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PARTIAL DUALITY OF HYPERMAPS

by

S. Chmutov & F. Vignes-Tourneret

Abstract. — We introduce partial duality of hypermaps, which include the classical Euler-Poincaré
duality as a particular case. Combinatorially, hypermaps may be described in one of three ways:
as three involutions on the set of flags (bi-rotation system or τ -model), or as three permutations on
the set of half-edges (rotation system or σ-model in orientable case), or as edge 3-coloured graphs.
We express partial duality in each of these models. We give a formula for the genus change under
partial duality.
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Introduction

Maps can be thought of as graphs embedded into surfaces. Hypermaps are hypergraphs
embedded into surfaces. In other words, in hypermaps a (hyper) edge is allowed to connect
more than two vertices, so having more than two half-edges, or just a single half-edge (see
fig. 1).

One combinatorial description of hypermaps, called the bi-rotation system or the τ -model,
goes through three involutions acting on the set of local flags, also know as blades, represented
by triples (vertex, edge, face). The motivation for this model was the study of symmetry of
regular polyhedra which is a group generated by reflections (involutions). As such it may be
traced back to Ancient Greeks. It was used systematically by F. Klein in [Kle56] and later by
Coxeter and Moser in [CM80]. More recently this model was used in the context of maps and
hypermaps in [Wil78; JT83; Jam88; JP09]. We review the τ -model in Section 1.2.

Another way to combinatorially study oriented hypermaps, called the rotation system or the
σ-model, is to consider permutations of its half-edges, also know as darts, around each vertex,
around each hyperedge, and around each face according to the orientation. This model has been
carefully worked out by R. Cori [Cor75], however it can be traced back to L. Heffter [Hef91].
It became popular after the work of J. R. Edmonds [Edm60]. It is very important for the
Grothendieck dessins d’Enfants theory, see [LZ04], where the σ-model is called 3-constellation.
We review the σ-model in Section 1.3.

In 1975 T. Walsh noted [Wal75] that, if we consider a small regular neighbourhood of vertices
and hyperedges, then we can regard hypermaps as cell decomposition of a compact closed surface
into disks of three types, vertices, hyperedges, and faces, such that the disks of the same type
do not intersect and the disks of different types may intersect only on arcs of their boundaries.
These arcs form a 3-regular graph whose edges are coloured in 3 colours depending on the types
of cells they are adjacent to. The arcs of intersection of hyperedge-disks with face-disks bear the
colour 0. The colour 1 stands for the arcs of intersection of vertex-disks with face-disks. And
the arcs of intersection of vertex-disks with hyperedge-disks are coloured by 2. Thus we come to
the concept of [2]-coloured graphs, where [2] stands for the set of three colours [2] := {0, 1, 2}. It
turns out that such a [2]-coloured graph carries all the information about the original hypermap.
This gives another combinatorial model for description of hypermaps. We review this model in
Section 1.4.

Figure 1. Local view of a hypermap with its Walsh map superimposed
(vertices are red, hyperedges are green, faces are blue).

About the same time this concept was generalized to higher dimensions. Namely, in the
1970’s M. Pezzana [Pez74; Pez75] discovered a way of coding a piecewise-linear (PL) manifold
by a properly edge-coloured graph. The idea goes as follows: choose a triangulation K of this
given manifold M . Consider then its first barycentric subdivision K1. The 1-skeleton of K∗

1
is a properly edge-colourable graph. It turns out that the colouring of the graph is sufficient
to reconstruct M completely. The discovery of M. Pezzana allows to bring combinatorial and
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graph theoretical methods into PL topology. This correspondence between PL manifolds and
coloured graphs has been further developed by M. Ferri, C. Gagliardi and their group [FGG86].
It has also been independently rediscovered by A. Vince [Vin83], S Lins and A. Mandel [LM85],
and, to a certain extent, by R. Gurau [Gur10a].

Originally partial duality relative to a subset of edges was defined for ribbon graphs in
[Chm08] under the name of generalized duality. The motivation came from an idea to unify
various versions of the Thistlethwaite theorems in knot theory relating the Jones polynomial of
knots with the Tutte-like polynomial of (ribbon) graphs. Then it was thoughtfully studied and
developed in papers [VT09; Mof08; Mof10; EMM10; BBC12; Mof12; HM13; GMT20]. We refer
to [EMM13] for an excellent account on this development.

The main result of this paper is a generalization of partial duality to hypermaps in Section 2.
There we define the partial duality in Section 2.1 and then describe it in each of the three
combinatorial models in subsequent subsections. Independently this generalization was found
by Benjamin Smith [Smi18], but it does not contain the expression of partial duality in terms
of permutational models and does not have any formula for the genus change. The operation of
partial duality usually is different from the operations of [JP09; JT83] and from the operation of
[Vin95]. Typically it changes the genus of a hypermap. We give a formula for the genus change
in Section 3. We finish the paper with general remarks about future directions of research on
partial duality in higher dimensions.

Acknowledgement. We are grateful to Iain Moffatt and Neal Stoltzfus for fruitful discussions
on our preliminary results during the Summer 2014 Programm “Combinatorics, geometry, and
physics” in Vienna, and the Erwin Schrödinger International Institute for Mathematical Physics
(ESI) and the University of Vienna for hospitality during the program. We also thank the
anonymous referees for their constructive comments which helped clarify our exposition. S. Ch.
thanks the Max-Plank-Institut für Mathematik in Bonn and the Université Lyon 1 for excellent
working conditions and warm hospitality during the visits in 2014 and 2016. F. V.-T. is partially
supported by the grant ANR JCJC CombPhysMat2Tens.

1. Hypermaps

1.1. Geometrical model. — A map is a cellularly embedded graph in a (not necessarily
orientable) compact closed surface. The edges of a graph are represented by smooth arcs on
the surface connecting two (not necessarily distinct) vertices. A small regular neighbourhood
of such a graph on the surface is a surface with boundary, called ribbon graph, equipped with
a decomposition into a union of topological disks of two types, the neighbourhoods of vertices
and the neighbourhoods of edges. The last one can be regarded as a narrow quadrilateral along
the edges attached to the corresponding vertex discs at the two opposite sides. Attaching disks
called faces to the boundary components of a ribbon graph restores the original closed surface.
Thus a map may be regarded as a cell decomposition of a compact closed surface into disks of
three types, vertices, edges, and faces, such that the disks of the same type do not intersect and
the disks of different types may intersect only on arcs of their boundaries and the edge-disks
intersect with at most two vertex-disks and at most two face-disks, see [EMM13] for example.

