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We introduce partial duality of hypermaps, which include the classical Euler-Poincaré duality as a particular case. Combinatorially, hypermaps may be described in one of three ways: as three involutions on the set of flags (bi-rotation system or τ -model), or as three permutations on the set of half-edges (rotation system or σ-model in orientable case), or as edge 3-coloured graphs. We express partial duality in each of these models. We give a formula for the genus change under partial duality.

Introduction

Maps can be thought of as graphs embedded into surfaces. Hypermaps are hypergraphs embedded into surfaces. In other words, in hypermaps a (hyper) edge is allowed to connect more than two vertices, so having more than two half-edges, or just a single half-edge (see fig. 1).

One combinatorial description of hypermaps, called the bi-rotation system or the τ -model, goes through three involutions acting on the set of local flags, also know as blades, represented by triples (vertex, edge, face). The motivation for this model was the study of symmetry of regular polyhedra which is a group generated by reflections (involutions). As such it may be traced back to Ancient Greeks. It was used systematically by F. Klein in [START_REF] Klein | Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree[END_REF] and later by Coxeter and Moser in [START_REF] Coxeter | Generators and relations for discrete groups[END_REF]. More recently this model was used in the context of maps and hypermaps in [Wil78; JT83; Jam88; JP09]. We review the τ -model in Section 1.2.

Another way to combinatorially study oriented hypermaps, called the rotation system or the σ-model, is to consider permutations of its half-edges, also know as darts, around each vertex, around each hyperedge, and around each face according to the orientation. This model has been carefully worked out by R. Cori [START_REF] Cori | Un code pour les graphes planaires et ses applications[END_REF], however it can be traced back to L. Heffter [START_REF] Heffter | Über das Problem der Nachbargebiete[END_REF]. It became popular after the work of J. R. Edmonds [START_REF] Edmonds | A combinatorial representation for polyhedral surfaces[END_REF]. It is very important for the Grothendieck dessins d'Enfants theory, see [START_REF] Lando | Graphs on Surfaces and Their Applications[END_REF], where the σ-model is called 3-constellation. We review the σ-model in Section 1.3.

In 1975 T. Walsh noted [START_REF] Walsh | Hypermaps Versus Bipartite Maps[END_REF] that, if we consider a small regular neighbourhood of vertices and hyperedges, then we can regard hypermaps as cell decomposition of a compact closed surface into disks of three types, vertices, hyperedges, and faces, such that the disks of the same type do not intersect and the disks of different types may intersect only on arcs of their boundaries. These arcs form a 3-regular graph whose edges are coloured in 3 colours depending on the types of cells they are adjacent to. The arcs of intersection of hyperedge-disks with face-disks bear the colour 0. The colour 1 stands for the arcs of intersection of vertex-disks with face-disks. And the arcs of intersection of vertex-disks with hyperedge-disks are coloured by 2. Thus we come to the concept of [2]-coloured graphs, where [2] stands for the set of three colours [2] := {0, 1, 2}. It turns out that such a [2]-coloured graph carries all the information about the original hypermap. This gives another combinatorial model for description of hypermaps. We review this model in Section 1.4. About the same time this concept was generalized to higher dimensions. Namely, in the 1970's M. Pezzana [Pez74;[START_REF] Pezzana | Diagrammi di Heegaard e triangolazione contratta[END_REF] discovered a way of coding a piecewise-linear (PL) manifold by a properly edge-coloured graph. The idea goes as follows: choose a triangulation K of this given manifold M . Consider then its first barycentric subdivision K 1 . The 1-skeleton of K * 1 is a properly edge-colourable graph. It turns out that the colouring of the graph is sufficient to reconstruct M completely. The discovery of M. Pezzana allows to bring combinatorial and graph theoretical methods into PL topology. This correspondence between PL manifolds and coloured graphs has been further developed by M. Ferri, C. Gagliardi and their group [START_REF] Ferri | A graph-theoretical representation of PL-manifolds -A survey on crystallizations[END_REF]. It has also been independently rediscovered by A. Vince [START_REF] Vince | Combinatorial Maps[END_REF], S Lins and A. Mandel [START_REF] Lins | Graph-Encoded 3-Manifolds[END_REF], and, to a certain extent, by R. Gurau [START_REF] Gurau | Colored Group Field Theory[END_REF].

Originally partial duality relative to a subset of edges was defined for ribbon graphs in [START_REF] Chmutov | Generalized duality for graphs on surfaces and the signed Bollobás-Riordan polynomial[END_REF] under the name of generalized duality. The motivation came from an idea to unify various versions of the Thistlethwaite theorems in knot theory relating the Jones polynomial of knots with the Tutte-like polynomial of (ribbon) graphs. Then it was thoughtfully studied and developed in papers [VT09; Mof08; Mof10; EMM10; BBC12; Mof12; HM13; GMT20]. We refer to [START_REF] Ellis-Monaghan | Graphs on Surfaces. Dualities, Polynomials, and Knots[END_REF] for an excellent account on this development.

