= 256× 2 56, vox el dimensions=1×1×1.25 mm3 resliced to 1×1×1 mm3, averages=1) [START_REF] Marcus | Open Access Series of Imaging Studies (OASIS ): cross -sectional MRI data in young, middle aged, nondemented, and demented older adults[END_REF].

DSDF data set:

To determine the consistency of the segm entations when di fferent M RI scanners and different magnetic field strength were used, 36 adult subjects were scanned using two MRI scanners (1.5 T and 3.0 T General Electric Signa HDx scanner),mean inter-scan interval between 1.5 T and 3 T scanner=6.7±4.2 days) [START_REF] Kempton | A comprehensive testing protocol for MRI neuroanatomical segmentation techniques: Evaluation of a novel lateral ventricle segmentation method[END_REF].

Method parameter settings

To study the impact of the method parameters an exhaustive search of the optimum values was performed using t he LOO dataset usi ng the li brary segment ations as gol d standard references.

Each one of the 49 subjects in the library was processed using the remaining cases of the library as priors and the resulting segmentation was compared to the manual labeling. To measure segmentation accuracy, the Dice coefficient [START_REF] Zijd En Bos | Morphometric analysis of white matter lesions in MR images: method and vali dation[END_REF] was used. Method param eters such as patch size and search area were set as in BEaS T m ethod whil e an exhausti ve search for the optimal num ber of tem plates N us ed for the segm entati on proc ess was carried out (see Fi g. 4).

This search demonstrated that the segment ation accuracy stabilizes around N= [START_REF] Manjón | Adaptive Non-Local Means Denoising of MR Images with S patially Varying Noise Levels[END_REF][START_REF] Tustison | N4ITK: Improved N3 Bias Correction[END_REF][START_REF] Sled | A nonparametric method for automatic correction of intensity nonuniformity in MRI data[END_REF][START_REF] Ib Áñez | The ITK Software Gui de[END_REF][START_REF] Avants | Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerati ve brai n[END_REF][START_REF] Lotjonen | Fast and robust multi-atlas segm entation of brai n magnetic resonance i mages[END_REF][START_REF] Manjón | Robust MRI Brain Tissue Param eter Estimation by Multistage Outlier Rejection[END_REF][START_REF] Nyul | Standardizing the MR image intensity scales: making MR intensities have tissue specific meaning[END_REF][START_REF] Keihaninejad | A robust method to estimate t he int racranial vol ume across M RI fiel d strengths (1.5T and 3T)[END_REF][START_REF] Peelle | Adjusting for global effects in voxel-based morphometry: Gray matter decline in normal aging[END_REF][START_REF] Pengas | Comparative Reliability of Total Intracra nial Vol ume Estimation Meth ods an d the In fl uence o f Atrop hy in a Lo ngitudi nal Semantic Dementia Cohort[END_REF] range which is in good agreem ent wit h previ ous results from BEaS T. We decided to use N=30 as default value gi ven the reduced com putational cost of the proposed method. Another parameter of our proposed block-based approach is t he s pacing between adjacent blocks which jointly with patch size defines the degree of overlap between blocks. We observed experim entally that the optimal value for that param eter was 2 voxels in all 3 dimensions since the resulting accuracy was virtually the same from full overlap (1 voxel spacing) while computation time was greatly reduced. This is in good agreement with previ ous results on block-wise M RI denoising [START_REF] Coupé | An Optimized Blockwise NonLocal Means Denoising Filter for 3-D M agnetic Resonance Images[END_REF]. Hi gher block spacing resulted in worse segm entation results.

Compared methods

The proposed method was compared with BEaST and VBM8 methods . Both BEaST and VBM8 methods were selected because their public accessibility and because they are among the highest ranking methods on the onli ne Segmentation V alidation Engine website [START_REF] Shattuck | Online resource for validation of brai n segmentation m ethods[END_REF] (http://sve.loni.ucla.edu/archi ve/).

To ensure a fair comparis on all three methods used t he same preprocessing pipeline with the exception of the intensity normalization step (that is using A NTS registration to ensure the same image spac e and the same homogenization and filte ring to e nsure the same ima ge q uality). In this way only the labeling process was evaluated eliminating other sources of variability.