Hypermaps differ from maps in that the edges are allowed to be hyperedges and may
connect several vertices. Let us consider a graph, the vertices of which are coloured black say.
Subdivide each of its edges by adding a white vertex at its center. A graph is thus equivalent to
a bipartite graph, all the vertices of one class of its bipartition are of degree 2. A hypergraph
is then equivelant to a (general) bipartite graph. Hypermaps may be considered as cellularly
embedded hypergraphs. Moreover hypermaps can also be defined as cell decomposition of a
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compact closed surface into disks of three types, vertices, hyperedges, and faces, such that the
disks of the same type do not intersect and the disks of different types may intersect only on arcs
of their boundaries. In contrast with maps, edge-disks of hypermaps need not be quadrilaterals.
So the definition of a hypermap is completely symmetrical with respect to the types of the cells.
Fig. 2 shows a non orientable map m0 and a hypermap hm0 obtained from m0 by uniting the
right vertex with the three edges into a single hyperedge.
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(a) A non orientable map m0 on a
projective plane with two vertices
and three edges.
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(b) A non orientable hypermap hm0 on a projective plane with
one vertex and one hyerpedge.

Figure 2. Map and hypermap

As abstract surfaces both m0 and hm0 are homemorphic to a Möbius band with a hole in it (a
cycle labeled by 1 − 2 − 12 − 11 on m0). So, gluing two disks (faces) to its boundary components
we will get a projective plane.

1.2. Permutational τ -model. — In this model, also called bi-rotation system, a hyper-
map hm is described in a pure combinatorial way as three fixed point free involutions, τ0, τ1,
and τ2, acting on a set X of local flags of hm. A (local) flag is a triple (v, e, f) consisting of a
vertex v, the intersection e of a hyperedge incident to v with a small neighbourhood of v, the
intersection f of a face adjacent to v and e with the same neighbourhood of v. Another way
of defining a local flag is to consider a triangle in the barycentric subdivision of faces of hm
considered as an embedded hypergraph. We will depict a flag as a small black right triangle
with one acute angle at v, another one at a point where all three disks v, e and f meet and a
right angle at an arc of intersection of disks v and e.

a face
a flag

a (hyper) edge

a vertex

Figure 3. A local flag

When a hypermap is understood as a [2]-coloured cell decomposition of a surface, the local
flags correspond to the points where all three types of cells meet together. Three lines of cell
intersections emanate from each such point, the 2-line of intersection of the vertex-disk with the
(hyper) edge-disk, the 1-line of intersection of the vertex-disk with the face-disk, and the 0-line
of intersection of the edge-disk with the face-disk. These lines yield three partitions of the set
X of local flags into pairs of flags whose corresponding points are connected by 0-, 1-, or 2-lines.
The permutation τi swaps the flags in the pairs connected by the i-lines.

In fig. 2 the local flags are labeled by numbers. For these hypermaps the permutations τi
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Figure 4. Involutions τ0, τ1, τ2

are the following. For the map m0,

τ0 = (1, 11)(2, 12)(3, 10)(4, 9)(5, 8)(6, 7),
τ1 = (1, 2)(3, 4)(5, 6)(7, 9)(8, 10)(11, 12),
τ2 = (1, 6)(2, 3)(4, 5)(7, 11)(8, 9)(10, 12).

For hm0,

τ0 = (1, 2)(3, 5)(4, 6), τ1 = (1, 2)(3, 4)(5, 6), τ2 = (1, 6)(2, 3)(4, 5).

Any three fixed-point free involutions on a set X yield a hypermap. Its vertices correspond
to orbits of the subgroup ⟨τ1, τ2⟩ generated by τ1 and τ2, edges to the orbits of ⟨τ0, τ2⟩, and faces
to the orbits of ⟨τ0, τ1⟩. A hyperedge is a genuine edge if the corresponding orbit consists of four
elements. Thus a hypermap is a map if and only if τ0τ2 is also an involution.

Remark. — W. Tutte [Tut84] introduced a less symmetrical description of combinatorial maps
in terms of three permutations θ, ϕ, and P . They can be expressed in terms of τ0, τ1, and τ2 as
follows:

θ = τ2, ϕ = τ0, P = τ1τ2.

1.3. Permutational σ-model. — This model, also known as rotation system, gives a
presentation of an oriented hypermap in terms of three permutations σV , σE , and σF of its
half-edges H satisfying the relation σF σEσV = 1. We may think of half-edges as non complete
local flags (v, e) consisting of a vertex v and the intersection e of a hyperedge incident to v with
a small neighbourhood of v. So a genuine edge has two half-edges, but a hyperedge may have
more than two half-edges or even a single half-edge. If we think of a hypermap as an embedded
bipartite graph, then the hyperedges of the hypermap precisely correspond to the edges of the
bipartite graph. In the following we place an empty square at the center of the hyperedge in
order to distinguish it from a vertex.

The permutation σV is a cyclic permutation of half-edges incident to a vertex according to
the orientation of the hypermap. The permutation σE acts as the cyclic permutation of rays in
each star according to the orientation. For the permutation σF we need to direct the half-edges
with arrows pointing away from the vertices to which they are attached. These arrows point
toward the centers of the stars of the hyperedges. The permutation σF cyclically permutes those
half-edges in each face which are directed along the orientation of the face. One can easily check
that σF σEσV = 1, see fig. 5. The cycles of σV correspond to the vertices of the hypermap,
the cycles of σE correspond to the hyperedges, and the cycles of σF correspond to the faces of
the hypermap. Consequently any three permutations σV , σE , and σF of a set H satisfying the
relation σF σEσV = 1 uniquely determine an oriented hypermap.
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Figure 5. Permutations σV , σE , σF , and the identity σF σEσV = 1

Now let us describe the relation with the τ -model of Section 1.2. Each half-edge has two local
flags in which it participates. If x ∈ X is one of them, then τ2(x) is the other one. Therefore
the cardinality of H is twice smaller that the cardinality of X.