The main result of this paper is a generalization of partial duality to hypermaps in Section 2. There we define the partial duality in Section 2.1 and then describe it in each of the three combinatorial models in subsequent subsections. Independently this generalization was found by Benjamin Smith [START_REF] Smith | Matroids, Eulerian Graphs and Topological Analogues of the Tutte Polynomial[END_REF], but it does not contain the expression of partial duality in terms of permutational models and does not have any formula for the genus change. The operation of partial duality usually is different from the operations of [JP09; JT83] and from the operation of [START_REF] Vince | Map duality and generalizations[END_REF]. Typically it changes the genus of a hypermap. We give a formula for the genus change in Section 3. We finish the paper with general remarks about future directions of research on partial duality in higher dimensions.

Hypermaps

1.1. Geometrical model. -A map is a cellularly embedded graph in a (not necessarily orientable) compact closed surface. The edges of a graph are represented by smooth arcs on the surface connecting two (not necessarily distinct) vertices. A small regular neighbourhood of such a graph on the surface is a surface with boundary, called ribbon graph, equipped with a decomposition into a union of topological disks of two types, the neighbourhoods of vertices and the neighbourhoods of edges. The last one can be regarded as a narrow quadrilateral along the edges attached to the corresponding vertex discs at the two opposite sides. Attaching disks called faces to the boundary components of a ribbon graph restores the original closed surface. Thus a map may be regarded as a cell decomposition of a compact closed surface into disks of three types, vertices, edges, and faces, such that the disks of the same type do not intersect and the disks of different types may intersect only on arcs of their boundaries and the edge-disks intersect with at most two vertex-disks and at most two face-disks, see [START_REF] Ellis-Monaghan | Graphs on Surfaces. Dualities, Polynomials, and Knots[END_REF] for example.

Hypermaps differ from maps in that the edges are allowed to be hyperedges and may connect several vertices. Let us consider a graph, the vertices of which are coloured black say. Subdivide each of its edges by adding a white vertex at its center. A graph is thus equivalent to a bipartite graph, all the vertices of one class of its bipartition are of degree 2. A hypergraph is then equivelant to a (general) bipartite graph. Hypermaps may be considered as cellularly embedded hypergraphs. Moreover hypermaps can also be defined as cell decomposition of a compact closed surface into disks of three types, vertices, hyperedges, and faces, such that the disks of the same type do not intersect and the disks of different types may intersect only on arcs of their boundaries. In contrast with maps, edge-disks of hypermaps need not be quadrilaterals. So the definition of a hypermap is completely symmetrical with respect to the types of the cells. Fig. 2 shows a non orientable map m 0 and a hypermap hm 0 obtained from m 0 by uniting the right vertex with the three edges into a single hyperedge. As abstract surfaces both m 0 and hm 0 are homemorphic to a Möbius band with a hole in it (a cycle labeled by 1 -2 -12 -11 on m 0 ). So, gluing two disks (faces) to its boundary components we will get a projective plane.

Permutational τ -model. -

In this model, also called bi-rotation system, a hypermap hm is described in a pure combinatorial way as three fixed point free involutions, τ 0 , τ 1 , and τ 2 , acting on a set X of local flags of hm. A (local) flag is a triple (v, e, f ) consisting of a vertex v, the intersection e of a hyperedge incident to v with a small neighbourhood of v, the intersection f of a face adjacent to v and e with the same neighbourhood of v. Another way of defining a local flag is to consider a triangle in the barycentric subdivision of faces of hm considered as an embedded hypergraph. We will depict a flag as a small black right triangle with one acute angle at v, another one at a point where all three disks v, e and f meet and a right angle at an arc of intersection of disks v and e. When a hypermap is understood as a [2]-coloured cell decomposition of a surface, the local flags correspond to the points where all three types of cells meet together. Three lines of cell intersections emanate from each such point, the 2-line of intersection of the vertex-disk with the (hyper) edge-disk, the 1-line of intersection of the vertex-disk with the face-disk, and the 0-line of intersection of the edge-disk with the face-disk. These lines yield three partitions of the set X of local flags into pairs of flags whose corresponding points are connected by 0-, 1-, or 2-lines. The permutation τ i swaps the flags in the pairs connected by the i-lines.

In fig. 2 For hm 0 ,

τ 0 = (1, 2)(3, 5)(4, 6), τ 1 = (1, 2)(3, 4)(5, 6), τ 2 = (1, 6)(2, 3)(4, 5).
Any three fixed-point free involutions on a set X yield a hypermap. Its vertices correspond to orbits of the subgroup ⟨τ 1 , τ 2 ⟩ generated by τ 1 and τ 2 , edges to the orbits of ⟨τ 0 , τ 2 ⟩, and faces to the orbits of ⟨τ 0 , τ 1 ⟩. A hyperedge is a genuine edge if the corresponding orbit consists of four elements. Thus a hypermap is a map if and only if τ 0 τ 2 is also an involution.

Remark. -W. Tutte [START_REF] Tutte | Graph theory[END_REF] introduced a less symmetrical description of combinatorial maps in terms of three permutations θ, ϕ, and P . They can be expressed in terms of τ 0 , τ 1 , and τ 2 as follows: θ = τ 2 , ϕ = τ 0 , P = τ 1 τ 2 .

Permutational σ-model.