Both NICE and BEaST were run with the same number of preselected templates ( N=30) to ensure a fai r com parison. We used release 435 of VBM8, which was the latest version at the time of writing. To compare the segmentation results of the different methods several quantitati ve met rics were used: DICE coefficient [START_REF] Zijd En Bos | Morphometric analysis of white matter lesions in MR images: method and vali dation[END_REF], sensitivity and specificity.

Results

Accu racy re sults

In Tabl e 1, th e a ve ra ge DICE coe fficient, sensiti vity an d sp ecificity fo r all 49 cases o f L OO dataset using the di fferent methods compared are provided. Results fo r all the c ases togeth er and separated by dataset subtype are provided (Alzheimer Disease (AD), normal infants (Infant)

and normal adult subj ects (Adult)). As can be noticed, NICE method obtained the best res ults in all the situations. Table 2 shows the statistical significance of these differences (pai red t -test).

Intracra nial ca vity volu me is normally used to normalize brain tissue volumes to provide a tissue measure independent of head size. Therefore, the ability of the compared methods to provide an accurate ICV estimation has to be assessed. To this end, volum e estimations using the diffe rent comp ared meth ods we re o btain ed a nd comp are d to gold stan dard man ual volum es.

Figure 5 shows the automatic vs. manual volume correlation for all the compared methods and dataset used. As can be noticed, the NICE method had highest overall correl ation (0.976) while

BEaST and VBM8 had 0.923 and 0.778 respectively. In Fig. 6, a visual comparison of the segmentation results of three examples belonging to the three different subject populations can be performed. To perform an independent validation of the compared methods the SVE dataset was used. The SVE web service allows the comparison of results with hand-corrected brain masks. As done in BEaST and MAPS papers we used the brain masks provided by the SVE website which included all the internal ventricular CSF and some external sulcal CSF. Although this mask definition slightly differs from our mask definition (not all CSF was included) this does not represents a problem for the met hod´s com paris on sinc e all the methods shared the same references.

Validation of NICE using the SVE test dataset resulted in a mean DICE of 0.9819±0.0024 (see http://sve.loni.ucla.edu/archi ve ). At the time of writing, this result was the best (p<0.01) of all the methods published on the website. BEaST had a DSC of 0.9781±0.0047 and VBM8 obtained a DSC of 0.9760±0.0025. Sensiti vity and specificity result s are also included in Table 3. A visual representation of false positi ve and false negati ve as suppli ed by the website is presented at fig ure 7. 

Reproducibility re sults

In Ta ble 4, the a vera ge ICV di ffe re nces fo r the di fferent meth ods an d datas ets is pro vid ed. As can be noticed, NICE m ethod obtained the m ost reproducibl e results in all situations. For the SSS dataset experiment (test-retest) NICE significantly improved BEaST method while these differenc es were not signi ficant for VBM8 method. For the DSDF dataset experi ment volume ) differenc es were hi gher than in the previous experim ent. In this case, NICE was found yield significantly improved estimates (p<0.05) compared to the two other methods. 

Di scu ssion

We have presented a new method for intracranial cavity extraction that outperforms related state-of-the-art methods and a previously proposed method (BEaST) by our group both in terms of accuracy and reduced computational load. In addition, we demonstrated that the new proposed method is more robust in terms of measurement reproducibility.

This last point is of special interest since in many cases we are not only interested in the specific brain volume at one time point but in its evolution in a longitudinal study. NICE method was demonstrated to be signi ficantly more reproducible and accurate than BEaS T method. In addition, VBM8 was found to be alm ost as reproducibl e as NICE but at the expense of introducing larger systematic errors on the segmentations. Th e hi gh le vel o f re pro duc ibilit y of VBM8 may be explained by the fact that it uses a single template and thus a more deterministic pipeli ne is applied. Also the fact that it operat es at 1.5 mm 3 resolution introduces a bl urri ng effect which increases the met hod reproducibility at the expense of the accuracy. The increased reproducibility/accuracy of our proposed method may have a significant impact on the brain image analysis methods by increasing their sensitivity to detect subtle changes produced by the disease. While the advantage of NICE in segmentation accuracy of 0. 9911 vs . 0. 9 762 f or V B M 8 may appear small when compared over the three datasets evaluated, it is statistically significant and c orresponds to m ore than a 2 fold reduction in error, from 2.38% to 0.89%. In a large volume such as the intracranial cavity (1500cc), this reduction in error can represent a vol ume of approximately 20cc, a non-negligibl e am ount. The improvem ent over BEaS T is smaller (35%) but still statistically significant. When evaluated on the SVE dataset, the NICE yields a Dice overall of 0.9819, while BEaST and VBM8 yield 0.9781 and 0.9760, corresponding to 20% and 32% less error on average, respecti vely .