Suppose an oriented hypermap hm is given by its σ-model on the set of half-edges H =
{1, . . . , m}. We set X to be a double of H, X := {1−, 1+, 2−, 2+, . . . , m−, m+}, and the in-
volution τ2 to swap i− and i+. Define the permutation τ0 to be τ0(i−) := (σE(i))+ and
τ0(i+) := (σ−1

E (i))−. Finally, define τ1 as τ1(i−) := (σ−1
V (i))+ and τ1(i+) := (σV (i))−. Ob-

viously they are involutions and the hypermap they define is hm.

−1

σE

i

i

i

σV
(i)

σE
(i)

(i)

Figure 6. σ and τ permutations

In the opposite way, suppose a hypermap hm is given by its τ -model on the set of local flags
X = {1, . . . , n}. Also suppose that hm is connected. That means the group generated by τ0, τ1,
and τ2 acts transitively on X.

For an orientable hypermap we can consistently arrange X in pairs with subscripts + and
− as in fig. 6. For a non orientable hypermap such an arrangement is impossible. One may
observe that τ ’s always change the subscript to the opposite one. This means that the subgroup
G of words of even length in τ ’s preserve the subscript. The group G is generated by τ2τ1, τ0τ2,
and τ1τ0. For a non orientable hypermap, the subgroup G also acts transitively on X. In the
orientable case, X splits into two orbits of G, one with the subscript + and another one with the
subscript −. Let H be the one with subscript +. Then we set σV (resp. σE and σF ) to be the
restriction of τ2τ1 (resp. τ0τ2, and τ1τ0) on the orbit H. Obviously these restrictions satisfy the
relation σF σEσV = (τ1τ0)(τ0τ2)(τ2τ1) = 1. It is clear from fig. 6 that the σ-model constructed
in this way gives the original orientable hypermap hm. The restriction to the “−”-orbit gives
the same hypermap with the opposite orientation.
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Example 1. — For hypermaps on fig. 2 the subgroup G is generated by the following permu-
tations. For m0,

τ2τ1 = (1, 3, 5)(2, 6, 4)(7, 8, 12)(9, 11, 10),
τ0τ2 = (1, 7)(2, 10)(3, 12)(4, 8)(5, 9)(6, 11),
τ1τ0 = (1, 12)(2, 11)(3, 8, 6, 9)(4, 7, 5, 10).

For hm0, τ2τ1 = (1, 3, 5)(2, 6, 4), τ0τ2 = (1, 4, 3)(2, 5, 6), τ1τ0 = (1, 2)(3, 6)(4, 5). In both cases
the group G acts transitively on flags. This is a combinatorial expression of the fact that these
two hypermaps are non orientable.

On the contrary, consider the two oriented hypermaps of fig. 7. The permutations τi are the

123
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(a) An orientable map m1 on a sphere with
two vertices and three edges

5

1

6

23

4

(b) An orientable hypermap hm1 on a sphere
with one vertex and one hyperedge

Figure 7. Map and hypermap. Second example.

following. For the map m1,

τ0 = (1, 11)(2, 12)(3, 10)(4, 8)(5, 9)(6, 7),
τ1 = (1, 2)(3, 4)(5, 6)(7, 9)(8, 10)(11, 12),
τ2 = (1, 6)(2, 3)(4, 5)(7, 11)(8, 9)(10, 12).

For hm1, τ0 = (1, 2)(3, 4)(5, 6), τ1 = (1, 2)(3, 4)(5, 6), τ2 = (1, 6)(2, 3)(4, 5). The generators of
the subgroup G for m1 are:

τ2τ1 = (1, 3, 5)(2, 6, 4)(7, 8, 12)(9, 11, 10),
τ0τ2 = (1, 7)(2, 10)(3, 12)(4, 9)(5, 8)(6, 11),
τ1τ0 = (1, 12)(2, 11)(3, 8)(4, 10)(5, 7)(6, 9).

For hm1: τ2τ1 = (1, 3, 5)(2, 6, 4), τ0τ2 = (1, 5, 3)(2, 4, 6), τ1τ0 = 1. One can see that the group
G has two orbits on the set of flags. The “+”-orbits are: for m1, H = {1, 3, 5, 7, 8, 12}; for hm1,
H = {1, 3, 5}. The restriction of the generators on this orbit gives the σ-models.
For m1: σV = (1, 3, 5)(7, 8, 12), σE = (1, 7)(3, 12)(5, 8), σF = (1, 12)(3, 8)(5, 7).
For hm1: σV = (1, 3, 5), σE = (1, 5, 3), σF = 1.

There is an elegant formula for the Euler characteristic of a hypermap in terms of its σ-model.

Lemma 1.1. — [LZ04, Proposition 1.5.3] Let hm = (σV , σE , σF ) be an oriented hypermap
given by its σ model on the set H of n half-edges, n := #H. Let cV (resp. cE and cF ) denote
the number of cycles of σV (resp. σE and σF ). Then the Euler characteristic χ(hm) of the
surface of hm is equal to

χ(hm) = cV + cE + cF − n .

Proof. — Let T be the cell decomposition (tesselation) given by the hypermap hm. Note that
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• 2n is the number of vertices of T ,

• the number of polygons in T is cV + cE + cF ,

• the number of edges of T is 3n,

Then the formula follows. □

1.4. Edge Coloured Graphs. — As indicated in Section 1.2 the boundaries of cells of a
hypermap form a 3-regular graph embedded into the surface of the hypermap. It carries a
natural edge colouring: the arcs of intersection of hyperedges and faces are coloured by 0, the
arcs of intersection of vertices and faces are coloured by 1, and the arcs of intersection of vertices
and hyperedges are coloured by 2. In this subsection we show that the entire hypermap can be
reconstructed from this information.

Definition 1.2. — Let κ be a finite set. A κ-coloured graph is an abstract connected graph
such that each edge carries a “colour” in κ and each vertex is incident to exactly one edge of
each colour. ♠

Note that a κ-coloured graph is necessarily #κ-regular and has no loops (but may contain
multiple edges). In the following, for all I ⊂ κ, we will denote κ \ I by I.