-This model, also known as rotation system, gives a presentation of an oriented hypermap in terms of three permutations σ V , σ E , and σ F of its half-edges H satisfying the relation σ F σ E σ V = 1. We may think of half-edges as non complete local flags (v, e) consisting of a vertex v and the intersection e of a hyperedge incident to v with a small neighbourhood of v. So a genuine edge has two half-edges, but a hyperedge may have more than two half-edges or even a single half-edge. If we think of a hypermap as an embedded bipartite graph, then the hyperedges of the hypermap precisely correspond to the edges of the bipartite graph. In the following we place an empty square at the center of the hyperedge in order to distinguish it from a vertex. The permutation σ V is a cyclic permutation of half-edges incident to a vertex according to the orientation of the hypermap. The permutation σ E acts as the cyclic permutation of rays in each star according to the orientation. For the permutation σ F we need to direct the half-edges with arrows pointing away from the vertices to which they are attached. These arrows point toward the centers of the stars of the hyperedges. The permutation σ F cyclically permutes those half-edges in each face which are directed along the orientation of the face. One can easily check that σ F σ E σ V = 1, see fig. 5. The cycles of σ V correspond to the vertices of the hypermap, the cycles of σ E correspond to the hyperedges, and the cycles of σ F correspond to the faces of the hypermap. Consequently any three permutations σ V , σ E , and σ F of a set H satisfying the relation σ F σ E σ V = 1 uniquely determine an oriented hypermap.

v σ V E e σ f F σ σ V σ E F σ Figure 5. Permutations σ V , σ E , σ F , and the identity σ F σ E σ V = 1
Now let us describe the relation with the τ -model of Section 1.2. Each half-edge has two local flags in which it participates. If x ∈ X is one of them, then τ 2 (x) is the other one. Therefore the cardinality of H is twice smaller that the cardinality of X.

Suppose an oriented hypermap hm is given by its σ-model on the set of half-edges H = {1, . . . , m}. We set X to be a double of H, X := {1 -, 1 + , 2 -, 2 + , . . . , m -, m + }, and the involution τ 2 to swap i -and i + . Define the permutation τ 0 to be τ 0 (i -) := (σ E (i)) + and τ 0 (i

+ ) := (σ -1 E (i)) -. Finally, define τ 1 as τ 1 (i -) := (σ -1 V (i)) + and τ 1 (i + ) := (σ V (i)) -.
Obviously they are involutions and the hypermap they define is hm. In the opposite way, suppose a hypermap hm is given by its τ -model on the set of local flags X = {1, . . . , n}. Also suppose that hm is connected. That means the group generated by τ 0 , τ 1 , and τ 2 acts transitively on X.

-1 σ E i i i σ V (i) σ E (i) (i)
For an orientable hypermap we can consistently arrange X in pairs with subscripts + and as in fig. 6. For a non orientable hypermap such an arrangement is impossible. One may observe that τ 's always change the subscript to the opposite one. This means that the subgroup G of words of even length in τ 's preserve the subscript. The group G is generated by τ 2 τ 1 , τ 0 τ 2 , and τ 1 τ 0 . For a non orientable hypermap, the subgroup G also acts transitively on X. In the orientable case, X splits into two orbits of G, one with the subscript + and another one with the subscript -. Let H be the one with subscript +. Then we set σ V (resp. σ E and σ F ) to be the restriction of τ 2 τ 1 (resp. τ 0 τ 2 , and τ 1 τ 0 ) on the orbit H. Obviously these restrictions satisfy the relation 6 that the σ-model constructed in this way gives the original orientable hypermap hm. The restriction to the "-"-orbit gives the same hypermap with the opposite orientation.

σ F σ E σ V = (τ 1 τ 0 )(τ 0 τ 2 )(τ 2 τ 1 ) = 1. It is clear from fig.
Example 1. -For hypermaps on fig. 2 the subgroup G is generated by the following permutations. For m 0 , τ 2 τ 1 = (1, 3, 5)(2, 6, 4)(7, 8, 12)(9, 11, 10),

τ 0 τ 2 = (1, 7)(2, 10)(3, 12)(4, 8)(5, 9)(6, 11), τ 1 τ 0 = (1, 12)(2, 11)(3, 8, 6, 9)(4, 7, 5, 10). For hm 0 , τ 2 τ 1 = (1, 3, 5)(2, 6, 4), τ 0 τ 2 = (1, 4, 3)(2, 5, 6), τ 1 τ 0 = (1, 2)(3, 6)(4, 5
). In both cases the group G acts transitively on flags. This is a combinatorial expression of the fact that these two hypermaps are non orientable.

On the contrary, consider the two oriented hypermaps of fig. 7. The permutations τ i are the For hm 1 , τ 0 = (1, 2)(3, 4)(5, 6), τ 1 = (1, 2)(3, 4)(5, 6), τ 2 = (1, 6)(2, 3)(4, 5). The generators of the subgroup G for m 1 are:

τ 2 τ 1 = (1, 3, 5)(2, 6, 4)(7, 8, 12)(9, 11, 10), τ 0 τ 2 = (1, 7)(2, 10)(3, 12)(4, 9)(5, 8)(6, 11), τ 1 τ 0 = (1, 12)(2, 11)(3, 8)(4, 10)(5, 7)(6, 9).
For hm 1 : τ 2 τ 1 = (1, 3, 5)(2, 6, 4), τ 0 τ 2 = (1, 5, 3)(2, 4, 6), τ 1 τ 0 = 1. One can see that the group G has two orbits on the set of flags. The "+"-orbits are: for m 1 , H = {1, 3, 5, 7, 8, 12}; for hm 1 , H = {1, 3, 5}. The restriction of the generators on this orbit gives the σ-models. For m 1 :

σ V = (1, 3, 5)(7, 8, 12), σ E = (1, 7)(3, 12)(5, 8), σ F = (1, 12)(3, 8)(5, 7). For hm 1 : σ V = (1, 3, 5), σ E = (1, 5, 3), σ F = 1.
There is an elegant formula for the Euler characteristic of a hypermap in terms of its σ-model.