The improved results of NICE over BEaS T can be understood thanks to improvements on two parts of the proposed m ethod. First, improvements on templ ate library construction such as the improved intensity normalization yield more coherent and better defined priors. This fact positi vely impacts the intensity dri ven im age similarities of the l abel fusion part. One limitation of the first part of our validation is in the use of manually corrected masks that may induce a fa vo ura ble bias to wa rd BEaS T an d NICE. Howe ver, aft er th e con ditio nal dilation and manual correction steps, almost all edge voxels were modified, thus minimizing any bias. Second, the block-wise and new bilateral label fusion scheme results in more regul ar and accurate segmentations. The advantages of using a 3D block-wise approach in comparison to the previously used voxel -wise are twofold: fi rst, the fact that we l abel together the whole bl ock imposes an intrinsic regularization which forc es connected voxels to have similar labels and second if a space between block centers is used a significant speed-up factor can be obtained in comparison with the voxel -wise version. Fi nally, the new similarity m easure using spatial distance wei ghting takes i nto account a loc ality princi ple that favors the contri bution of closer patches by assuming that after linear registration similar structures are close in a similar manner as done for the well-known bilateral filter for image denoising [START_REF] Tomasi | Bilateral Filtering for Gray and Color Images[END_REF].

It is also wo rth noting that the segmentation accuracy depends on the preexistence of similar local patterns within the library. In our method, we do not need to have totally similar templates to the case to be segmented within the library since it is able to find locally similar patterns from different tem plates in t he library. However, it is also true that if some speci fic pattern is not present in the library it will not be correctly identi fied and therefore the resulting segmentation will be incorrect. This risk is normally reduced when using non-linear registrations at the expense of a m uch hi gher c omput ational load and the introduction of interpolation artifacts in both images and associated labels. However, this issue can be sol ved more efficiently (mai nly in terms of computational c ost) by increasing library size with uncommon cases and their associated corrected m anual l abels m aking it unnecessary to perform c ostly non -linear registrati ons (but making nec essary the manual label correction of new library cases). We experim entally found that increasing the size of the library just using the symmetric versions of the original library improved the segmentation results as previous reported in the BEAST paper.

Finally, it is als o possible t o construct disease specific libraries (as done for templates in SPM) maximizing the likelihood to find suitable matches for the segmentation process or to improve templates preselection by addi ng extra information such as age or sex which could hel p to fi nd optimal matches (specially useful when the library size will grow).

Conclu sio n

We have presented an improved met hod to perform intracranial cavity extraction that has been shown to be fast, robust and accurate. The improvements proposed have been shown to increase segmentation quality and reduce the computational load at the same time (the proposed method is able to work in a reasonable time of approximately 4 minutes). We plan to make the NICE pipeline publicly accessible through a web interface in t he near future so everybody can benefit from its use independently of their location and local computational resources. Finally, the useful ness of the proposed approach to provide accurate ICV based norm alization brai n tissue measurements has to be addressed on future clinical studies.