Let κ = {1, 2, . . . , #κ}. For a κ-coloured graph Γ we can define a permutational τ -model as
a set of involutions τ1, τ2, . . . , τ#κ acting on the set X of vertices of Γ as follows. τi interchange
the vertices connected by an edge of colour i. For the coloured graphs coming from hypermaps
these permutations coincide with the τ -model from Section 1.2.

Each coloured graph Γ contains some special coloured subgraphs called bubbles in [Gur10a]
and residues in [Vin83].

Definition 1.3. — Let Γ be a κ-coloured graph and I ⊂ κ. An #I-bubble of colours I in Γ is
a connected component of the I-coloured subgraph of Γ induced by the edges of Γ with colours
in I. ♠

In particular 0-bubbles, corresponding to I = ∅, are the vertices of Γ. The set of bubbles in
Γ of colours I ⊂ κ is denoted by BI(Γ) or BI if there is no ambiguity. BI is its cardinality #BI .
We also define Bn(Γ), 0 ⩽ n ⩽ #κ − 1, to be the set of all n-bubbles in Γ: Bn := ⋃

I⊂κ,#I=n BI

and Bn := #Bn. Finally the whole set of bubbles of Γ, ⋃
0⩽n⩽#κ−1 Bn, is written as B(Γ). The

subgraph inclusion relation provides B(Γ) with a poset structure.

1.4.1. Topology of edge coloured graphs. — To each coloured graph Γ, one can associate two
cell complexes, ∆∗(Γ) and its (“Poincaré”) dual ∆(Γ), as follows.

For each D ∈ N, let [D] be the set {0, 1, . . . , D}.

The dual complex ∆∗(Γ). Let Γ be a [D]-coloured graph. To each D-bubble b ∈ B{i}(Γ),
one associates a 0-simplex s(b) coloured i. To each (D − 1)-bubble b ∈ B{i,j}, one associates an
edge s(b) the endpoints of which are respectively coloured i and j. In general, to each k-bubble
b ∈ B{i1,··· ,ik}, one associates an abstract (D − k)-simplex s(b) coloured [D] \ {i1, · · · , ik}. Now,
the poset structure of B(Γ) provides gluing data for those simplices. Indeed, let us consider
two (D − k)-simplices s(b) and s(b′). If the corresponding k-bubbles b and b′ are contained in a
common (k + 1)-bubble b′′, identify s(b) and s(b′) along their common facet s(b′′). This gluing
respects the colouring structure of the simplices. It can be shown that such a complex is a
trisp (for triangulated space) [Koz08]. A. Vince [Vin83, p.4] called the topological space of this
simplicial complex the underlying topological space of the combinatorial map Γ.
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But there is also another complex associated to Γ, dual to ∆∗.
The direct complex ∆(Γ). It is constructed inductively, like a CW complex. To each
k-bubble, 0 ⩽ k ⩽ D, one will associate a k-dimensional topological space. To each 0-bubble b,
i.e. to each vertex of Γ, corresponds a point |b|. Each edge e of Γ, i.e. each 1-bubble, contains
two vertices u and v. Define |e| as the cone over |u| ∪ |v|. The realization |e| of e is thus a
segment. Now consider a 2-bubble b. It is a bicoloured cycle in Γ. b contains a set of edges
whose realization form a circle. |b| is defined as a cone over this circle hence a 2-disk. In general,
let b be k-bubble. It contains a set Bk−1(b) of (k−1)-bubbles. The realization of any b′ ∈ Bk−1(b)
has been defined at the previous induction step. The realizations |b1| and |b2| for b1, b2 ∈ Bk−1
are identified along |b1 ∩ b2| (which is a union of lower dimensional bubbles). Then the whole
set Bk−1(b) has a (connected) realization that we denote ∂|b|. Finally |b| is defined as the cone
over ∂|b| (hence the name).

In fact, one can prove that the union of the realizations of the (k − 1)-sub-bubbles of a
given k-bubble b is homeomorphic to the link of s(b) in ∆∗(Γ). Therefore the realization of b is
homeomorphic to the dual block of s(b) in the first barycentric subdivision of ∆∗(Γ).

The realization |Γ| of Γ corresponds to the gluing of the D-blocks of ∆(Γ). ∆(Γ) is a complex
whose blocks are topological spaces glued along their common boundaries. But in general, its
blocks are not homeomorphic to balls. And indeed |Γ| is generally not a manifold but a normal
pseudo-manifold [Gur10b].

1.4.2. Hypermaps as edge-coloured graphs. — It was mentioned at the beginning of this sub-
section that a hypermap hm determines a [2]-coloured graph Γhm. Its vertices corresponds to
(local) flags of hm and its edges of colour i correspond to the orbits of the involution τi.

Here is an inverse construction. Let us consider a [2]-coloured graph Γ. The 2-cells of its
direct complex ∆(Γ) are polygons and |Γ| is thus the result of the gluing of polygons along com-
mon boundaries. Randomly gluing polygons along edges does not generally produce manifolds.
But the gluing of polygons, dictated by a coloured graph, is always a manifold and thus a closed
compact (not necessarily orientable) surface. Moreover those polygons are of three types: they
are bounded by either 01-, 02- or 12-cycles (2-bubbles). Said differently, ∆(Γ) is, in dimension 2,
a polygonal tessellation of a closed compact (not necessarily orientable) surface with polygons of
three different types, i.e. a hypermap hm. Thus [2]-coloured graphs provide another description
of hypermaps.

In the case of maps, namely when all 02-cycles are of length 4, the [2]-coloured graphs are
also known as graph-encoded maps [Lin82].

Example 2. — Here are the examples of [2]-coloured graphs for hypermaps hm0 from fig. 2 and
hm1 from fig. 7. A reader may enjoy constructing the direct complexes ∆(Γhm0) and ∆(Γhm1),

0
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1 2

2

2

0

0

1

0

1

1 2

2

2

0

0

1

Figure 8. [2]-coloured graphs Γhm0 and Γhm1

and checking that they are indeed isomorphic to the hypermaps from figs. 2 and 7.