Lemma 1.1. -[LZ04, Proposition 1.5.3] Let hm = (σ V , σ E , σ F ) be an oriented hypermap
given by its σ model on the set H of n half-edges, n := #H. Let c V (resp. c E and c F ) denote the number of cycles of σ V (resp. σ E and σ F ). Then the Euler characteristic χ(hm) of the surface of hm is equal to

χ(hm) = c V + c E + c F -n .
Proof. -Let T be the cell decomposition (tesselation) given by the hypermap hm. Note that • 2n is the number of vertices of T ,

• the number of polygons in

T is c V + c E + c F ,
• the number of edges of T is 3n, Then the formula follows. □ 1.4. Edge Coloured Graphs. -As indicated in Section 1.2 the boundaries of cells of a hypermap form a 3-regular graph embedded into the surface of the hypermap. It carries a natural edge colouring: the arcs of intersection of hyperedges and faces are coloured by 0, the arcs of intersection of vertices and faces are coloured by 1, and the arcs of intersection of vertices and hyperedges are coloured by 2. In this subsection we show that the entire hypermap can be reconstructed from this information.

Definition 1.2. -Let κ be a finite set. A κ-coloured graph is an abstract connected graph such that each edge carries a "colour" in κ and each vertex is incident to exactly one edge of each colour. ♠

Note that a κ-coloured graph is necessarily #κ-regular and has no loops (but may contain multiple edges). In the following, for all I ⊂ κ, we will denote κ \ I by I.

Let κ = {1, 2, . . . , #κ}. For a κ-coloured graph Γ we can define a permutational τ -model as a set of involutions τ 1 , τ 2 , . . . , τ #κ acting on the set X of vertices of Γ as follows. τ i interchange the vertices connected by an edge of colour i. For the coloured graphs coming from hypermaps these permutations coincide with the τ -model from Section 1.2.

Each coloured graph Γ contains some special coloured subgraphs called bubbles in [Gur10a] and residues in [START_REF] Vince | Combinatorial Maps[END_REF]. ). This gluing respects the colouring structure of the simplices. It can be shown that such a complex is a trisp (for triangulated space) [START_REF] Kozlov | Algorithms and Computation in Mathematics[END_REF]. A. Vince [START_REF] Vince | Combinatorial Maps[END_REF]p.4] called the topological space of this simplicial complex the underlying topological space of the combinatorial map Γ. But there is also another complex associated to Γ, dual to ∆ * .

∈ B {i 1 ,••• ,i k } , one associates an abstract (D -k)-simplex s(b) coloured [D] \ {i 1 , • • • , i k }.

The direct complex ∆(Γ).

It is constructed inductively, like a CW complex. To each k-bubble, 0 ⩽ k ⩽ D, one will associate a k-dimensional topological space. To each 0-bubble b, In fact, one can prove that the union of the realizations of the (k -1)-sub-bubbles of a given k-bubble b is homeomorphic to the link of s(b) in ∆ * (Γ). Therefore the realization of b is homeomorphic to the dual block of s(b) in the first barycentric subdivision of ∆ * (Γ).

The realization |Γ| of Γ corresponds to the gluing of the D-blocks of ∆(Γ). ∆(Γ) is a complex whose blocks are topological spaces glued along their common boundaries. But in general, its blocks are not homeomorphic to balls. And indeed |Γ| is generally not a manifold but a normal pseudo-manifold [START_REF] Gurău | Lost in Translation: Topological Singularities in Group Field Theory[END_REF].

1.4.2. Hypermaps as edge-coloured graphs. -It was mentioned at the beginning of this subsection that a hypermap hm determines a [2]-coloured graph Γ hm . Its vertices corresponds to (local) flags of hm and its edges of colour i correspond to the orbits of the involution τ i .

Here is an inverse construction. Let us consider a [2]-coloured graph Γ. The 2-cells of its direct complex ∆(Γ) are polygons and |Γ| is thus the result of the gluing of polygons along common boundaries. Randomly gluing polygons along edges does not generally produce manifolds. But the gluing of polygons, dictated by a coloured graph, is always a manifold and thus a closed compact (not necessarily orientable) surface. Moreover those polygons are of three types: they are bounded by either 01-, 02-or 12-cycles (2-bubbles). Said differently, ∆(Γ) is, in dimension 2, a polygonal tessellation of a closed compact (not necessarily orientable) surface with polygons of three different types, i.e. a hypermap hm. Thus [2]-coloured graphs provide another description of hypermaps.

In the case of maps, namely when all 02-cycles are of length 4, the [2]-coloured graphs are also known as graph-encoded maps [START_REF] Lins | Graph-encoded maps[END_REF]. and checking that they are indeed isomorphic to the hypermaps from figs. 2 and 7.

Lemma 1.4. -A hypermap corresponding to a [2]-coloured graph Γ is orientable if and only if Γ is bipartite. ♢

The proof of this goes back to [START_REF] Cavicchioli | Su di una decomposizione normale per le n-varietá chiuse[END_REF]. The maps case can also be found in [START_REF] Lins | Graph-encoded maps[END_REF].

