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Introduction

In the field of computer animation, producing a realistic procedural avatar animation based on dynamics remains challenging.

Recent advances in musculoskeletal simulation have enhanced drastically the limb controllers in direct dynamics and the final animation by taking into account the muscular redundancy and the muscular viscoelasticity in the motion dynamics of avatars [START_REF] Geijtenbeek | Flexible muscle-based locomotion for bipedal creatures[END_REF]. Nevertheless, such optimisation based animation is costly in terms of computation time and does not handle the real-time constraintmandatory for video-games, serious-games or virtual reality applications.

In the current abstract, we introduce a new musculoskeletal-based limb controller including a linearizing feedback of the musculoskeletal structure and a PID control of the limb position with the objective to enhance virtual avatar animation.

Methods

Let us consider a simple 1-dof limb actuated with two antagonist muscles.

The control inputs of the system are the muscular neural excitations (  ) and the control output is the angular position of the limb ( q ). Our control strategy is based on a feedback linearization of the musculoskeletal dynamics which will allow us to conceive a joint space controller. Similarly, to [START_REF] Bonnet | A closed loop musculoskeletal model of postural coordination dynamics[END_REF] the pulling muscle is determined based on the error in the system. The classical Hill-type muscle model, force-length ( l f ) and force-velocity ( v f ) relationships featured in [START_REF] Rengifo | Distribution of Forces Between Synergistics and Antagonistics Muscles Using an Optimization Criterion Depending on Muscle Contraction Behaviour[END_REF] were used to determine the total force ( tj f ) of muscle j,
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Where pj f is the passive force, j a is the muscle activation and oj f is the maximum isometric force

The normalized length ( mnj l ), tendon length ( tj l )

and rate of change in length ( mnj l ) of both muscles are dependent on the joint position and joint velocity.

Consequently, one can represent the dynamics of this system through the time progression of the joint position and velocity.

Considering this and the torque imposed at the joint by the muscles and external forces we obtain the following state space representation,
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Where r1 and r2 are the constant muscle moment arms, I is the inertia of the system and g is the torque produced by gravity. The relative degree of the system, proves that the output can be controlled via a feedback linearization,
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The initial conditions on the activation are expressed through the terms oj a ,  is the time constant representing the activation dynamics. The feedback linearization is done by assigning to eq.( 3) a new control input v.

Inverting the system as in eq.( 4), we find an expression for the neural excitations in terms of the
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The system has been reduced to an integrator chain that can be easily commanded through the new control input v. Consequently, classical control techniques can be used to command the position of the limb, such as a PID controller.
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Results and Discussion

The elbow extension task described in [START_REF] Osu | Optimal impedance control for task achievement in the presence of signal-dependent noise[END_REF] was simulated with the parameters in Table 1, taken from [START_REF] Stroeve | Impedance characteristics of a neuromusculoskeletal model of the human arm I. Posture control[END_REF]. The limb was commanded to move from an initial position of 97° to a desired position of 41°.

Table 1 Parameters The resulting angular position of the limb, neural excitations and activations are illustrated in Fig. 1 and Fig. Both position and excitations are satisfying in terms of shape, magnitude, occurrence and are coherent with a fast extension movement. As in the experimental measurements presented in [START_REF] Osu | Optimal impedance control for task achievement in the presence of signal-dependent noise[END_REF], the excitation of the extensor muscle is initially high, decreases as the limb approaches the goal and achieves a steady state in order to hold the position. Thanks to the predictive action of the controller, the flexor muscle is excited to reduce the velocity of the limb and make final corrections in position. Note that the movement presented above is faster than those recorded in the experiments and that the flexor is only activated for preventive or corrective actions. This difference is due to the fact that other aspects that are present and controlled during human motion such as the stiffness and desired joint velocity were not considered in our model.

Conclusions

We have introduced a simple limb controller that partially reproduces the neural excitation signals that satisfy a specific kinematic behaviour. Complex articulated bodies such as those of avatars could be controlled by assigning a pair of antagonist muscles and a controller to each degree of freedom. A finite state machine and a target generator would then produce desired poses which the controllers would use for muscle excitation regulation. In our future work we intend to produce more realistic, human-like motions through the consideration of new control variables, such as the velocity and impedance of the limb. We also intend to explore optimal control techniques to minimize external perturbation effects, followed by a model simplification for real time implementation.
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  Figure 1 Limb Extension

  Figure 2 Excitations/activations
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