Lemma 1.4. — A hypermap corresponding to a [2]-coloured graph Γ is orientable if and only
if Γ is bipartite. ♢

The proof of this goes back to [CGP80]. The maps case can also be found in [Lin82].
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Proof. — According to Section 1.3 a hypermap is orientable if and only if the vertices of Γ can
be split into two parts with subscripts + and − as in fig. 6. □

Remark. — In [Vin83] A. Vince proposed a way to associate a [d]-coloured graph Γ to any cell
decomposition K of a closed d-manifold. Γ is defined as the 1-skeleton of the complex dual to the
first barycentric subdivision of K. Whereas his method works for any cell complex associated
to closed manifolds, it does not define a one-to-one correspondence between hypermaps and [2]-
coloured graphs (not all coloured graphs have a dual complex which is the barycentric subdivision
of another cell complex). Moreover the coloured graph thus associated to K is of higher order
than ours.

2. Partial duality

2.1. Definition. — Assume that a hypermap hm is connected. Otherwise we will need to do
partial duality for each connected component separately and then take the disjoint union. Let
S be a subset of cells of hm of the same type, either vertex-cells, or hyperedge-cells, or face-cells.
We will define the partial dual hypermap hmS relative to S. If S is the set of all cells of the
given type, the partial duality relative to S is the total duality which swaps the two types of the
remaining cells without changing the cells themselves and reverses the orientation of all cells in
an oriented case.

For example, if hm is a graph cellularly embedded into a surface then the total duality
relative to the whole set of edges is the classical duality of graphs on surfaces which interchanges
vertices and faces. Since the concept of hypermap is completely symmetrical we can make
the total duality relative to the set of vertices for example. Then the edges and faces will be
interchanged. The hypermap hm1 from fig. 7 has one vertex, one hyperedge and 3 faces. So
we have three total duals relative to the vertex, relative to the hyperedge, and relative to all
three faces, which differ only by the colour (type) of the corresponding cells. On fig. 9 the three
duals are shown as cell decomposed spheres together with the corresponding embeddings of the
hypergraphs; the hyperedges are embedded as one-dimensional stars centered at little squares.
The left picture represents hm{v}

1 and has 3 hyperedges with a single half-edge each. The middle
picture represents hm

{e}
1 with a single hyperedge of valency 3 adjacent to 3 distinct vertices and

a single face. The right picture hm
{f1,f2.f3}
1 is isomorphic to the original hypermap hm1.

Definition 2.1. — Without loss of generality we may assume that S is a subset of the set
of vertex-cells. Choose a different type of cells, say hyperedges. Later in Lemma 2.2 we show
that the resulting hypermap does not depend on this choice; we could choose faces instead of
hyperegdes if we want to.

Step 1. Consider the boundary ∂F of the surface F which is the union of the cells from S
and all cells of the chosen type, hyperedges in our case.

Step 2. Glue a disk to each connected component of ∂F . These will be the hyperedge-cells
for hmS . Note that we do not include the interior of F into the hyperedges. Although if ∂F has
only one component, gluing a disk to it results in the surface F itself, and then we may consider
F as the single hyperedge of hmS . See fig. 10.

Step 3. Take a copy of every vertex. These disks will be the vertex-cells for hmS . Their
attachment to the hyperedges is as follows. Every vertex disk of the original hypermap hm
contributes one or several intervals to ∂F . Indeed, if a vertex belong to S, then it contributes to
F itself and a part of its boundary contributes to ∂F . If a vertex is not in S, then it has some
hyperededges attached to it because hm is assumed to be connected. So such a vertex-disk has
a common boundary intervals with F and therefore contributes these intervals to ∂F . The new
copies of the vertex-disks, as vertices of hmS , are attached to hyperedges exactly along the same
intervals as the old ones. See fig. 11.
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Q
Q

Q
Q
Qs

Figure 9. Total duals of the hypermap hm1 from fig. 7

Step 4. At the previous steps we constructed the vertex and hyperedge cells for the partial
dual hmS . Their union forms a surface with boundary. Glue a disk to each of its boundary
components. These are going to be the faces of hmS . See fig. 12.

This finishes the construction of the partial dual hypermap hmS . ♠

Partial duality of hypermaps thus defined is a generalization of partial duality for maps [Chm08].
Both indeed coincide on maps.

Example 3. — We examplify the construction of the partial dual m{v}
1 for the map m1 from

fig. 7 relative to its left vertex v.

m1 =

Figure 10. Steps 1 & 2: forming hyperedges of m{v}
1

Similarly one may find the partial dual m{v}
0 for the non orientable map m0 from fig. 2. The

resulting surface after step 3 will be similar to the one above, only one half-edge will be twisted.
It still has one boundary component, and therefore a single face. So its Euler characteristic
is still −2, only now the resulting hypermap will be non orientable. It represents a surface
homeomorphic to a connected sum of 4 copies of the projective plane.

Lemma 2.2. — The resulting hypermap does not depend on the choice of type at the beginning
of Definition 2.1. ♢
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Figure 11. Step 3: copying vertices and gluing them to hyperedges

8
3

8
1 1212

55

1
1

5

3

7

11
10

8

2

4
6

12

9
7

Figure 12. Step 4: gluing faces and the resulting hypermap m
{v}
1 .

Proof. — Decompose the boundary circles of faces on a hypermap hm into the union of three
sets of arcs intersecting only at the end points of the arcs, D0(hm)∪D1,S(hm)∪D1.̸S(hm). The set
D0(hm) consist of arc of intersection of faces with hyperedges, D1,S(hm) — of faces with vertices
from the set S, and D1. ̸S(hm) — of faces with vertices not from S. Analyzing the result of Step
3 of the construction one can easily note that D0(hm) = D0(hmS) and D1.̸S(hm) = D1.̸S(hmS).
Moreover, D1,S(hmS) consists of the complementary arcs of the boundary circles of vertices from
S to the arcs D1,S(hm); formally the complementary arcs on the second copies of the vertices
of S. This means that the boundary circles of faces of hmS are exactly the boundary circles of
the surface obtained by the union of vertices of S and all the faces. In other words on Step 1
we may take faces instead of hyperedges and we will get the same boundary circles as for hmS .
Then, by symmetry the hyperedges will also be the same. □

Analogously to [Chm08, Sec.1.8] the following lemma describes simple properties of the
partial duality for hypermaps. Its proof is obvious.