Proof. -According to Section 1.3 a hypermap is orientable if and only if the vertices of Γ can be split into two parts with subscripts + andas in fig. 6. □

Remark. -In [Vin83]

A. Vince proposed a way to associate a [d]-coloured graph Γ to any cell decomposition K of a closed d-manifold. Γ is defined as the 1-skeleton of the complex dual to the first barycentric subdivision of K. Whereas his method works for any cell complex associated to closed manifolds, it does not define a one-to-one correspondence between hypermaps and [2]coloured graphs (not all coloured graphs have a dual complex which is the barycentric subdivision of another cell complex). Moreover the coloured graph thus associated to K is of higher order than ours.

Partial duality

2.1. Definition. -Assume that a hypermap hm is connected. Otherwise we will need to do partial duality for each connected component separately and then take the disjoint union. Let S be a subset of cells of of the same type, either vertex-cells, or hyperedge-cells, or face-cells. We will define the partial dual hypermap hm S relative to S. If S is the set of all cells of the given type, the partial duality relative to S is the total duality which swaps the two types of the remaining cells without changing the cells themselves and reverses the orientation of all cells in an oriented case. For example, if hm is a graph cellularly embedded into a surface then the total duality relative to the whole set of edges is the classical duality of graphs on surfaces which interchanges vertices and faces. Since the concept of hypermap is completely symmetrical we can make the total duality relative to the set of vertices for example. Then the edges and faces will be interchanged. The hypermap hm 1 from fig. 7 has one vertex, one hyperedge and 3 faces. So we have three total duals relative to the vertex, relative to the hyperedge, and relative to all three faces, which differ only by the colour (type) of the corresponding cells. On fig. 9 with a single hyperedge of valency 3 adjacent to 3 distinct vertices and a single face. The right picture hm

{f 1 ,f 2 .f 3 } 1 is isomorphic to the original hypermap hm 1 .
Definition 2.1. -Without loss of generality we may assume that S is a subset of the set of vertex-cells. Choose a different type of cells, say hyperedges. Later in Lemma 2.2 we show that the resulting hypermap does not depend on this choice; we could choose faces instead of hyperegdes if we want to.

Step 1. Consider the boundary ∂F of the surface F which is the union of the cells from S and all cells of the chosen type, hyperedges in our case.

Step 2. Glue a disk to each connected component of ∂F . These will be the hyperedge-cells for hm S . Note that we do not include the interior of F into the hyperedges. Although if ∂F has only one component, gluing a disk to it results in the surface F itself, and then we may consider F as the single hyperedge of hm S . See fig. 10.

Step 3. Take a copy of every vertex. These disks will be the vertex-cells for hm S . Their attachment to the hyperedges is as follows. Every vertex disk of the original hypermap hm contributes one or several intervals to ∂F . Indeed, if a vertex belong to S, then it contributes to F itself and a part of its boundary contributes to ∂F . If a vertex is not in S, then it has some hyperededges attached to it because hm is assumed to be connected. So such a vertex-disk has a common boundary intervals with F and therefore contributes these intervals to ∂F . The new copies of the vertex-disks, as vertices of hm S , are attached to hyperedges exactly along the same intervals as the old ones. See fig. 11.

Q Q Q Q Q s Figure 9.
Total duals of the hypermap hm 1 from fig. 7 Step 4. At the previous steps we constructed the vertex and hyperedge cells for the partial dual hm S . Their union forms a surface with boundary. Glue a disk to each of its boundary components. These are going to be the faces of hm S . See fig. 12.

This finishes the construction of the partial dual hypermap hm S . ♠ Partial duality of hypermaps thus defined is a generalization of partial duality for maps [START_REF] Chmutov | Generalized duality for graphs on surfaces and the signed Bollobás-Riordan polynomial[END_REF].

Both indeed coincide on maps. for the non orientable map m 0 from fig. 2. The resulting surface after step 3 will be similar to the one above, only one half-edge will be twisted. It still has one boundary component, and therefore a single face. So its Euler characteristic is still -2, only now the resulting hypermap will be non orientable. It represents a surface homeomorphic to a connected sum of 4 copies of the projective plane. 

= (σ V , σ E , σ F ) .
Theorem 2.4. -Let S be a subset S := V ′ of vertices (resp. subset of hyperedges S := E ′ and subset of faces S := F ′ ) of a hypermap hm. Then its partial dual is given by the permutations

hm V ′ = (σ V ′ σ -1 V ′ , σ E σ V ′ , σ V ′ σ F ) hm E ′ = (σ E ′ σ V , σ E ′ σ -1 E ′ , σ F σ E ′ ) hm F ′ = (σ V σ F ′ , σ F ′ σ E , σ F ′ σ -1 F ′ ) , where σ V ′ , σ E ′ , σ F ′ denote
the permutations consisting of the cycles corresponding to the elements of V ′ , E ′ , F ′ respectively, and overline means the complementary set of cycles. ♢ Similar formulas in the particular case of maps were announced in [START_REF] Gross | Partial duality for ribbon graphs, II: Partial-twuality polynomials and monodromy computations[END_REF] (see also [GMT20, Section 5.2]).