3 )

 3 Normal adults data set: Thirty normal subjects (age range: 24-75 years) were randomly selected from the open access IXI dataset (http://www. brai n-devel opm ent.org/). This dataset contains images from nearly 600 healthy subjects from several hospit als in London (UK). Both 1.5 T (7 cases) and 3 T (23 cases) images were included in this dataset. 3T images were acquired on a Philips Intera 3T scanner (TR = 9.6 ms, TE = 4.6 ms, flip angle= 8°, slice thickness=1.2 mm, volum e size=256× 256x150, voxel dimensions = 0.94×0.94×1.2 mm 3 ). 1.5 T images were acqui red on a Philips Gyroscan 1.5T scanner (TR = 9.8 ms, TE = 4.6 ms, flip angle=8°, slice thickness = 1.2 mm, volume size=256× 256x150, voxel dim ensions = 0.94×0.94×1.2 mm 3 ). Alzheimer Disease (AD) dataset: Nine patients with Alzheimer's disease (age range= 75-80 years, MMSE= 23.7±3.5, CDR = 1.1±0.4) scanned using a 1.5 T General Electric Signa HDx MRI scanner (General Electric, Milwaukee, W I) were randomly selected. This dataset consisted of high resolution T1 -weighted sagittal 3D MP-RAGE im ages (TR=8.6 ms, TE=3.8 ms, TI=1000 ms, flip angle=8°, slice thickness=1.2 mm, mat rix size=256×256, voxel dimensions=0.938×0.938×1.2 mm . Thes e images were downloaded from the brain segmentation testing protocol [18] website (https://sites.google.com/site/brains eg/) while they belong originally to the open access OASIS dataset (http://www.oasis-brains.org/).

Figure 1 .

 1 Figure 1. Proposed intensity normalization via a piecewise linear mapping. CSF, GM and WM mean values are automatically estimated using TMS method and mapped to their corresponding normalized values (50,150 and 250).

2. 1 . 5 .

 15 Manual labeling As commented previously, there is no standard definition of what should be included in brain or intracranial masks (it all depends in what you are looking for). In BEaST, the mask definition included the following tissues: All cerebral and cerebellar white matter All cerebral and cerebellar gray matter CSF in ventricles (lateral, 3rd and 4th) and the cerebell ar cistern CSF in deep sulci and along the surfac e of the brain and brain stem

Figure 3 .

 3 Figure 3. Template lib rary construction pipeline.

  MRI scans and its associated manual labels (20 males and 20 females; age range. This high-resolution 3D Spoiled Gradient Echo (SPGR) MRI volumes were acquired on a GE 1.5T system as 124 contiguous 1.5 mm coronal brain slices (TR range 10.0 ms-12.5 ms; TE range 4.22 ms -4.5 ms; FOV 220 mm or 200 mm; flip angl e 20°) with in-plane voxel resolution of 0.86 mm (38 subjects) or 0.78 mm (2 subjects).

(

  https://sites.google.com/site/brains eg/). This dataset consists of a test-retest set of 20 subjects scanned twice in the Same Scanner and Sequence (SSS) and another set of 36 subjects scanned twice on Different Scanner and Different magnetic Field strength (DSDF) (1.5 and 3 Tesla).

Figure 4 .

 4 Figure 4. Evolution of segmentation accuracy in function of the numb er of training sub ject templates used in the segmentation process.

Figure 5 .

 5 Figure 5. Comparison of intracranial cavity volume estimation results. Automatic vs. manual volume correlation for all the compared methods and datasets used. The first row shows results for the whole lib rary (N=49), the second only for normal adults (N=30), the third only for AD subjects (N=9) and the fourth only for infant cases (N=10). Red line represents ideal mapping between estimated and real volumes to highlight eventual over or under volume estimations (it does not represents the fitting line).

Figure 6 .

 6 Figure 6. Example segmentation results using NICE (first row), BEaST (second row) and VBM8 (third row) methods on the three different population samples. Sagittal slices and 3D renderings of the segmentations are shown. Red voxels correspond to correct voxels in the segmentation compared to the gold standard. Blue voxels are false positives and green voxels are false negatives (AD case b elongs to Oasis dataset and the adult and infant cases to the IXI dataset ).

Figure 7 .

 7 Figure 7. False positive and false negative maps for NICE, BEaST and VBM8 on SVE dataset. VBM8 tended to produce a systematic over-segmentation compared to the used manual gold standard. The errors ob tained b y NICE and BEaST were more uniformly distrib uted indicating non -systematic segmentation errors. Note that in the images provided b y the SVE web site the vertical scale measuring error is not the same over all images.