Lemma 2.3
(a) (hmS)S = hm.

(b) There is a bijection between the cells of type S in hm and the cells of the same type in
hmS. This bijection preserves the valency of cells. The number of cells of other types may
change.

(c) If s ̸∈ S but has the same type as the cells of S, then hmS∪{s} =
(
hmS

){s}
.

(d)
(
hmS′

)S′′

= hm∆(S′,S′′), where ∆(S′, S′′) := (S′∪S′′)\(S′∩S′′) is the symmetric difference
of sets.

(e) Partial duality preserves orientability of hypermaps.
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2.2. Partial duality in σ-model. — For an oriented hypermap hm represented in the σ-
model of Section 1.3 we shall write

hm = (σV , σE , σF ) .

Theorem 2.4. — Let S be a subset S := V ′ of vertices (resp. subset of hyperedges S := E′ and
subset of faces S := F ′) of a hypermap hm. Then its partial dual is given by the permutations

hmV ′ = (σV ′σ
−1
V ′ , σEσV ′ , σV ′σF )

hmE′ = (σE′σV , σE′σ
−1
E′ , σF σE′)

hmF ′ = (σV σF ′ , σF ′σE , σF ′σ
−1
F ′ ) ,

where σV ′, σE′, σF ′ denote the permutations consisting of the cycles corresponding to the ele-
ments of V ′, E′, F ′ respectively, and overline means the complementary set of cycles. ♢

Similar formulas in the particular case of maps were announced in [GMT21] (see also
[GMT20, Section 5.2]).

Proof. — Because of the symmetry it is sufficient to prove the theorem in the case S = V ′. From
Definition 2.1 it follows that the number of half-edges is preserved by the partial duality. We
need to make a bijection between half-edges of hm and those of hmS such that the corresponding
permutations are related as in the first equation of the theorem.

Half-edges are attached to vertices. If a vertex does not belong to S then the attachment
of half-edges to it does not change with partial duality (Step 2). So for those half-edges the
required bijection is the identity.

Half-edges attached to vertices of S change, so we need to indicate the bijection for them.
Consider a vertex-disk from the set S of the original hypermap hm. It can be represented as a
2k-gon because the arcs of its boundary circle intersecting with hyperedges and faces alternate.
In hm it has k half-edges attached along every other side. We call them old half-edges. These
half-edges together with the vertex-disk form a piece of the surface F on Step 1 near the vertex.
The orientation of F induces an orientation on its boundary ∂F . In the partial dual hmS the
hyper-edges, the new hyperedges, are attached to every connected component of ∂F (Step 2).
The orientation of ∂F induces the orientation on new hyperedges. They are attached to a new
vertex (Step 3) along the other sides of the 2k-gon, which form new half-edges. Set the label
of a new half-edge to be the same as the label of the old one preceding the new half-edge in
the direction of the orientation of the old vertex. This gives the bijection of half-edges around
vertices of S. The orientation on the new vertex, as well as on the entire hypermap hmS , is
induced from the new hyperedges. Fig. 13 shows that the labels of the new half-edges appear
around new vertices in the order opposite to the one around old ones. This means that the
cycle in the permutation σV corresponding to a vertex in S of the initial hypermap hm should
be inverted to get the cycle for hmS . This proves that the first term of the first formula of the
theorem σV (hmS) = σ−1

V ′ (hm)σV ′(hm).
For the second term we need to analyze the cyclic order of new half-edges around new

hyperedge according to its orientation. It may be read off from labels of the half-edges met
when traveling along the boundary of the hyperedge in the direction of its orientation. Such a
boundary for hmS is exactly a connected component of ∂F with the orientation induced from
hm. The last is given precisely by the product of permutations σE(hm)σV ′(hm). Indeed, consider
fig. 14 and suppose that σE(hm) : 2 7→ i for some i. Then the new half-edge labels appear at
∂F in the order . . . , 1, i, . . . . So σE(hmS) : 1 7→ i, which is equal to σE(hm)σV ′(hm):

1 � σV ′ (hm) // 2 � σE(hm) // i .
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1

3

2

F

new vertex

old half−edges

old vertex new half−edges

1
23

Figure 13. Permutation σV (hmS)

i
i

F

2

3

new labels

old labels

1
1

Figure 14. Permutation σE(hmS)
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This proves the second term.
The third term follows from the relation σF σEσV = 1. □

Example 4. — This is a continuation of Example 1. We found that for the map m1 on fig. 7
the permutations σ’s act on the set of half-edges H = {1, 3, 5, 7, 8, 12} as

σV = (1, 3, 5)(7, 8, 12), σE = (1, 7)(3, 12)(5, 8), σF = (1, 12)(3, 8)(5, 7).

The cycle (1, 3, 5) of σV corresponds to the the left vertex v.

m1 =
8

1
3

5 7

12

v m
{v}
1 =

1

5

3

7 8

12

Figure 15. Partial duality in σ-model.

For the σ-model of the partial dual m
{v}
1 , we set V ′ = {v}. Then σV ′ = (1, 3, 5) and

σV ′ = (7, 8, 12). According to the theorem

σV (m{v}
1 ) = σV ′σ

−1
V ′ = (1, 5, 3)(7, 8, 12),

σE(m{v}
1 ) = σEσV ′ = (1, 7)(3, 12)(5, 8)(1, 3, 5) = (1, 12, 3, 8, 5, 7),

σF (m{v}
1 ) = σV ′σF = (1, 3, 5)(1, 12)(3, 8)(5, 7) = (1, 12, 3, 8, 5, 7).

One may check that these permutations agree with the last picture on figs. 12 and 15.

Corollary 2.5. — The total duality with respect to S := V (resp. S := E and S := F ) is
reduced to the classical Euler-Poincaré duality which swaps the names of two remaining types of
cells and reverse the orientation.