Proof. -Because of the symmetry it is sufficient to prove the theorem in the case S = V ′ . From Definition 2.1 it follows that the number of half-edges is preserved by the partial duality. We need to make a bijection between half-edges of hm and those of hm S such that the corresponding permutations are related as in the first equation of the theorem.

Half-edges are attached to vertices. If a vertex does not belong to S then the attachment of half-edges to it does not change with partial duality (Step 2). So for those half-edges the required bijection is the identity.

Half-edges attached to vertices of S change, so we need to indicate the bijection for them. Consider a vertex-disk from the set S of the original hypermap hm. It can be represented as a 2k-gon because the arcs of its boundary circle intersecting with hyperedges and faces alternate. In hm it has k half-edges attached along every other side. We call them old half-edges. These half-edges together with the vertex-disk form a piece of the surface F on Step 1 near the vertex. The orientation of F induces an orientation on its boundary ∂F . In the partial dual hm S the hyper-edges, the new hyperedges, are attached to every connected component of ∂F (Step 2). The orientation of ∂F induces the orientation on new hyperedges. They are attached to a new vertex (Step 3) along the other sides of the 2k-gon, which form new half-edges. Set the label of a new half-edge to be the same as the label of the old one preceding the new half-edge in the direction of the orientation of the old vertex. This gives the bijection of half-edges around vertices of S. The orientation on the new vertex, as well as on the entire hypermap hm S , is induced from the new hyperedges. Fig. 13 shows that the labels of the new half-edges appear around new vertices in the order opposite to the one around old ones. This means that the cycle in the permutation σ V corresponding to a vertex in S of the initial hypermap hm should be inverted to get the cycle for hm S . This proves that the first term of the first formula of the theorem σ

V (hm S ) = σ -1 V ′ (hm)σ V ′ (hm).
For the second term we need to analyze the cyclic order of new half-edges around new hyperedge according to its orientation. It may be read off from labels of the half-edges met when traveling along the boundary of the hyperedge in the direction of its orientation. Such a boundary for hm S is exactly a connected component of ∂F with the orientation induced from hm. The last is given precisely by the product of permutations σ E (hm)σ V ′ (hm). Indeed, consider fig. 14 and suppose that σ E (hm) : 2 → i for some i. Then the new half-edge labels appear at ∂F in the order . . . , 1, i, . . . . So σ E (hm S ) : 1 → i, which is equal to σ E (hm)σ V ′ (hm): This proves the second term. The third term follows from the relation

1 σ V ′ (hm) / / 2 σ E (hm) / / i .
σ F σ E σ V = 1. □ Example 4.
-This is a continuation of Example 1. We found that for the map m 1 on fig. 7 the permutations σ's act on the set of half-edges H = {1, 3, 5, 7, 8, 12} as

σ V = (1, 3, 5)(7, 8, 12), σ E = (1, 7)(3, 12)(5, 8), σ F = (1, 12)(3, 8)(5, 7).
The cycle (1, 3, 5) of σ V corresponds to the the left vertex v. For the σ-model of the partial dual m {v} 1 , we set V ′ = {v}. Then σ V ′ = (1, 3, 5) and σ V ′ = (7, 8, 12). According to the theorem

σ V (m {v} 1 ) = σ V ′ σ -1 V ′ = (1, 5, 3)(7, 8, 12), σ E (m {v} 1 ) = σ E σ V ′ = (1, 7)(3, 12)(5, 8)(1, 3, 5) = (1, 12, 3, 8, 5, 7), σ F (m {v} 1 ) = σ V ′ σ F = (1, 3, 5)(1, 12)(3, 8)(5, 7) = (1, 12, 3, 8, 5, 7).
One may check that these permutations agree with the last picture on figs. 12 and 15. In σ-model it is given by the formulae

hm V = (σ -1 V , σ E σ V , σ V σ F ) = (σ -1 V , σ -1 F , σ -1 E ) hm E = (σ E σ V , σ -1 E , σ F σ E ) = (σ -1 F , σ -1 E , σ -1 V ) hm F = (σ V σ F , σ F σ E , σ -1 F ) = (σ -1 E , σ -1 V , σ -1 F )
. The inverse of these permutations are responsible for the change of orientation of the hypermap. of its local flags. Let V ′ be a subset of its vertices, τ V ′ 1 be the product of all transpositions in τ 1 for v ∈ V ′ , and τ V ′ 2 be the product of all transpositions in τ 2 for v ∈ V ′ . Then its partial dual hm V ′ is given by the permutations

Partial duality in

τ 0 (hm V ′ ) = τ 0 , τ 1 (hm V ′ ) = τ 1 τ V ′ 1 τ V ′ 2 , τ 2 (hm V ′ ) = τ 2 τ V ′ 1 τ V ′ 2 .
In other words the permutations τ 1 and τ 2 swap their transpositions of local flags around the vertices in V ′ . Similar statements hold for partial dualities relative to the subsets of hyperedges E ′ and of faces F ′ . ♢

A particular case of these formulas for maps was rediscovered in [GT20, Equation 14] and announced in [START_REF] Gross | Partial duality for ribbon graphs, II: Partial-twuality polynomials and monodromy computations[END_REF] (see also [GMT20, Section 5.2]).