  These data were originally collected by Gousias et al.[START_REF] Gousias | Automatic segmentation of brain MRIs of 2-year-ol ds into 83 regions of interest[END_REF] and are also available at http://www.brain-development.org (this dataset is property of the Imp eri al Coll ege o f Science Technology & Medicine and has been used after accepting the license agreem ent). The selected 10 cases are from the full sample of 32 two-year old infants

	born premat urely (age = 24. 8 ± 2.4 m onths ). Sagittal T1 wei ghted volum es were
	acquired from each subject (1.0 T Phillips HPQ scanner, TR=23 ms, TE=6 ms, slice
	thickness=1.6 mm, matrix size= 256×256, voxel dimensions= 1.04×1.04× 1.6 mm	3
	resliced to isotropic 1.04 mm	3

Table 1 .

 1 Average DICE coefficient for the different methods compared on the different used datasets. The best results from each column are in bold.

	Method	Dat a	All (N=49)	Adults (N=30)	AD (N=9)	Infants (N=10)
		DICE	0.9911±0.0020	0.9921±0.0015	0.9892±0.0016	0.9899±0.0019
	NICE	SEN	0.9907±0.0036	0.9916±0.0035	0.9887±0.0029	0.9898±0.0038
		SPE	0.9971±0.0012	0.9975±0.0010	0.9964±0.0015	0.9965±0.0009
		DICE	0.9880±0.0032	0.9891±0.0030	0.9857±0.0018	0.9866±0.0034
	BEAST	SEN	0.9889±0.0062	0.9902±0.0060	0.9830±0.0049	0.9900±0.0050
		SPE	0.9955±0.0019	0.9958±0.0017	0.9960±0.0016	0.9940±0.0019
		DICE	0.9762±0.0052	0.9788±0.0026	0.9690±0.0064	0.9750±0.0033
	VBM8	SEN	0.9740±0.0121	0.9796±0.0051	0.9587±0.0132	0.9710±0.0138
		SPE	0.9926±0.0027	0.9924±0.0019	0.9931±0.0033	0.9926±0.0041

Table 2 .

 2 NICE compared to the other two methods (p-values). Significant differences (p<0.05) are in bold.

	Method	Dat a	All (N=49)	Adults (N=30)	AD (N=9)	Infants (N=10)
		DICE	6.30x10 -8	5.50 x10 -6	5.16 x10 -4	0.014
	BEAST	SEN	0.074	0.283	0.012	0.913
		SPE	2.54 x10 -6	2.97 x10 -5	0.498	0.002
		DICE	1.			
	VBM8					

26 x10 -33 3.97 x10 -32 3.35 x10 -7 3.29 x10 -10 SEN 4.99 x10 -15 2.60 x10 -15 1.61 x10 -5 6.18 x10 -4 SPE 2.06 x10 -18 2.73 x10 -19 0.010 0.009

  

Table 3 .

 3 Segmentation results of SVE dataset using different quality measures. NICE was compared to the other two methods (p-values).Best results are in bold (note that in this dataset, BEaST method ob tained a significant higher sensitivity than NICE at the expense of a lower specificity).

Table 4 .

 4 Percent mean IC volume differences for the SSS dataset. NICE was compared to the other two methods (p-values). Best results are in bold.Finally, execution times of the different met hods were compared. NICE method took around 4 minutes (NICE was implemented as a multithreaded MEX C file), BEaST method took around 25 minutes (we have t o note that no m ultithreadi ng optimizations were used here) and VBM8 took around 8 minutes on average (in this time it was also included the different tissue segmentations). All the experiments were performed using MATLAB 2009b 64 bits (Mathworks Inc.) on a desktop PC with an Intel core i7 wit h 16 GB RAM running windows 7.However, it is worth noting that if we reduce the number of selected templates to 10 cases we can reduce the processing time to less than 1 minute with only a small reduction of the segmentation accuracy (0.9911 to 0.9901 in the LOO accuracy experiment).

	Method	SSS Dataset	DSDF Dataset
	NI CE	1.4046± 0.2447	3.1856± 1.0280
	BEAST	2.1463± 0.6622 (p= 3.21x10 -4 )	5.4696± 1.9097 (p= 1.55x10 -10 )
	VBM8	1.4268± 0.3843 (p= 0.8073)	3.7741± 1.1627 (p= 0.0242)
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