In σ-model it is given by the formulae

hmV = (σ−1
V , σEσV , σV σF ) = (σ−1

V , σ−1
F , σ−1

E )

hmE = (σEσV , σ−1
E , σF σE) = (σ−1

F , σ−1
E , σ−1

V )

hmF = (σV σF , σF σE , σ−1
F ) = (σ−1

E , σ−1
V , σ−1

F ) .

The inverse of these permutations are responsible for the change of orientation of the hypermap.

2.3. Partial duality in τ -model. —

Theorem 2.6. — Consider the τ -model of a hypermap hm given by the permutations

τ0(hm) : (v, e, f) 7→ (v′, e, f), τ1(hm) : (v, e, f) 7→ (v, e′, f), τ2(hm) : (v, e, f) 7→ (v, e, f ′)

of its local flags. Let V ′ be a subset of its vertices, τV ′
1 be the product of all transpositions in τ1

for v ∈ V ′, and τV ′
2 be the product of all transpositions in τ2 for v ∈ V ′. Then its partial dual

hmV ′ is given by the permutations

τ0(hmV ′) = τ0, τ1(hmV ′) = τ1τV ′
1 τV ′

2 , τ2(hmV ′) = τ2τV ′
1 τV ′

2 .

In other words the permutations τ1 and τ2 swap their transpositions of local flags around the
vertices in V ′. Similar statements hold for partial dualities relative to the subsets of hyperedges
E′ and of faces F ′. ♢
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A particular case of these formulas for maps was rediscovered in [GT20, Equation 14] and
announced in [GMT21] (see also [GMT20, Section 5.2]).

Proof. — From Definition 2.1 one may see that if a vertex does not participate in the partial
duality, v ̸∈ V ′, then nothing changes with local flags around it. But if v ∈ V ′, then the roles
of edges and faces in its local flags are interchanged. This may be seen on Step 3 and also on
figs. 13 and 14 when the second copy of the vertex is attached to the new hyperedges. So, if two
such local flags were transposed by τ1 of the original hypermap, then they will be transposed
by τ2 of the partial dual and vise versa. □

Example 5. — In Example 1, we found the τ -model for the map m1 of fig. 7:

τ0 = (1, 11)(2, 12)(3, 10)(4, 8)(5, 9)(6, 7), τ1 = (1, 2)(3, 4)(5, 6)(7, 9)(8, 10)(11, 12),
τ2 = (1, 6)(2, 3)(4, 5)(7, 11)(8, 9)(10, 12).

There are six flags around the left vertex v labeled by 1, 2, . . . , 6. The corresponding transpo-

m1 =
123

6
4

75

11
12

8

10

9

v m
{v}
1 =

8

2

4
6

12

9

1

5

3

7

11
10

Figure 16. Partial duality in τ -model.

sitions around this vertex are

τ
{v}
1 = (1, 2)(3, 4)(5, 6), τ

{v}
2 = (1, 6)(2, 3)(4, 5).

Swapping them between τ1 and τ2, we get the τ -model of the partial dual

τ0(hm{v}) = (1, 11)(2, 12)(3, 10)(4, 8)(5, 9)(6, 7),
τ1(hm{v}) = (1, 6)(2, 3)(4, 5)(7, 9)(8, 10)(11, 12),
τ2(hm{v}) = (1, 2)(3, 4)(5, 6)(7, 11)(8, 9)(10, 12).

This agrees with the labeling of flags on figs. 12 and 16.

Corollary 2.7. — The τ -model of the total dual hmV of a hypermap hm is given by the invo-
lutions

τ0(hmV ) = τ0(hm), τ1(hmV ) = τ2(hm), τ2(hmV ) = τ1(hm).

One may check that this agrees with Corollary 2.5 in the case of oriented hypermaps.

2.4. Partial duality for coloured graphs. — Let Γhm be the [2]-coloured graph correspond-
ing to a hypermap hm. Let I be a subset of two out of three colours, for example I = {1, 2},
and let S be a subset of 2-bubbles in BI which corresponds to a subset of vertices of hm.

Theorem 2.8. — The [2]-coloured graph ΓhmS of the partial dual hypermap hmS is obtained
from Γhm by swapping the colours 1 and 2 for all edges in the 2-bubbles of S. In particular, the
underlying graphs of ΓhmS and Γhm are the same. ♢

Ellingham and Zha [EZ17] obtained a similar result in the case of maps.
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Proof. — The edges of Γhm of colour 1 (resp. 2) correspond to 2-element orbits of τ1 (resp. τ2).
According to Theorem 2.6 the partial dual hypermap is obtained by swapping the corresponding
transpositions of τ1 and τ2. This corresponds to swapping the colours 1 and 2 in the bubbles of
S. □

Example 6. — Here are the [2]-coloured graphs ΓhmV
1

, ΓhmE
1

and ΓhmF
1

for the total duals of
the hypermap hm1 from fig. 7 relative to the set of all vertices V , all edges E, and all faces F .
These dual hypermaps are shown in fig. 9.

0

2

2 1

1

1

0

0

2 1

01

1

0

0

2
2

2

0

20

0

2

2

1

1
1

Figure 17. [2]-coloured graphs of total duals ΓhmV
1

, ΓhmE
1

, ΓhmF
1

Remark (Higher dimensional partial duality). — Such an easy interpretation of partial
duality for [2]-coloured graphs easily allows to make a higher dimensional generalization to [D]-
coloured graphs Γ. Namely, fix a set I of D colours out of the total number of D + 1 colours,
and let S be a subset of D-bubbles in BI . The partial dual ΓS relative to S is a [D]-coloured
graph obtained from Γ by a permutation of the colours of the edges in S.

In this case the word “duality” is inappropriate. It is rather an action of a symmetric group
SD on colours of edges of bubbles of S. In the hypermap case, D = 2. This group is isomorphic
to Z2, so the partial duality corresponds to the only nontrivial element of order 2. But for higher
D the group SD contains higher order elements so they will not be “dualities” anymore.

This concept of higher dimensional partial duality is completely unexplored up to now. It
would be very interesting to study it. In particular, is it true that if the realization |Γ| of Γ
through its direct complex ∆(Γ) is a manifold, then the realization of its partial dual |ΓS | is also
a manifold? How partial duality affects the (co)homology groups H∗(∆(Γ))?