Proof. -From Definition 2.1 one may see that if a vertex does not participate in the partial duality, v ̸ ∈ V ′ , then nothing changes with local flags around it. But if v ∈ V ′ , then the roles of edges and faces in its local flags are interchanged. This may be seen on Step 3 and also on figs. 13 and 14 when the second copy of the vertex is attached to the new hyperedges. So, if two such local flags were transposed by τ 1 of the original hypermap, then they will be transposed by τ 2 of the partial dual and vise versa. This agrees with the labeling of flags on figs. 12 and 16.

Corollary 2.7. -The τ -model of the total dual hm V of a hypermap hm is given by the involutions τ 0 (hm

V ) = τ 0 (hm), τ 1 (hm V ) = τ 2 (hm), τ 2 (hm V ) = τ 1 (hm).
One may check that this agrees with Corollary 2.5 in the case of oriented hypermaps. for the total duals of the hypermap hm 1 from fig. 7 relative to the set of all vertices V , all edges E, and all faces F . These dual hypermaps are shown in fig. 9. In this case the word "duality" is inappropriate. It is rather an action of a symmetric group S D on colours of edges of bubbles of S. In the hypermap case, D = 2. This group is isomorphic to Z 2 , so the partial duality corresponds to the only nontrivial element of order 2. But for higher D the group S D contains higher order elements so they will not be "dualities" anymore.

Partial duality

This concept of higher dimensional partial duality is completely unexplored up to now. It would be very interesting to study it. In particular, is it true that if the realization |Γ| of Γ through its direct complex ∆(Γ) is a manifold, then the realization of its partial dual |Γ S | is also a manifold? How partial duality affects the (co)homology groups H * (∆(Γ))?

Genus change

The Euler genus γ is equal to twice the genus for orientable hypermaps and to the number of Möbius bands µ in presentations of the surfaces of hypermaps as spheres with µ bands in them in the unorientable case. The bijection between hypermaps and [2]-coloured graphs, see Section 1.4.2, allows us to derive a simple formula for the Euler genus change under partial duality, in terms of change of the numbers of bicoloured cycles (or 2-bubbles). In the case of maps, it expresses the genus change in terms of certain induced subgraphs of the map and of its total dual. This bound is optimal and fig. 19 shows an example where it is reached. In particular, for partial duality of ribbon graphs relative to a single edge, #E ′ = 1, Corollary 3.4 immediately gives the results of [GMT20, Table 1.1] which were recently used in to prove one of the conjectures from [START_REF] Gross | Partial duality for ribbon graphs, I: Distributions[END_REF].

Directions of future research

• The paper [START_REF] Gross | Partial duality for ribbon graphs, I: Distributions[END_REF] contains several interesting conjectures about partial-dual genus distribution polynomial for ribbon graphs. One of them was recently proved in [START_REF] Chmutov | On a conjecture of Gross, Mansour and Tucker[END_REF]. The definition of this polynomial works for hypermaps as well. It would be interesting to formulate and prove analogs for hypermaps.

• Maps (ribbon graphs) provide a special class of ∆-matroids (Lagrangian matroids) [START_REF] Chun | Matroids, delta-matroids and embedded Graphs[END_REF]. Are there any matroid type structure underlying the concept of hypermaps? Can the general Coxeter matroids be obtained from hypermaps?

• It would be interesting to study higher dimensional partial "duality" concept as outlined in Section 2.4. In particular, is it true that a partial "dual" to a [D]-coloured graph corresponding to a manifold is also a manifold?

Figure 1 .

 1 Figure 1. Local view of a hypermap with its Walsh map superimposed (vertices are red, hyperedges are green, faces are blue).

  A non orientable map m0 on a projective plane with two vertices and three edges. A non orientable hypermap hm 0 on a projective plane with one vertex and one hyerpedge.

Figure 2 .

 2 Figure 2. Map and hypermap

Figure 3 .

 3 Figure 3. A local flag

Figure 4 .

 4 Figure 4. Involutions τ 0 , τ 1 , τ 2

Figure 6 .

 6 Figure 6. σ and τ permutations

  An orientable map m1 on a sphere with two vertices and three edges An orientable hypermap hm 1 on a sphere with one vertex and one hyperedge

Figure 7 .

 7 Figure 7. Map and hypermap. Second example.

  Definition 1.3. -Let Γ be a κ-coloured graph and I ⊂ κ. An #I-bubble of colours I in Γ is a connected component of the I-coloured subgraph of Γ induced by the edges of Γ with colours in I. ♠In particular 0-bubbles, corresponding to I = ∅, are the vertices of Γ. The set of bubbles in Γ of colours I ⊂ κ is denoted by B I (Γ) or B I if there is no ambiguity. B I is its cardinality #B I . We also define B n (Γ), 0 ⩽ n ⩽ #κ -1, to be the set of all n-bubbles in Γ: B n := I⊂κ,#I=n B I and B n := #B n . Finally the whole set of bubbles of Γ, 0⩽n⩽#κ-1 B n , is written as B(Γ). The subgraph inclusion relation provides B(Γ) with a poset structure.1.4.1. Topology of edge coloured graphs. -To each coloured graph Γ, one can associate two cell complexes, ∆ * (Γ) and its ("Poincaré") dual ∆(Γ), as follows.For each D ∈ N, let [D] be the set {0, 1, . . . , D}.The dual complex ∆ * (Γ). Let Γ be a [D]-coloured graph. To each D-bubble b ∈ B {i} (Γ), one associates a 0-simplex s(b) coloured i. To each (D -1)-bubble b ∈ B {i,j} , one associates an edge s(b) the endpoints of which are respectively coloured i and j. In general, to each k-bubble b