3. Genus change

The Euler genus γ is equal to twice the genus for orientable hypermaps and to the number
of Möbius bands µ in presentations of the surfaces of hypermaps as spheres with µ bands in
them in the unorientable case. The bijection between hypermaps and [2]-coloured graphs, see
Section 1.4.2, allows us to derive a simple formula for the Euler genus change under partial
duality, in terms of change of the numbers of bicoloured cycles (or 2-bubbles). In the case of
maps, it expresses the genus change in terms of certain induced subgraphs of the map and of its
total dual.

Definition 3.1 (Special subgraphs). — Let Γ be a [2]-coloured graph and C be a subset of
B{i,j}(Γ), i, j ∈ [2] relative to which we are going to do the partial duality. Let k denote the
unique element of [2] \ {i, j}. For all t ∈ {i, j}, we define

• Γ[C; tk] as the (possibly disconnected) edge coloured subgraph of Γ made of the cycles in
C and all the tk-cycles incident with C,

• Γs[C; tk] as the (possibly disconnected) edge coloured graph obtained from Γ[C; tk] by
contracting (in the sense of coloured graphs) all the t-edges not in C. So every tk-path
outside C will be replaced by a single edge of colour k. ♠
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(a) A coloured graph Γ; C is the front 01-cycle; k = 2
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(b) Γ[C; 02]
1

0

1

0 22

(c) Γs[C; 02]

Figure 18. Special subgraphs of coloured graphs

An example is given in fig. 18.
Recall the definition of I-bubbles in Section 1.4.

Lemma 3.2. — Let Γ, C, k and t be as in Definition 3.1. Then

∆C
tk := B{tk}(ΓC) − B{tk}(Γ) = B{tk}(Γs[C; tk]) − B{tk}(Γs[C; tk])

= − 2B{tk}(Γs[C; tk]) − #C + n(Γs[C; tk]) − γ(Γs[C; tk]) + 2k(Γs[C; tk]),

where n(Γs[C; tk]) is half of the number of vertices of Γs[C; tk] and k denotes the number of
connected components. ♢

Proof. — Let t be the unique element of {i, j} \ {t}. By definition,

B{tk}(ΓC) − B{tk}(Γ) = B{tk}(ΓC
s [C; tk]) − B{tk}(Γs[C; tk])

= B{tk}(Γs[C; tk]) − B{tk}(Γs[C; tk]).
(3.1)

The surface corresponding to a [2]-coloured graph Γ has Euler characteristic

χ(Γ) = 2k(Γ) − γ(Γ) = B{ij}(Γ) + B{ik}(Γ) + B{jk}(Γ) − n(Γ). (3.2)

For Γ = Γs[C; tk] we have B{ij}(Γs[C; tk]) = #C and eq. (3.2) gives

B{tk}(Γs[C; tk]) = −B{tk}(Γs[C; tk]) − #C + n(Γs[C; tk]) − γ(Γs[C; tk]) + 2k(Γs[C; tk]).

Substituting it into eq. (3.1), one gets the desired result. □

Theorem 3.3. — Let Γ be a [2]-coloured graph and C be a subset of B{i,j}(Γ). Let k be the
unique element of [2] \ {i, j}. Then,

γ(ΓC) − γ(Γ) = −∆C
ik(Γ) − ∆C

jk(Γ)

where ∆C
tk is given by Lemma 3.2. ♢
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Proof. — One simply uses eq. (3.2) and remarks that k(ΓC) = k(Γ), n(ΓC) = n(Γ), and
B{ij}(ΓC) = B{ij}(Γ). □

Remark. — Theorem 3.3 alows to derive bounds on γ(ΓC) − γ(Γ). For any t ∈ {i, j} and
any coloured graph Γ, the number of tk-cycles in Γs[C; tk], B{tk}(Γs[C; tk]), lies between 1 and
n(Γs[C; tk]) = 1

2
∑

c∈C length(c). This gives

|γ(ΓC) − γ(Γ)| ⩽
∑
c∈C

(
length(c) − 2

)
.

This bound is optimal and fig. 19 shows an example where it is reached.
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2
2

2
2

0
1
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1 0

1

1 0

1

Figure 19. A coloured graph Γ such that g(ΓC) − g(Γ) = 2, C is any of its 01-cycles.

Given the bijection between hypermaps and [2]-coloured graphs, ribbon graphs are [2]-
coloured graphs, the 02-cycles of which all have length four. Theorem 3.3 then applies and
allows to quantify the change of topology of ribbon graphs under partial duality:
Corollary 3.4. — Let G be a ribbon graph and E′ be a subset of its edges. Let G[E′] be the
subribbon graph of G induced by E′ and G∗[E′] be the subribbon graph of its Euler-Poincaré dual
G∗ induced by E′. Then

1
2

(
γ(GE′) − γ(G)

)
= v(G[E′]) + v(G∗[E′]) − #E′ − 1

2χ(G[E′]) − 1
2χ(G∗[E′]). ♢

Proof. — With our conventions, C = E′ is a subset of 02-cycles, vertices are 12-cycles and faces
are 01-cycles. Thus, Γs[E′; 12] = G[E′], Γs[E′; 01] = (G∗[E′])∗, n(Γs[E′; 1t]) = 2#E′, and the
Corollary follows. □

In particular, for partial duality of ribbon graphs relative to a single edge, #E′ = 1, Corol-
lary 3.4 immediately gives the results of [GMT20, Table 1.1] which were recently used in to
prove one of the conjectures from [GMT20].

4. Directions of future research

• The paper [GMT20] contains several interesting conjectures about partial-dual genus
distribution polynomial for ribbon graphs. One of them was recently proved in [CVT21].
The definition of this polynomial works for hypermaps as well. It would be interesting to
formulate and prove analogs for hypermaps.

• Maps (ribbon graphs) provide a special class of ∆-matroids (Lagrangian matroids) [Chu+19].
Are there any matroid type structure underlying the concept of hypermaps? Can the gen-
eral Coxeter matroids be obtained from hypermaps?

• It would be interesting to study higher dimensional partial “duality” concept as outlined
in Section 2.4. In particular, is it true that a partial “dual” to a [D]-coloured graph
corresponding to a manifold is also a manifold?
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