  Now, the poset structure of B(Γ) provides gluing data for those simplices. Indeed, let us consider two (D -k)-simplices s(b) and s(b ′ ). If the corresponding k-bubbles b and b ′ are contained in a common (k + 1)-bubble b ′′ , identify s(b) and s(b ′ ) along their common facet s(b ′′

  i.e. to each vertex of Γ, corresponds a point |b|. Each edge e of Γ, i.e. each 1-bubble, contains two vertices u and v. Define |e| as the cone over |u| ∪ |v|. The realization |e| of e is thus a segment. Now consider a 2-bubble b. It is a bicoloured cycle in Γ. b contains a set of edges whose realization form a circle. |b| is defined as a cone over this circle hence a 2-disk. In general, let b be k-bubble. It contains a set B k-1 (b) of (k-1)-bubbles. The realization of any b ′ ∈ B k-1 (b) has been defined at the previous induction step. The realizations |b 1 | and |b 2 | for b 1 , b 2 ∈ B k-1 are identified along |b 1 ∩ b 2 | (which is a union of lower dimensional bubbles). Then the whole set B k-1 (b) has a (connected) realization that we denote ∂|b|. Finally |b| is defined as the cone over ∂|b| (hence the name).

Example 2 .-Figure 8 .

 28 Figure 8. [2]-coloured graphs Γ hm 0 and Γ hm 1

  the three duals are shown as cell decomposed spheres together with the corresponding embeddings of the hypergraphs; the hyperedges are embedded as one-dimensional stars centered at little squares. The left picture represents hm {v} 1 and has 3 hyperedges with a single half-edge each. The middle picture represents hm {e} 1

Example 3 .-Figure 10 .

 310 Figure 10. Steps 1 & 2: forming hyperedges of m {v} 1

Figure 11 .Figure 12 .

 1112 Figure 11. Step 3: copying vertices and gluing them to hyperedges

Figure 13 .Figure 14 .

 1314 Figure 13. Permutation σ V (hm S )

Figure 15 .

 15 Figure 15. Partial duality in σ-model.

Corollary 2. 5 .

 5 -The total duality with respect to S := V (resp. S := E and S := F ) is reduced to the classical Euler-Poincaré duality which swaps the names of two remaining types of cells and reverse the orientation.

  τ -model. -Theorem 2.6. -Consider the τ -model of a hypermap hm given by the permutationsτ 0 (hm) : (v, e, f ) → (v ′ , e, f ), τ 1 (hm) : (v, e, f ) → (v, e ′ , f ), τ 2 (hm) : (v, e, f ) → (v, e, f ′ )

□Figure 16 .

 16 Figure 16. Partial duality in τ -model.

Figure 17 .

 17 Figure 17. [2]-coloured graphs of total duals Γ hm V 1 , Γ hm E 1 , Γ hm F 1

Definition 3. 1 (Figure 18 .

 118 Figure 18. Special subgraphs of coloured graphs

Figure 19 .

 19 Figure 19. A coloured graph Γ such that g(Γ C ) -g(Γ) = 2, C is any of its 01-cycles.Given the bijection between hypermaps and [2]-coloured graphs, ribbon graphs are [2]coloured graphs, the 02-cycles of which all have length four. Theorem 3.3 then applies and allows to quantify the change of topology of ribbon graphs under partial duality: Corollary 3.4. -Let G be a ribbon graph and E ′ be a subset of its edges. Let G[E ′ ] be the subribbon graph of G induced by E ′ and G * [E ′ ] be the subribbon graph of its Euler-Poincaré dual G * induced by E ′ . Then1 2 γ(G E ′ ) -γ(G) = v(G[E ′ ]) + v(G * [E ′ ]) -#E ′ -1 2 χ(G[E ′ ]) -1 2 χ(G * [E ′ ]). ♢ Proof. -Withour conventions, C = E ′ is a subset of 02-cycles, vertices are 12-cycles and faces are 01-cycles. Thus, Γ s [E ′ ; 12] = G[E ′ ], Γ s [E ′ ; 01] = (G * [E ′ ]) * , n(Γ s [E ′ ; 1t]) = 2#E ′ , and the Corollary follows. □

  for coloured graphs. -Let Γ hm be the [2]-coloured graph corresponding to a hypermap hm. Let I be a subset of two out of three colours, for example I = {1, 2}, and let S be a subset of 2-bubbles in B I which corresponds to a subset of vertices of hm.Proof. -The edges of Γ hm of colour 1 (resp. 2) correspond to 2-element orbits of τ 1 (resp. τ 2 ). According to Theorem 2.6 the partial dual hypermap is obtained by swapping the corresponding transpositions of τ 1 and τ 2 . This corresponds to swapping the colours 1 and 2 in the bubbles of S.□

	Example 6. -Here are the [2]-coloured graphs Γ hm V 1	, Γ hm E 1	and Γ hm F 1

Theorem 2.8. -The [2]-coloured graph Γ hm S of the partial dual hypermap hm S is obtained from Γ hm by swapping the colours 1 and 2 for all edges in the 2-bubbles of S. In particular, the underlying graphs of Γ hm S and Γ hm are the same. ♢ Ellingham and Zha [EZ17] obtained a similar result in the case of maps.
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